首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Flow mapping and physical volcanology of 15 basaltic lavas exposed in three critical road pass sections (ghats) in the Koyna-Warna region of the western Deccan Traps is presented in this paper. Transitional lavas like rubbly pahoehoe are most common morpho-type exposed in these ghat sections. Sinking of rubbly breccia into flow interiors and formation of breccia-cored rosette are common in some lava flows. Few rubbly lavas exhibit slabby tendencies. The amount and nature of the associated rubble is variable and result from the mechanical fracturing and auto-brecciation of the upper vesicular crust in response to distinctive stages in the cooling, crystallization and emplacement history of individual lava flows. Occurrence of aa and pahoehoe morpho-types in the lava flow sequence is subordinate. Three prominent pahoehoe flows separated by red bole horizons are seen in the upper parts of the Kumbharli ghat. These are thick, P-type sheet pahoehoe. The pahoehoe lavas represent compound flow fields that grew by budding, endogenous lava transfer and inflation. Presence of pahoehoe lavas in the Koyna-Warna region hints at possible hitherto unrecorded southern extension of Bushe-like flow fields. This study reconfirms the existence of pahoehoe-slabby-rubbly-aa flow fields and transitions even in the upper echelons of the Deccan Trap stratigraphy. The study of morphology and internal structure of lava flows exposed at the ghat sections in the Koyna-Warna region could guide subsurface core-logging that is critical in deciphering the physical volcanology and emplacement dynamics of basaltic lava flows penetrated by drill holes sunk under the scientific deep drilling programme.  相似文献   

2.
Basaltic fissure eruptions are the most common eruption type on Earth. They are characterised by linear lava fountains that construct pyroclastic cones and expansive lava flow fields. The histories of these eruptions can be notoriously difficult to interpret due to the geochemical homogeneity of the tephra, and due to the fact that many of the early deposits become buried during later stages of the eruption. Furthermore, observing the construction of the pyroclastic cones is inherently difficult and dangerous due to the presence of active lava fountains. However, glacial outbursts in the north of Iceland have dissected the products of a Holocene fissure eruption. Examination of the pyroclastic cones, tephra deposits and a solidified lava lake along the fissure has allowed us to elucidate the complex eruptive processes that occur during these eruptions.  相似文献   

3.
4.
Gran Canaria, like most of the Canary Islands, shows evidence for young basaltic volcanism in the form of cinder cones and valley‐hugging lava flows. These landforms were of no particular use to the aboriginal population, nor to the subsequent Spanish settlers, and young lava flows and lava fields are still referred to as ‘malpaís’ (badlands) in the Canary Islands. In north‐west Gran Canaria, one such lava flow fills the bottom of a steep‐sided valley, which reaches the sea at the present day village of Agaete. The lava flow erupted c. 3030 ± 90 yr bp and displays a total length of ~ 11 km. At its distal end, just outside Agaete, it hosts one of Europe’s largest and most important pre‐historic burial sites constructed of volcanic rock: the Maipés necropolis. Over 700 pre‐historic tombs (or tumuli) constructed from the aa‐type clinker materials have been identified on top of the valley‐filling lava flow. The up to soccer‐ball sized vesicular clinker fragments are sufficiently low in density to provide abundant, workable basalt blocks for the construction of the tumuli, allowing the pre‐hispanic aboriginal population to create a large and magnificent ‘sacred ground’ in an otherwise barren landscape.  相似文献   

5.
During the solidification of a lava lake heat is released convectively from the top surface as well as conductively into the country rock from the base, leading to non-uniform solidification. The upper solidified layer grows at a faster rate than the lower solidified layer. Similarly, solidification of magma intrusion within the crust is also non-uniform due to the presence of thermal gradient in the crust. Available analytical solution for solidification of a melt layer assumes only symmetric cooling about the centre of the layer. In the present work a moving boundary solution for thermal evolution and non-uniform solidification of a melt layer incorporating time-varying contact temperature conditions at both of its boundaries is developed. The solution is obtained by using the Fourier spectral approach in the space domain and a modified finite difference scheme in the time domain, and is validated with available analytical solutions for simple cases and a semi-analytical solution for the case involving temperature gradient in the country rock. This solution can be used to analyse solidification of lava lakes and magma intrusions experiencing time-dependent temperature variation at their contacts with the country rock.  相似文献   

