首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The present study assesses anthropogenic disturbances and their impacts on the vegetation in Western Himalaya, India on the basis of various disturbance parameters such as density, Total Basal Cover (TBC) of cut stumps, lopping percentage and grazing intensities. On the basis of canopy cover and frequency of disturbances (%), the studied forests were divided into highly disturbed (HD), moderately disturbed (MD) and least disturbed (LD) categories. The HD forests had the lowest canopy cover, lowest density and lowest TBC and the LD had the highest canopy cover, highest density and highest TBC. The MD forests occupied the intermediate position with respect to these parameters. Species richness was least in HD forests, highest in one of the MD forests while LD forest occupied an intermediate position. The percentage of regenerating species was lowest (54%) in HD and highest (72%) in MD. The density of seedlings and saplings was higher in one of the MD forests as compared to HD and LD. We concluded that the moderate disturbances do not affect the vegetation adversely; however the increased degree of disturbance causes loss in plant diversity; affects regeneration and changes community characteristics. Construction of hydroelectric projects at various places in the study area was found to be one of the most important sources of anthropogenic disturbances in addition to the routine anthropogenic disturbances like grazing, fuelwood collection and fodder extraction. If all proposed dams in the Indian Himalaya are constructed combined with weak national environmental impact assessment and implementation, it will result in a significant loss of species. Therefore, various agents of disturbances should be evaluated in cumulative manner and any developmental activities such as hydropower projects, which trigger various natural and anthropogenic disturbances, should be combined with proper cumulative environmental impact assessment and effective implementation to minimise the anticipated loss of vegetation.  相似文献   

2.
In Europe, very small forest areas can be considered to be old-growth, and they are mainly located in Eastern Europe. The typical structures of old growth forests infrequently occur in Mediterranean mountainous environments, since they have been affected by human activities for centuries. This study focused on a remote and almost pure Italian maple stand located in southern Italy, which has not been managed for long time due to its inaccessibility. The effects of natural evolution on the forest stand were evaluated through the analysis of the spatial and chronological structure and the regeneration patterns, then estimating the amounts and quality of deadwood occurrence. Across the whole stand, all the trees with DBH (diameter at breast height) larger than 50 cm (LLT, large living trees) were measured (DBH and height) and age was also determined through a dendrochronological approach. The diameters observed ranged between 50 and 145 cm with ages of 120 to 250 years. The Latham index calculated for trees within the sample plot highlighted a multilayered canopy with a dominant layer of large living trees (age > 120 years). The size-class distribution of stems had a reverse-J shape, and basal area was 52 m2 ha-1. Deadwood was exclusively constituted by standing dead trees and CWD and its volume was on average 31 m3 ha-1.Pure Italian maple forests are generally rare in Europe, and it was unexpected to find a forest stand characterized by a so complex structure with old growth attributes. The study of complex forest stand, even if small, could give precious information on the forest evolution, clarifying also diverse auto-ecological traits of tree species that usually are not common in our forests.  相似文献   

3.
Secondary forests account for a large amount of subtropical forest due to persistent anthropogenic disturbance in China. The interaction between vegetation and soil during recovery process is rather complex and dependent on forest conditions. Understanding how vegetation and soil properties changes and how their relationship develops in secondary forests is key to effective forest restoration and management. Here we explored the patterns of vegetation and soil properties as well as their correlations during forest recovery process in a subtropical forest in south China. Plots of three forest types, i.e., broadleaf-conifer mixed forest, broadleaved forest and old growth stand, were established to represent the recovery stages. The results showed that diversity patterns in the tree, shrub and herb layers were different: in the tree layer the species diversity peaked at the intermediate stage, while in the understory layers it decreased chronologically. Most of the soil factors showed an increasing trend, and different effects of soil factors were found for the three layers as well as for the two spatial scales. Together, our results suggested that vegetation and soil might be interdependent during the recovery course. Further studies are needed on exploring how vegetation interplays with soil at different scales and how nutrient limitations affects the vegetation development in a chronosequence.  相似文献   

