首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Dualite has been found at Mount Alluaiv, the Lovozero Pluton, the Kola Peninsula in peralkaline pegmatoid as sporadic, irregularly shaped grains up to 0.3–0.5 mm across. K-Na feldspar, nepheline, sodalite, cancrinite, aegirine, alkaline amphibole, eudialyte, lovozerite, lomonosovite, vuonnemite, lamprophyllite, sphalerite, and villiaumite are associated minerals. Dualite is yellow, transparent or translucent, with conchoidal fracture. The new mineral is brittle, with vitreous luster and white streaks. The Mohs hardness is 5. The measured density is 2.84(3) g/cm3 (volumetric method); the calculated density is 2.814 g/cm3. Dualite dissolves and gelates in acid at room temperature. It is nonfluorescent. The new mineral is optically uniaxial and positive; ω = 1.610(1), ɛ = 1.613(1). Dualite is trigonal, space group R3m. The unit cell dimensions are a = 14.153(9), c = 60.72(5) ?, V = 10533(22) ?, Z = 3. The strongest reflections in the X-ray powder pattern [d, ? (I,%)(hkl)] are as follows: 7.11(40)(110), 4.31(50)(0.2.10), 2.964(100)(1.3.10), 2.839(90)(048), 2.159(60)(2.4.10, 0.4.20), 1.770(60)(2.4.22, 4.0.28, 440), 1362(50)(5.5.12, 3.0.42). The chemical composition (electron microprobe, H2O calculated from X-ray diffraction data) is as follows, wt %: 17.74 Na2O, 0.08 K2O, 8.03 CaO, 1.37 SrO, 0.29 BaO, 2.58 MnO, 1.04 FeO, 0.79 La2O3, 1.84 C2O3, 0.88 Nd2O3, 0.20 Al2O3, 51.26 SiO2, 4.40 TiO2, 5.39 ZrO2, 1.94 Nb2O5, 0.58 Cl, 1.39 H2O,-O = 0.13 Cl2; they total is 99.67. The empirical formula calculated on the basis of 106 cations as determined by crystal structure is (Na29.79Ba0.1K0.10)Σ30(Ca8.55Na1.39REE1.27Sr0.79)Σ12 · (Na3.01Mn1.35Fe0.872+Ti0.77)Σ6(Zr2.61Nb0.39)Σ3 (Ti2.52Nb0.48)Σ3(Mn0.82Si0.18)Σ1(Si50.77Al0.23)Σ51 O144[(OH)6.54(H2O)1.34·Cl0.98]Σ8.86). The simplified formula is Na30(Ca,Na,Ce,Sr)12(Na,Mn,Fe,Ti)6Zr3Ti3 MnSi51O144 (OH,H2O,Cl)9). The name dualite is derived from Latin dualis (dual) alluding to the dual taxonomic membership of this mineral, which is at the same time zirconosilicate and titanosilicate. The crystal structure is characterized by two module types (alluivite-like and eudialyte-like) alternating along a threefold axis with a doubled c period relative to eudialyte and close chemical affinity to rastsvetaevite (Khomyakov et al., 2006a) and labyrynthite (Khomyakov et al., 2006b). According to the authors’ crystal chemical taxonomy of the eudialyte group, the new mineral belongs to one of three subgroups characterized by a 24-layered structural framework. Dualite is a mineral formed during the final stages of peralkaline pegmatite formation. The type material of dualite is deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow. Original Russian Text ? A.P. Khomyakov, G.N. Nechelyustov, R.K. Rastsvetaeva, 2007, published in Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 2007, Pt CXXXVI, No. 4, pp. 68–73. Approved by the Commission on New Minerals and Mineral Names, International Mineralogical Association, July 8, 2005.  相似文献   

13.
In a recent study, sulphate-bearing green rust (GRSO4) was shown to incorporate Na+ in its structure (NaFeII6FeIII3(OH)18(SO4)2(s); GRNa,SO4). The compound was synthesised by aerial oxidation of Fe(OH)2(s) in the presence of NaOH. This paper reports on its free energy of formation .Freshly synthesised GRNa,SO4 was titrated with 0.5 M H2SO4 in an inert atmosphere at 25 °C, producing dissolved Fe2+ and magnetite or goethite. Solution concentrations, PHREEQC and the MINTEQ database were used to calculate reaction constants for the reactions:
  相似文献   