6.
The Slaufrudalur Pluton is a granitic pluton in the Tertiary lava pile of Southeast Iceland. Excellent exposures of its roof and walls made it possible to map the shape of the pluton with high-resolution GPS. Based on the GPS mapping and field observations, we reconstructed the three-dimensional shape of the Slaufrudalur Pluton with the aim to test which implications on the mechanisms of emplacement can be derived from this approach. The reconstructed pluton shape is characterised by steep walls and a flat roof at map-scale. This shape and the internal compositional layering indicate that the pluton was probably emplaced by cauldron subsidence along subvertical faults that are parallel with the strike of the regional fissure swarms. At the roof contact, the pluton exploited the original layering of the flood basalts. At outcrop-scale, however, the roof was modified by magmatic stoping, which resulted in a step-like pattern on a scale that cannot be resolved in the three-dimensional model. Hence, the reconstruction of the three-dimensional shape of the Slaufrudalur Pluton, combined with structural field studies, provided valuable information about the mechanism of its emplacement on pluton-scale. For a comprehensive understanding of all mechanisms involved in the emplacement of the Slaufrudalur Pluton, detailed structural field studies remain essential.  相似文献   

7.
The Hianana Volcanics consist of bedded tuff and dacitic lava that form a locally mappable unit within the extensive, Late Permian silicic volcanic sequence of northeastern New South Wales. Principal components of the bedded tuff are crystal and volcanic lithic fragments ranging from coarse ash to lapilli, accompanied by variable amounts of fine ash matrix. Well denned plane parallel thin bedding is characteristic. Sandwave bed forms, including low‐angle cross‐beds and wavy beds, are confined to an area of 2–3 km2 coinciding with the thickest sections (70 m) of bedded tuff. A high‐aspect ratio flow of porphyritic dacitic lava overlies the bedded tuff in the same area. The setting, lithofacies, extent and geometry of the bedded tuffs of the Hianana Volcanics are comparable with modern tuff rings which are composed of the deposits from base surges generated by explosive phreatomagmatic eruptions at primary volcanic vents. Many of these have also discharged lava late in their activity. Proximal parts of the Hianana tuff ring were buried by the porphyritic lava after the phreatomagmatic eruptions had ceased. In more distal sections, the bedded tuff is less than 10 m thick and dominantly comprises fine grained, plane parallel, very thin beds and laminae; these features suggest an origin by fallout from ash clouds that accompanied the phreatomagmatic eruptions. The distal ash was covered and preserved from erosion by a layer of welded ignimbrite, the source of which is unknown.  相似文献   