4.
Epiphytic plant species are an important part of biological diversity. It is therefore essential to understand the distribution pattern and the factors influencing such patterns. The present study is aimed at observing the patterns of species richness, abundances and species composition of epiphytic orchids and ferns in two subtropical forests in Nepal. We also studied the relationship of host plants (Schima wallichii and Quercus lanata) and epiphyte species. Data were collected in Naudhara community forest (CF) and the national forest (NF) in Shivapuri Nagarjun National Park. The data were analyzed using univariate and multivariate tests. In total, we recorded 41 species of epiphytes (33 orchid and 8 fern species). Orchid species abundance is significantly higher in CF compared to NF. Orchid species richness and abundance increased with increasing southern aspect whereas it decreased with increasing canopy cover, and fern species richness increased with host bark roughness. Orchid abundance was positively correlated with increasing bark pH, stem size, tree age and tree height and negatively correlated with increasing steepness of the area. Likewise, fern abundances were high in places with high canopy cover, trees that were tall and big, but decreased with increasing altitude and southern aspect. The composition of the orchid and fern species was affected by altitude, aspect, canopy cover, DBH, number of forks and forest management types. We showed that the diversity of orchid and fern epiphytes is influenced by host characteristics as well as host types. The most important pre-requisite for a high epiphyte biodiversity is the presence of old respectively tall trees, independent of the recent protection status. This means: (i) for protection, e.g. in the frame of the national park declaration, such areas should be used which host such old tall trees; and (ii) also in managed forests and even in intensively used landscapes epiphytes can be protected by letting a certain number of trees be and by giving them space to grow old and tall.  相似文献   

5.
Analyzing and understanding the structure and growth dynamics of forests at different stages is helpful to promote forest succession, restoration and management. Three spots representing three succession stages of spruce-fir mixed forest(SF: polar-birch secondary forest, MF: spruce-fir mixed forest and PF: spruce-fir near primary forest) were established. Structure, growth dynamics during two growth seasons for dominant tree species, regeneration were examined, and a univariate O-ring function statistic was used to analyze the spatial patterns of main regeneration tree species. Results showed that,(1) composition of tree species, periodic annual increment(PAI) of the diameter at breast height(DBH), basal area for overstory trees and of ground diameter(DGH) for saplings, were significantly different with the succession;(2) the current species composition and regeneration dynamics of SF suggested a development towards spruce-fir mixed forests. Pioneer species like Betula platyphyllaa will gradually disappear while climax species, such as Abies nephrolepis, Pinus koraiensis, Picea koraiensis and Tilia amurensis will dominate forest stands;(3) Despite the highest volume occurring in PF, and saplings in it grew better than in the others, this forest type is unstable because of its unsustainable structure of DBH class and insufficient regeneration; and(4) MF had the most reasonable distribution of DBH class for adult trees(DBH 5.0 cm) and DGH class for saplings(H ≥30 cm and DBH ≤5 cm), as well as an optimal volume increment. Limiting canopy opening size can lessen the physiological stress and promote the growth and competitive status of regeneration. Management implications for increasing the gaps and thus creating better growth conditions for understory saplings and facilitating forest succession were discussed.  相似文献   