14.
Phosphoinnelite, an analogue of innelite with P > S, has been found in a peralkaline pegmatite vein crosscutting calcite carbonatite at the phlogopite deposit, Kovdor pluton, Kola Peninsula. Cancrinite (partly replaced with thomsonite-Ca), orthoclase, aegirine-augite, pectolite, magnesioarfvedsonite, golyshevite, and fluorapatite are associated minerals. Phosphoinnelite occurs as lath-shaped crystals up to 0.2 × 1 × 6 mm in size, which are combined typically in bunch-, sheaf-, and rosettelike segregations. The color is yellow-brown, with vitreous luster on crystal faces and greasy luster on broken surfaces. The mineral is transparent. The streak is pale yellowish. Phosphoinnelite is brittle, with perfect cleavage parallel to the {010} and good cleavage parallel to the {100}; the fracture is stepped. The Mohs hardness is 4.5 to 5. Density is 3.82 g/cm3 (meas.) and 3.92 g/cm3 (calc.). Phosphoinnelite is biaxial (+), α = 1.730, β = 1.745, and γ = 1.764, 2V (meas.) is close to 90°. Optical orientation is Z^c ∼ 5°. Chemical composition determined by electron microprobe is as follows (wt %): 6.06 Na2O, 0.04 K2O, 0.15 CaO, 0.99 SrO, 41.60 BaO, 0.64 MgO, 1.07 MnO, 1.55 Fe2O3, 0.27 Al2O3, 17.83 SiO2, 16.88 TiO2, 0.74 Nb2O5, 5.93 P2O5, 5.29 SO3, 0.14 F, −O=F2 = −0.06, total is 99.12. The empirical formula calculated on the basis of (Si,Al)4O14 is (Ba3.59Sr0.13K0.01)Σ3.73(Na2.59Mg0.21Ca0.04)Σ3.04(Ti2.80Fe 0.26 3+ Nb0.07)Σ3.13[(Si3.93Al0.07)Σ4O14(P1.11S0.87)Σ1.98O7.96](O2.975F0.10)Σ3.075. The simplified formula is Ba4Na3Ti3Si4O14(PO4,SO4)2(O,F)3. The mineral is triclinic, space group P or P1. The unit cell dimensions are a = 5.38, b = 7.10, c = 14.76 ?; α = 99.00°, β = 94.94°, γ = 90.14°; and V = 555 ?3, Z = 1. The strongest lines of the X-ray powder pattern [d, ? in (I)(hkl)] are: 14.5(100)(001), 3.455(40)(103), 3.382(35)(0 2), 2.921(35)(005), 2.810(40)(1 4), 2.683(90)(200, 01), 2.133(80)( 2), 2.059(40)(204, 1 3, 221), 1.772(30)(0 1, 1 7, 2 2, 2 3). The infrared spectrum is demonstrated. An admixture of P substituting S has been detected in the innelite samples from the Inagli pluton (South Yakutia, Russia). An innelite-phosphoinnelite series with a variable S/P ratio has been discovered. The type material of phosphoinnelite has been deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow. Original Russian Text ? I.V. Pekov, N.V. Chukanov, I.M. Kulikova, D.I. Belakovsky, 2006, published in Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 2006, No. 3, pp. 52–60. Considered and recommended by the Commission on New Minerals and Mineral Names, Russian Mineralogical Society, May 9, 2005. Approved by the Commission on New Minerals and Mineral Names, International Mineralogical Association, July 4, 2005 (proposal 2005-022).  相似文献   

15.
Ulf Hålenius  Klaus Langer 《Lithos》1980,13(3):291-294
Six natural chloritoid crystals with Fe2+ and Fe3+ contents ranging from 4.15 to 12.81 and from 0.411 to 0.849g-atoms/l, respectively, as determined by means of microprobe and Mössbauer techniques, served as reference material to develop non-destructive microscope-spectrophotometric methods for quantitative Fe2+ – Fe3+ determinations in chloritoids from unpolarized spectra of (001) platelets. Fe2+ concentrations in g-atom/l can be obtained from [ [Fe3+]=C1xD1/t where D1 = log10(I0/I at 28,000 cm-1 and t=crystal thickness in cm; C1 is a conttant that may be influenced somewhat by experimental conditions and is found to be 0.002289 with the experimental set-up used in this study. Fe2+ concentrations in g-atom/l can be obtained from [Fe2+]=C1xD1/D1-C3 with D2=log10(I0/I) at 16,300 cm?1 and constants C4 = 45.36 and C5 = 3.540. Due to the uncertainties in absorbance measurements, D1 and D2 and the thickness measurements, the accuracies are ±0.05 and ±0.15 g-atom/l for [Fe3+] and [Fe2+], respectively. The determinations may be carried out on chloritoid grains in normal thin sections with an areal resolution of ~10 μm.  相似文献   