8.
This study focuses on the compound pahoehoe lava flow fields of the 2000 eruption on Mount Cameroon volcano, West Africa and it comprehensively documents their morphology. The 2000 eruption of Mount Cameroon took place at three different sites (sites 1, 2 and 3), on the southwest flank and near the summit that built three different lava flow fields. These lava flow fields were formed during a long‐duration (28th May–mid September) summit and flank eruption involving predominantly pahoehoe flows (sites 2 and 3) and aa flows (site 1). Field observations of flows from a total of four cross‐sections made at the proximal end, midway and at the flow front, have been supplemented with data from satellite imagery (SRTM DEM, Landsat TM and ETM+) and are used to offer some clues into their emplacement. Detailed mapping of these lava flows revealed that site 1 flows were typically channel‐fed simple aa flows that evolved as a single flow unit, while sites 2 and 3 lava flow fields were fed by master tubes within fissures producing principally tube‐fed compound pahoehoe flows. Sites 2 and 3 flows issued from ∼ 33 ephemeral vents along four NE–SW‐trending faults/fissures. Pahoehoe morphologies at sites 2 and 3 include smooth, folded and channelled lobes emplaced via a continuum of different mechanisms with the principal mechanism being inflation. The dominant structural features observed on these flow fields included: fissures/faults, vents, levees, channels, tubes and pressure ridges. Other structural features present were pahoehoe toes/lobes, breakouts and squeeze‐ups. Slabby pahoehoe resulting from slab‐crusted lava was the transitionary lava type from pahoehoe to aa observed at all the sites. Transition zones correspond to slopes of > 10°. Variations in flow morphology and textures across profiles and downstream were repetitive, suggesting a cyclical nature for the responsible processes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The Thalanga volcanic‐hosted massive sulfide deposit occurs in the Cambro‐Ordovician Mt Windsor Subprovince in northern Queensland. The orebody comprises steeply dipping, stratiform, sheet‐like, polymetallic massive sulfide lenses. Overall, the volcanic facies architecture at Thalanga is dominated by quartz‐ and/or feldspar‐phyric lavas and synvolcanic intrusions that comprise coherent facies and in situ and resedimented autoclastic facies. Systematic phenocryst logging (mineralogy, abundance, size) has been used to discriminate separate emplacement units of rhyolite in the footwall and dacite in the hangingwall. Some of the petrographically different rhyolite and dacite types can also be distinguished using immobile‐element geochemistry. Rhyolitic lavas and intrusions in the footwall are weakly to strongly altered. Apparent clastic textures resulting from hydrothermal alteration and metamorphism are widely developed in the coherent facies. Genuine clastic textures are characterised by clasts with randomly oriented internal laminar or banded fabric (e.g. rotated, flow‐laminated clasts), marked and consistent differences in quartz phenocryst abundance and/or size range between clasts and matrix, and normal grading. Mass‐flow‐emplaced, rhyolitic breccia units delineate palaeo‐sea‐floor positions in the footwall that are potentially prospective for exhalative massive sulfide mineralisation. A comparison of the distribution of clastic and coherent facies with the geometry of strongly altered zones in the footwall indicates that intense hydrothermal fluid flow was independent of the facies arrangement. The massive sulfide lenses conformably overly altered footwall rhyolite and occur in a distinctive facies association which includes coarse quartz‐phenocryst‐rich rhyolitic sills with peperitic contacts and crystal‐rich polymictic breccia. The hangingwall to the orebody consists of largely unaltered dacitic lavas and synvolcanic intrusions and minor dacitic pumice breccia, dacitic breccia and polymictic volcanic breccia. The facies architecture shows that the Thalanga massive sulfide deposit formed in a below‐storm‐wave‐base depositional environment on top of an elevated, lava‐dominated, rhyolitic volcanic centre. A modern analogue for the setting of the Thalanga massive sulfide is the PACMANUS hydrothermal field on the crest of the dacite lava‐dominated Pual Ridge in the eastern Manus backarc basin (Papua New Guinea).  相似文献   

10.
The sequence of eruption, spatial pattern, and spatio-temporal relationships among the Neogene-Quaternary rhyolitic and basaltic lava along the Snake River Plain (SRP) in Idaho are analyzed applying the spatial methods of global and local Moran’s I, standard deviational ellipse, and Ripley’s K-function. The results of the analyses by the Moran’s I and K-function methods indicate a higher spatial autocorrelation, hence clustering, of rhyolitic lava compared to the more dispersed basaltic lava in each center of eruption along the SRP. The clustered nature of rhyolitic lava around each caldera either reflects the original spread and large thickness of the rhyolitic lava, or the absence of younger cover strata or lava like the distribution of rhyolite in the present caldera at the Yellowstone National Park. The standard deviational ellipses (SDEs) of the lavas indicate that younger basaltic lava that erupted from newer calderas overlapped older rhyolitic and basaltic lava as the position of the Yellowstone hotspot progressively migrated to the northeast along the SRP. The less eccentric SDEs of rhyolitic lava in each caldera probably reflect the original caldera-scale spread of viscous felsic lava, compared to the more eccentric and larger SDEs of basaltic lava which represent basalt’s wider and more directed spread due to its higher fluidity and ability to flow longer distances along the trend of the SRP. The alignment of the long axes of the lava SDEs with the trend of the Eastern SRP and the trend of systematic spatial overlap of older lava by successively younger basaltic lava corroborate the previously reported migration of the centers of eruption along the ESRP as the Yellowstone hotspot migrated to the northeast.  相似文献   

11.
The orientation structures of lava flows and lava cracks in Hawaii (Big Island) have been analysed statistically. It is shown that the lava flows do not follow epigenetic random directions, but instead follow channels that have been endogenically predesigned. Similarly, the cracks in these flows have consistent directions at 45° to the edges of the lava flows. Thus, these cracks are not simply ‘cooling joints’ but features that correspond to the edge-crevasses in glacier-flow: they are shearing phenomena that occur in a similar fashion in any plastic-type flow.  相似文献   