6.
The raising concentration of atmospheric CO_2 resulted in global warming. The forest ecosystem in Tibet played an irreplaceable role in maintaining global carbon balance and mitigating climate change for its abundant original forest resources with powerful action of carbon sink. In the present study, the samples of soil and vegetation were collected at a total of 137 sites from 2001 to 2018 in Tibet. Based on the field survey of Tibet's forest resources and 8~(th) forest inventory data, we estimated the carbon storage and carbon density of forest vegetation(tree layer, shrub, grass, litter and dead wood) and soil(0-50 cm) in Tibet. Geostatistical methods combined with Kriging spatial interpolation and Moran's I were applied to reveal their spatial distribution patterns and variation characteristics. The carbon density of forest vegetation and soil in Tibet were 74.57 t ha~(-1) and 96.24 t ha~(-1), respectively. The carbon storage of forest vegetation and soil in Tibet were 344.35 Tg C and 440.53 Tg C, respectively. Carbon density of fir(Abies forest) was 144.80 t ha~(-1) with the highest value among all the forest types. Carbon storage of spruce(Picea forest) was the highest with 99.09 Tg C compared with other forest types. The carbon density of fir forest and spruce forest both increased with the rising temperature and precipitation. Temperature was the main influential factor. The spatial distribution of carbon density of forest vegetation, soil, and ecosystem in Tibet generally showed declining trends from western Tibet to eastern Tibet. Our results facilitated the understanding of the carbon sequestration role of forest ecosystem in the Tibet. It also implied that as the carbon storage potential of Tibet's forests are expected to increase, these forests are likely to serve as huge carbon sinks in the current era of global warming and climate change.  相似文献   

7.
Broadleaf-Korean pine forests exhibit high species richness and distinctive species composition, which are currently becoming more dominant among natural forests in Changbai Mountains of northeastern China. Understanding the ecological process of restored vegetation is quite important for ecosystem reconstruction. Distinguishing stand development stages and analyzing the dynamic spatial patterns could provide insights into significant community coexistence mechanisms. In the present study, eight permanent study areas were established according to the substituting space for time method in Changbai Mountains of north-eastern China. The optimal division method was used to quantify the successional series into different stand development stages, and the point pattern analysis method(L(r) function) was used to analyse the dynamic changes in spatial patterns and interspecific associations. Our results suggested that:(1) The stand development process was divided into five stages: the first three stages were poplar-birch secondary forests in different stages of recovery, the fourth stage was thespruce-fir mixed forest, and the last stage was the primary broadleaf-Korean pine forest;(2) The spatial pattern showed an aggregated distribution at a small scale and changed to a random distribution as the scale increased in poplar-birch secondary forests, but the spatial pattern appeared to be randomly distributed in spruce-fir mixed forest and broadleafKorean pine forest;(3) The interspecific associations between pioneer species and climax species changed from negative to positive among the different stand stages, and environmental resources were shared among these species. Interspecific differences in shade tolerance among the tree species were key determinants of forest dynamics and structure. Our study is vital to the understanding of the forest development; thus, the spatial change features should receive greater attention when forest management is being planned and restoration strategies are being developed for the Changbai Mountains.  相似文献   

8.
Close-to-nature forest management has been proposed as an effective method for improving the quality of plantation forests. Knowledge of spatial distribution patterns, structure, and succession trajectories in natural forests can provide guidelines for the establishment of close-to-nature forest plantations. Such knowledge is lacking in natural spruce (Picea crassifolia) forests in the Qilian Mountains of China, impeding the establishment of production forests. We conducted a case study in the Qilian Mountains to analyze the relationships between the naturally-formed forest patches and terrain factors, spatial heterogeneity of stand characteristics, and stand structure following harvesting disturbance. Our results suggested that spruce plantations will be effective on the N, NE, and NW slopes, at elevations between 2700 and 3300 m, and on slopes ranging from 15° to 45°. Further, planted forest patches should occupy 64% of the slope area on semi-shady slopes (NE, NW). Spatial patterns in the studied forest exhibited a strong scale-effect, and an area of 0.25 ha could be used as the most efficient plot scale for the management of spruce plantations. Partial logging is an effective method for the conversion of spruce planted forests into nearnatural forests, and the intensity of partial logging can be determined from the negative exponential function relationship between stand density and DBH. Our results provided critical information for the development of spruce plantations and conversion of existing plantations.  相似文献   