16.
17.
18.
 Recently, the Hy-2a hydrous olivine (MgH2 SiO4)·3(Mg2SiO4) occurring as nanometre-sized inclusions in mantle olivines has been found by TEM, and has been suggested to be a new DHMS phase (Khisina et al. 2001). A model of the crystal structure of Hy-2a has been proposed as a 2a-superstructure of olivine with one Me2+ -vacant octahedral layer in the (1 0 0) plane per Hy-2a unit cell (Khisina and Wirth 2002). In the present study the crystal structure of Hy-2a hydrous olivine is optimized by ab initio calculations. The aims of this study are: (1) verification of the suggested models of Hy-2a hydrous olivine structure; (2) calculation of the most stable configurations for Hy-2a structure with minimum static lattice energy, by assuming a possible formation of Me2+ vacancies in either M1 or M2 octahedral sites; (3) determination of the position of protons and hydrogen bonds in the Hy-2a structure. Several different possible configurations of the Hy-2a structure are optimized. The results support the idea of a stable olivine structure with ordered planar-segregated OH-bearing defects oriented parallel to (1 0 0). The data obtained indicate a preferred stability of the Hy-2a structure with the protons associated with M1 vacancies and bonded with O1 and O2 oxygen sites. The relative energy values of the optimized Hy-2a structure configurations correlate as a rule with the average shifts of atoms from their positions in pure forsterite structure. Received: 7 February 2002 / Accepted: 23 October 2002  相似文献   

19.
Zdenek Johan 《Lithos》1976,9(2):165-171
Senegalite is orthorhombic, mm2, a:b:c:=1.296:1:1.007; a0=9.673, b0=7.596, c0=7.668 A?, Z=4, Gcalc=2551; space group Pna2. The strongest lines in the powder pattern are: 5.41(7); 4.089(9); 3.834(10); 3.610(8); 2.990(9); 2.348(8); 2.070(7) 1.929(7); 1.505(7) Å. The chemical analysis: Al2O3 ? 46.23; Fe2O3 ? 0.28; P2O5 ? 31.85 H2O ? 21.00; sum 99.34, gives a formula Al2(PO4)(OH)3 · H2O. Colourless optically biaxial positive, nS: α=1.562, β=1.566, γ=1.587, plane of optical axies (001), Z=a, Y=c; 2V=53°, weak dispersion r > v. Measured density 2.552. The DTA curve shows endothermic reactions at 250, 370 and 440°C corresponding to the dehydration of mineral. Infrared spectrum indicates the presence of OH and H2O groups. Found in oxidation zone of Kouroudiako iron deposit, Senegal, associated with turquoise, augelite, wavellite and crandallite.  相似文献   

20.
Rates of steady exchange of oxygens between bulk solution and the largest known aluminum polyoxocation: Al2O8Al28(OH)56(H2O)2618+(aq) (Al30) are reported at pH≈4.7 and 32-40°C. The Al30 molecule is a useful model for geochemists because it is ≈2 nm in length, comparable to the smallest colloidal solids, and it has structural complexity greater than the surfaces of most aluminum (hydr)oxide minerals. The Al30 molecule has 15 distinct hydroxyl sites and eight symmetrically distinct bound waters. Among the hydroxyl bridges are two sets of μ3-OH, which are not present in any of the other aluminum polyoxocations that have yet been studied by NMR methods. Rates of isotopic equilibration of the μ2-OH and μ3-OH hydroxyls and bound water molecules fall within the same range as we have determined for other aluminum solutes, although it is impossible to determine rate laws for exchange at the large number of individual oxygen sites. After injection of 17O-enriched water, growth of the 17O-NMR peak near 37 ppm, which is assigned to μ2-OH and μ3-OH hydroxyl bridges, indicates that these bridges equilibrate within two weeks at temperatures near 35°C. The peak at +22 ppm in the 17O-NMR spectra, assigned to bound water molecules (η-OH2), varies in width with temperature in a similar fashion as for other aluminum solutes, suggesting that most of the η-OH2 sites exchange with bulk solution at rates that fall within the range observed for other aluminum complexes. Signal from one anomalous group of four η-OH2 sites is not observed, indicating that these sites exchange at least a factor of ten more rapidly than the other η-OH2 sites on the Al30.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号