12.
Changes of the susceptibility to lava flow invasion at Mount Etna are quantified by using lava flow simulations on four Digital Elevation Models documenting the morphostructural modifications of the volcano in the time interval 1986–2007. The probabilistic code DOWNFLOW is used to derive the areas invaded by several thousands of lava flows obtaining, for each DEM, maps of the susceptibility to lava flow invasion and of the lava flow hazard. These maps show, for the first time, the evolution of these surficial properties with time, and render a quantitative image of the effects of topographic changes on the preferential lava flow drainage paths. The results illustrate how the emplacement of new lava flows and the growth of scoria cones affect the probability of inundation by lava flows. We conclude that the persistent activity of this volcano requires a frequent updating of the topography for a reliable lava flow hazard assessment.  相似文献   

13.
The formation of compound lava fields is a common feature of basaltic volcanic areas such as Mount Etna and Hawaii. It is generally promoted by a breakin-slope which results into a decrease of the mean flow velocity and the rapid adjustment to new rheological conditions. In fact, on a steep slope the flow is generally focused into long-lived lava tubes or channels. On the contrary, in correspondence of a flat ground the propagation of a lava field is guaranteed by the continuos opening of new ephemeral vents, and by the overlapping of lava lobes or tongues the length of which is order of 10−1−102 m. At Mount Etna these flow units show a complex structure which reflects the existence of a central plug zone and lateral shear zones, and an internal structure characterized by a succession of lava layers separated by gas-rich layers which occur in correspondence of vesicle alignments. Such internal structure insulates the active moving core and preserves high lava temperatures, favoring the advancement of the flow units. The evolution of a compound lava field may be thus envisaged as a spatial and temporal succession of lava tubes. An example of this situation may be found in the 1983 and 1991–93 Etnean eruptions, where the propagation of long-lived compound lava fields through a great number of small subarterial flow units gave origin to a source of natural hazards for some of the communities living on the flanks of the volcano. The detailed study of the structure of the described lava flows helps understand their emplacement dynamics and evaluate the associated volcanic, hazard.  相似文献   

14.
Rubbly pahoehoe lava flows are abundant in many continental flood basalts including the Deccan Traps. However, structures with radial joint columns surrounding cores of flow-top breccia (FTB), reported from some Deccan rubbly pahoehoe flows, are yet unknown from other basaltic provinces. A previous study of these Deccan “breccia-cored columnar rosettes” ruled out explanations such as volcanic vents and lava tubes, and showed that the radial joint columns had grown outwards from cold FTB inclusions incorporated into the hot molten interiors. How the highly vesicular (thus low-density) FTB blocks might have sunk into the flow interiors has remained a puzzle. Here we describe a new example of a Deccan rubbly pahoehoe flow with FTB-cored rosettes, from Elephanta Island in the Mumbai harbor. Noting that (1) thick rubbly pahoehoe flows probably form by rapid inflation (involving many lava injections into a largely molten advancing flow), and (2) such flows are transitional to ‘a’ā flows (which continuously shed their top clinker in front of them as they advance), we propose a model for the FTB-cored rosettes. We suggest that the Deccan flows under study were shedding some of their FTB in front of them as they advanced and, with high-eruption rate lava injection and inflation, frontal breakouts would incorporate this FTB rubble, with thickening of the flow carrying the rubble into the flow interior. This implies that, far from sinking into the molten interior, the FTB blocks may have been rising, until lava supply and inflation stopped, the flow began solidifying, and joint columns developed outward from each cold FTB inclusion as already inferred, forming the FTB-cored rosettes. Those rubbly pahoehoe flows which began recycling most of their FTB became the ‘a’ā flows of the Deccan.  相似文献   