9.
The objective of this study was to understand the effects of forest gap and variations in different seasons, gap size, locations and diurnal variations on forest microclimate and soil water content. Spatial and temporal distribution features of air temperature (TA ), soil temperature (TS ), relative humidity (h) and soil water content (Ψ) were measured in Castanopsis kawakamii natural forest gaps created by a severe typhoon or fallen dead trees. The results showed that: (1) the variations of TA , h, and TS in four seasons were extremely significant. The variations of Ψ in four seasons were extremely significant except for those between spring and summer. (2) The diurnal variations of TA and T S were expressed with a single peak curve. The diurnal variations of h and Ψ presented a high-low-high trend. (3) The variations of TA , h, and TS were extremely significant among the large, medium and small gaps in C. kawakamii natural forest. Medium gaps had the highest TA and the lowest h while small gaps were just contrary to medium gaps. The variations of Ψ were extremely significant for large, medium and small gaps except those between the medium and large gaps. (4) The TA , h, TS and Ψ were decreased from the gap center, canopy gap, expanded gap to understory. These results will help further our understanding of the abiotic and consequent biotic responses to gaps in the mid-subtropical broadleaved forests, which also provide a theoretical basis for the scientific management and population restoration of C. kawakamii natural forest.  相似文献   

10.
Introduction Assessment and systematic resource condition monitoring are essential components of long-term planning and management of forest resources. These requirements can be fulfilled using different methods and techniques. Traditionally, when the primary objective of forest management was tim- ber production, sample-based forest inventories were the sole method of determining forest condi- tions. Aerial photographs were frequently used for forest cover mapping during the third quarter of …  相似文献   

11.
Woody debris (WD) is an important part of natural Pinus tabulaeformis mixed stands, and it affects the forest ecosystem stability and development. The WD spatial patterns are especially important structural characteristics that can provide insights into forest dynamics. In this paper, the WD storage, WD spatial patterns and WD associations among the main species were examined in the natural secondary forest on Loess Plateau in northwest China. Data were collected in a 1 ha (100 m × 100 m) permanent plot, and all the trees with a diameter at breast height of more than 3 cm were measured and stem-mapped. Ripley’s K functions from the spatial-point-pattern-analysis method were used to analyze the spatial distribution and associations. The results showed that: (1) The total storage of WD was 10.73 t/ha, fallen wood was the main source of WD, and the majority diameters were greater than 20 cm, and in intermediate levels of decay; (2) The overall spatial pattern was closely related to the spatial scale, which exhibited an aggregated pattern on a small scale, and a random pattern on a large scale. The spatial patterns of coarse woody debris also gradually transitioned from an aggregated pattern in fine scales to a random pattern in broader spatial scales, which matched the overall spatial pattern. The spatial intensity was gradually decreased with the increasing diameters, and increased with the decomposition classes; (3) The WD of Pinus tabulaeformis species was negatively associated with Betula platyphylla and Populus davidiana on a small scale but positively associated with these species on a large scale. The spatial pattern and interspecies relations were the results of long-term interactions between the natural secondary forest community and the surrounding natural environment. These findings would provide a scientific basis for the sustainable management and protection of natural secondary forest ecosystems on Loess Plateau.  相似文献   

12.
在全球气候变化背景下,植被动态变化以及植被对气候变化的响应方式已经成为生态学和地理学领域的热点。本文对比分析了南方亚热带季风区将乐县不同类型森林植被对不同时间尺度的干旱响应的差别。基于2000-2017年MODIS-EVI数据及气象站点数据,用最大值合成法、趋势分析法以及相关分析法,分析了森林植被及气象因子的动态变化特征,并对比不同森林植被对气候变化响应的差别。研究表明:① 2000-2017年,研究区植被覆盖度、EVI和降水均显著增加,区域内湿度增加,森林长势渐趋良好;② EVI在生长季初期和末期与同期的降水、温度均显著正相关(P<0.1),初期森林受降水因子的影响更大,末期受温度因子的影响大;③ 1-3月和周年的气候变化对森林的生长至关重要,长时间尺度的湿度增加对森林生长具有显著的促进作用,SPEI的时间尺度越长与EVI的相关性也越大;④ 针阔混交林与同期温度、降水的相关系数最高,并且与不同时间尺度的SPEI相关性均比较高,属于气候敏感型林型,在生产经营中要谨慎预防气候变化对该林型带来的伤害;⑤ 森林覆盖度变化与降水和SPEI_24的相关性极显著,长时间尺度的降水变化是影响森林植被覆盖率变化的重要因素之一。  相似文献   