15.
Small-scale hummocky cross-stratification occurs in Upper Cretaceous calciclastic turbidites exposed in the western Basque Pyrenees; facies associations and microfossil assemblages indicate slope to base-of-slope (bathyal) depositional environments. It is developed in the fine-grained portion of beds and displays spacings mostly between 0.2 and 0.7 m. The beds fine upward with no sharp grain size breaks or mud partings, suggesting that deposition occurred during a single flow event. Hummocky intervals are 0.1–0.8 m thick and consistently grade laterally and vertically into flat, planar laminations of Bouma B divisions suggesting that deposition occurred under upper-flow-regime conditions. They have wave-like geometries with laminae continuous across ‘crests’ and ‘troughs’ and display a ratio of ‘wavelength’ to estimated underflow thickness of 11.3–12.8. Combining the above observations and inferences, these examples of small-scale hummocky cross-stratification are interpreted as a form of antidune stratification generated by standing waves along the interface of a thinner, denser underflow (main body/tail of the turbidity current) and an overlying thicker, low-density layer. This occurrence is further evidence that small-scale hummocky cross-stratification is multigenetic and therefore not indicative of a particular flow condition or depositional environment.  相似文献   

16.
The Rajahmundry Traps of the Krishna Godavari Basin (K-G Basin) consist of three distinct basalt flows interbedded with two intertrappean sedimentary horizons, which in turn are underlain by the late Cretaceous fossiliferous limestone bed (infratrappean) and overlain by the Cenozoic Rajahmundry Formation (conglomerate/sandstone). Among the three, the lower flow is characterized by the presence of the physical volcanological features such as rootless cones, tumuli and dyke like forms along with single to multitier columnar and radial jointing. The middle and upper flows are simple, massive and vesicular and exhibit spheroidal weathering. Physical volcanological features and lithological attributes indicate that the lower flow was formed by an explosive volcanic activity in hydrous environment, followed by sub aerial eruption to form the middle and upper flows. The fossiliferous limestone bed is a representative horizon for the K-T boundary mass extinction caused due to intense volcanism. Intertrappean sediments exhibit weathered soil profiles (palaeosols) with limestone beds denoting a distinct time gap during various phases of lava eruption. Evaluation of the palaeogeographic scenario of the Krishna and Godavari Rivers does not provide any evidence for the existence of Cretaceous palaeovalley which would have provided pathway for lava transportation from the Deccan volcanic province of western India to the K-G Basin situated along the east coast. The present study opens up an alternative approach to explain the origin of basalt flows at Rajahmundry. In all probability the lavas could be intrabasinal. NW-SE and NESW faults or their intersection zones are probable pathways for lava eruption in the K-G Basin.  相似文献   

17.
Ocean Drilling Program hole 504B revealed an ocean crust hydrothermal sulphur anomaly on the dyke–lava transition, with implications for global sulphur sinks. Here we confirm the presence of the anomaly sporadically along 7.5 km of dyke–basalt contact on the Macquarie Ridge at Macquarie Island, a 39–9.7 Ma slow‐spreading setting. Background contact‐zone pyrite S contents average 1845 p.p.m. across ~50 m. However, zones of small‐scale brittle faulting that commonly occur on and above the dyke–basalt contact average between 5000 and 11 000 p.p.m. S (20–30 m widths). These consist of steep ridge‐parallel faults and fault splays on the contact, overlain by up to 50 m of linked pyritic fault trellis. The contact zone faults are haloed by disseminated pyrite–chlorite, cross‐cut by quartz–chlorite–sphalerite and epidote‐cemented breccias, containing evidence of turbulent flow. The structural control on sulphur deposition is attributed to the active extensional slow spreading setting. With increasing extension, diffuse mixing across the contact was replaced by channellized flow and dynamic mixing in fault arrays. The magnitude of the dyke–lava transition sulphur sink must be reassessed to take account of this heterogeneity.  相似文献   

18.
Compositional studies on different forms of magnetite, ulvospinel, ilmenite and hematite mineral phases occurring in 37 lava flows and 6 dykes of the Mandla lobe are presented in this paper. Ilmenite (0001) in equilibrium with titanomanetite show high values of temperature of equilibration, ranging from 1172–974°C, for high alumina quartz normative tholeiitic lava flows of Chemical Type - A; 1129–1229°C for low alumina quartz normative tholeiitic lava flows of Chemical Type - B; 1283–1124°C for tholeiitic lava flows of Chemical Type - F and 1243°C and 99O°C for two diopside olivine normative tholeiite flows of Chemical Type D. High olivine normative flows of Chemical Type - G and H show 1095°C and 1092°C respectively. Whereas, high hypersthene normative tholeiite flow of Chemical me C shows temperature of 1187°C. Data plots disposition over iron-titanium oxide equilibration temperature vs – logfo2, diagram for Mandla lava flows and other parts of the Deccan (Igatpuri, Mahabaleshwer, Nagpur and Sagar areas) revealed that tholeiitic (evolved) basalt of the eastern Deccan volcanic province formed at high temperatures whereas, picritic (primitive) lavas of Igatpuri and tholeiitic basalt of Mahabaleshwar areas were formed at low temperatures. Mahabaleshwer basalts follow FMQ (fayalite-magnetite-quartz) buffer curve but, plots of the Mandla basalts lie above this curve indicating higher temperatures of crystallisation of ilmenite-titanomagnetite than that of the lava flows from other parts of Deccan 'Raps. The eastern Deccan Traps are most evolved types of lava as characterised by its low Mg-number and Ni content whereas, Igatpuri lava flows are picritic (primitive), having high Mg-number and Ni contents. Temperature vs FeO + Fe2O3 / FeO + Fe2O3 + MgO ratio data plots for Mandla and other Deccan lava flows and liquidus data for Hawaiian tholeiites, indicated that Igatpuri basalts lie parallel to the liquidus line of Hawaiian tholeiite but at lower temperatures. Large data plots of Mandla lava flows lie along the liquidus line of the Hawaiian lava. The highly vesicular nature of compound lava flows having large amount of volatile is responsible for low temperature values whereas, lava flows represented by high temperatures show high modal values of glass and opaque minerals.  相似文献   

19.
火山"熔岩流气泡古高度计"及其在云南腾冲火山区的应用   总被引:6,自引:5,他引:1  
通过对火山熔岩流及其气泡特征的研究能够确定熔岩流喷发时的古高度,本文将这一方法称为火山“熔岩流气泡古高度计”.“熔岩流气泡古高度计”是在实地测量熔岩流厚度和实验室对熔岩流顶底气泡体积精确测定的基础上,利用流体力学原理和气体状态方程,通过计算古大气压强,最终获得火山喷发时的古高度.由于火山岩是开展同位素测年的理想材料,并且利用熔岩流计算古高度所需的参数(熔岩流厚度和气泡体积)不受古气候等因素(温度、降雨量等)影响,因此,这一方法以其可靠的年龄和独立的计算参数明显区别于其它古高度计.“熔岩流气泡古高度计”核心技术包括:(1)熔岩流的挑选与厚度测量;(2)熔岩流底部和顶部气泡体积的计算.中等规模、具简单冷凝历史,并且厚度稳定的偏基性熔岩流,是开展古高度计算的理想对象.熔岩流气泡体积的测试手段包括注胶、岩石抛光-扫描、体视学转换和三维CT扫描4种方法.“熔岩流气泡古高度计”最终计算结果误差为400m左右.本文利用“熔岩流气泡古高度计”计算了腾冲火山区熔岩流的古高度,研究结果显示:“熔岩流气泡古高度计”计算的黑空山熔岩流高程与目前的实际高程相吻合.开展“熔岩流气泡古高度计”研究的前提是研究区必须出露保存完好的熔岩流.我国青藏高原的隆升历史一直是国际学术界争论的热点课题,那里出露大面积熔岩流.可以预见,“熔岩流气泡古高度计”将会逐渐成为研究青藏高原隆升历史的有效手段之一.  相似文献   

20.
G. Poli  D. Perugini 《Lithos》2002,65(3-4):287-297
Magma mixing structures from three different lava flows (Salina, Vulcano and Lesbos) are studied in order to assess the possible chaotic origin of magma mixing processes. Structures are analysed using a new technique based on image analysis procedures that extract time series that are representative of the relative change in composition through the structures. These time series are then used to reconstruct the attractors underlying the magma mixing process and to calculate the fractal dimension of the attractors. Results show that attractors exist and possess fractional dimensions. This evidence suggests that the mixing of magmas is a chaotic process governed by a low number of degrees of freedom. In addition, fractal dimension analyses allows us to discriminate between different regimes of mixing in the three lava flows. In particular our analyses suggest that the lava flow of Salina underwent more turbulent mixing than the lava flows of Lesbos and Vulcano.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号