13.
Understanding the spatial patterns of land-use and land-cover(LULC) and their driving forces in transnational areas is important for the sustainable development of these regions. However, the spatial patterns of LULC and their driving forces across multiple scales are poorly understood in transnational areas. In this study, we analyzed the spatial patterns of LULC and driving forces in the transnational area of Tumen River(TATR) in 2016 across two scales: the entire region and the sub-regions of China, the Democratic People's Republic of Korea(DPRK), and Russia. Results showed that the LULC was dominated by broadleaf forest and dry farmland in the TATR in 2016, which accounted for 66.86% and 13.60% of the entire region, respectively. Meanwhile, the LULC in the three sub-regions exhibited noticeable differences. In the Chinese and the DPRK's sub-regions, the area of broadleaf forest was greater than those for the other LULC types, while the Russian sub-region was dominated by broadleaf forest and grassland. The spatial patterns of LULC were mainly influenced by topography, climate, soil properties, and human activities. In addition, the driving forces of the spatial patterns of LULC in the TATR had an obvious scaling effect. Therefore, we suggest that effective policies and regulations with cooperation among China, the DPRK, and Russia are needed to plan the spatial patterns of LULC and improve the sustainable development of the TATR.  相似文献   

14.
Throughfall variability plays a crucial role in regulating hydrological and biogeochemical processes in forest ecosystems. However, throughfall variability and its potential influencing factors remain unclear in the subtropical deciduous forest because of its complex canopy and meteorological conditions. Here, the spatial variability and temporal stability of throughfall were investigated from October 2016 to December 2017 within a deciduous forest in the subtropical hilly regions of eastern China, and the effects of meteorological variables and distance from nearest tree trunk on throughfall variability were systematically evaluated. Throughfall variability during the leafed period was slightly higher than that during the leafless period inferred from the coefficient of variation of throughfall amounts(CVTF), with 13.2%-40.9% and 18.7%-31.9%, respectively. The multiple regression model analysis suggested that the controlling factors of throughfall variability were different in studied periods: Maximum 10-min rainfall intensity, wind speed and air temperature were the dominant influencing factors on throughfall variability during the leafed period, with the relative contribution ratio(RCR) of 25.9%, 18.7% and 8.9%, respectively. By contrast, throughfall variability was affected mainly by the mean rainfall intensity(RCR=40.8%) during the leafless period. The temporal stability plots and geostatistical analysis indicated that spatial patterns of throughfall were stable and similar among rainfall events. Our findings highlight the important role of various meteorological factors in throughfall variability and are expected to contribute to the accurate assessment of throughfall, soil water and runoff within the subtropical forests.  相似文献   

15.
Forest structure analysis is important for understanding the properties and development of a forest community,and its outcomes can be influenced by how trees are measured in sampled plots.Although there is a general consensus on the height at which tree diameter should be measured[1.3 m:diameter at breast height(DBH)],the minimum measureddiameter(MMD)often varies in different studies.In this study,we assumed that the outcomes of forest structure analysis can be influenced by MMD and,to this end,we applied g(r)function and stand spatial structural parameters(SSSPs)to investigate how different MMDs affect forest spatial structure analysis in two pine-oak mixed forests(30 and 57 years old)in southwest China and one old-growth oak forest(120years old)from northwest China.Our results showed that 1)MMD was closely related to the distribution patterns of forest trees.Tree distribution patterns at each observational scale(r=0-20 m)tended tobecome random as the MMD increased.The older the community,the earlier this random distribution pattern appeared.2)As the MMD increased,neighboring trees became more regularly distributed around a reference tree.In most cases,however,nearest neighbors of a reference tree were randomly distributed.3)Tree species mingling decreased with increasing diameter,but it decreased slowly in older forests.4)No correlations can be found between individual tree size differentiation and MMD.We recommend that comparisons of spatial structures between communities would be more effective if using a unified MMD criterion.  相似文献   

16.
With the well-being trends to pursue a healthy life, mountain ginseng(Panax ginseng) is rising as one of the most profitable forest products in South Korea. This study was aimed at evaluating a new methodology for identifying suitable sites for mountain ginseng cultivation in the country. Forest vegetation data were collected from 46 sites and the spatial distribution of all sites was analyzed using GIS data for topographic position, landform, solar radiation, and topographic wetness. The physical and chemical properties of the soil samples, including moisture content, p H, organic matter, total nitrogen, exchangeable cations, available phosphorous, and soil texture, were analyzed. The cultivation suitability at each site was assessed based on the environmental conditions using logistic regression(LR) and geographically weighted logistic regression(GWLR) and the results of both methods were compared. The results show that the areas with northern aspect and higher levels of solar radiation, moisture content, total nitrogen, and sand ratio are more likely to be identified as suitable sites for ginseng cultivation. In contrast to the LR, the spatial modeling with the GWLR results in an increase in the model fitness and indicates that a significant portion of spatialautocorrelation in the data decreases. A higher value of the area under the receiver operating characteristic(ROC) curve presents a better prediction accuracy of site suitability by the GWLR. The geographically weighted coefficient estimates of the model are nonstationary, and reveal that different site suitability is associated with the geographical location of the forest stands. The GWLR increases the accuracy of selecting suitable sites by considering the geographical variations in the characteristics of the cultivation sites.  相似文献   

17.
With the well-being trends to pursue a healthy life, mountain ginseng (Panax ginseng) is rising as one of the most profitable forest products in South Korea. This study was aimed at evaluating a new methodology for identifying suitable sites for mountain ginseng cultivation in the country. Forest vegetation data were collected from 46 sites and the spatial distribution of all sites was analyzed using GIS data for topographic position, landform, solar radiation, and topographic wetness. The physical and chemical properties of the soil samples, including moisture content, pH, organic matter, total nitrogen, exchangeable cations, available phosphorous, and soil texture, were analyzed. The cultivation suitability at each site was assessed based on the environmental conditions using logistic regression (LR) and geographically weighted logistic regression (GWLR) and the results of both methods were compared. The results show that the areas with northern aspect and higher levels of solar radiation, moisture content, total nitrogen, and sand ratio are more likely to be identified as suitable sites for ginseng cultivation. In contrast to the LR, the spatial modeling with the GWLR results in an increase in the model fitness and indicates that a significant portion of spatial autocorrelation in the data decreases. A higher value of the area under the receiver operating characteristic (ROC) curve presents a better prediction accuracy of site suitability by the GWLR. The geographically weighted coefficient estimates of the model are non-stationary, and reveal that different site suitability is associated with the geographical location of the forest stands. The GWLR increases the accuracy of selecting suitable sites by considering the geographical variations in the characteristics of the cultivation sites.  相似文献   

18.
We evaluated how historical storm events have shaped the current forest landscape in three Pyrenean subalpine forests(NE Spain).For this purpose we related forest damage estimations obtained from multi-temporal aerial photographic comparisons to the current forest typology generated from airborne Li DAR data, and we examined the role of past natural disturbance on the current spatial distribution of forest structural types.We found six forest structural types in the landscape: early regeneration(T1 and T2), young even-aged stands(T3), uneven-aged stands(T4) and adult stands(T5and T6).All of the types were related to the timing and severity of past storms, with early-regeneration structures being found in areas markedly affected in recent times, and adult stands predominating in those areas that had suffered lowest damage levels within the study period.In general, landscapes where high or medium levels of damage were recurrent also presented higher levels of spatial heterogeneity,whereas the opposite pattern was found in the less markedly affected landscape, characterized by thepresence of large regular patches.Our results show the critical role that storm regimes in terms of timing and severity of past storms can play in shaping current forest structure and future dynamics in subalpine forests.The knowledge gained could be used to help define alternative forest management strategies oriented toward the enhancement of landscape heterogeneity as a measure to face future environmental uncertainty.  相似文献   

19.
随着城市化进程的加快,城市热岛问题日益严重,对人类健康和城市可持续发展产生了巨大威胁。植被可有效遮蔽阳光直射,并通过蒸腾作用降低气温,是改善局部热环境的重要途径之一。开展植被对建筑物温度的调控效应的研究,对于理解城市热岛成因、缓解城市热环境恶化等方面都有重要意义。然而,当前研究往往是在遥感影像的基础上进行的,缺乏植被结构信息,同时,受制于有限的空间分辨率,研究大多在城市尺度下开展。在中小尺度上定量地研究植被冠层密度对建筑物温度的影响仍然具有一定挑战性。鉴于此,本文使用激光雷达(Light Detection and Ranging, LiDAR)获取的高分辨率冠层密度数据,在楼间尺度和街区尺度下开展圣罗莎市三维植被结构与单体建筑物表面温度之间定量关系的研究,分析不同尺度下植被冠层的降温特征及其在局部环境中的降温贡献。结果表明:植被对建筑物的降温作用与其周围的冠层密度有密切关系:冠层密度需达到17%才能起到有效的降温作用,其中在中小尺度上冠层密度分别高于30%和40%时,能最大限度发挥植被的温度调控功能;当冠层密度相同时,2个尺度下的温度变化显著不同:随着冠层密度的增加,街区尺度下的屋顶温度比楼间尺度下的屋顶温度平均下降了0.89 ℃;中小尺度下的屋顶温度变化不仅受到其周围植被结构的影响,还与整体热环境状况有关。本文的研究思路与结果有助于在有限的城区土地资源上合理规划绿地建设,构建可持续的人类宜居环境。  相似文献   

20.
Understanding the spatiotemporal links between drought and forest fire occurrence is crucial for improving decision-making in fire management under current and future climatic conditions. We quantified forest fire activity in Mexico using georeferenced fire records for the period of 2005–2015 and examined its spatial and temporal relationships with a multiscalar drought index, the Standardized Precipitation-Evapotranspiration Index(SPEI). A total of 47975 fire counts were recorded in the 11-year long study period, with the peak in fire frequency occurring in 2011. We identified four fire clusters, i.e., regions where there is a high density of fire records in Mexico using the Getis-Ord G spatial statistic. Then, we examined fire frequency data in the clustered regions and assessed how fire activity related to the SPEI for the entire study period and also for the year 2011. Associations between the SPEI and fire frequency varied across Mexico and fire-SPEI relationships also varied across the months of major fire occurrence and related SPEI temporal scales. In particular, in the two fire clusters located in northern Mexico(Chihuahua, northern Baja California), drier conditions over the previous 5 months triggered fire occurrence. In contrast, we did not observe a significant relationship between drought severity and fire frequency in the central Mexico cluster, which exhibited the highest fire frequency. We also found moderate fire-drought associations in the cluster situated in the tropical southern Chiapas where agriculture activities are the main causes of forest fire occurrence. These results are useful for improving our understanding of the spatiotemporal patterns of fire occurrence as related to drought severity in megadiverse countries hosting many forest types as Mexico.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号