首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A typical active–break cycle of the Asian summer monsoon is taken as beginning with maximum SST (pentad 0) over the north Bay of Bengal when the oceans to its west and east from longitude 40°–160°E, and between latitudes 10° and 25°N (area A) also has maximum SST. During this pentad the recently found “Cold Pool” of the Bay of Bengal (between latitudes 3°N and 10°N) has its minimum SST. An area of convection takes genesis over the Bay of Bengal immediately after pentad 0 in the zone of large SST gradient north of the Cold Pool and it pulls the monsoon Low Level Jetstream (LLJ) through peninsular India. Convection and the LLJ westerlies then spread to the western Pacific Ocean during pentads 1–4 taken as the active phase of the monsoon during which convection and LLJ have grown in a positive feed back process. The cyclonic vorticity to the north of the LLJ axis is hypothesized to act as a flywheel maintaining the convection during the long active phase against the dissipating effect of atmospheric stabilization by each short spell of deep convection. By the end of pentad 4 the SST over area A has cooled and the convection weakens there, when the LLJ turns clockwise over the Arabian Sea and flows close to the equator in the Indian ocean. A band of convection develops at pentad 5 between the equator and latitude 10°S over the Indian ocean and it is nourished by the cyclonic vorticity of the LLJ now near the equator and the moisture supply through it. This is taken as the break monsoon phase lasting for about three to four pentads beginning from pentad 5 of a composite active–break cycle of 40 day duration. With reduced wind and convection over the area A during the break phase, solar radiation and light winds make the SST there warm rapidly and a new active–break cycle begins. SST, convection, LLJ and the net heat flux at the ocean surface have important roles in this new way of looking at the active–break cycle as a coupled ocean–atmosphere phenomenon.  相似文献   

2.
Summary In this study, Principal Component Analysis (PCA) has been used to identify the major modes of the outgoing long-wave radiation data for the period (1979–2002) during the Indian monsoon period (June–September), using seasonal mean values over the Indian region covering 143 grid points (5° N–35° N and 70° E–95° E at 2.5° Longitude–Latitude intervals. The five principal components explain up to 98.0% of the total variance. The first principal component explains 60% of the total variance with a pronounced variation in the outgoing long-wave radiation over the region 10° N to 25° N. It appears that the major reason for the monsoon variability is the intensity and associated fluctuations in the two major semi-permanent seasonal systems. This is largely indicative of strong seasonal shift of the major area of cloudiness associated with convergence zone. The second principal component explaining 20% of the total variance exhibits higher positive component loadings along 25° N and east of 80° E. The possible reason for this could be the synoptic systems such as monsoon depression/lows over the north bay and trough/vortices off the west-coast in the Arabian sea.  相似文献   

3.
 NCEP/NCAR and ECMWF daily reanalyses are used to investigate the synoptic variability of easterly waves over West Africa and tropical Atlantic at 700 hPa in northern summer between 1979–1995 (1979–1993 for ECMWF). Spectral analysis of the meridional wind component at 700 hPa highlighted two main periodicity bands, between 3 and 5 days, and 6 and 9 days. The 3–5-day easterly wave regime has already been widely investigated, but only on shorter datasets. These waves grow both north and south of the African Easterly Jet (AEJ). The two main tracks, noted over West Africa at 5 °N and 15 °N, converge over the Atlantic on latitude 17.5 °N. These waves are more active in August–September than in June–July. Their average wavelength/phase speed varies from about 3000 km/8 m s-1 north of the jet to 5000 km/12 m s-1 south of the jet. Rainfall, convection and monsoon flux are significantly modulated by these waves, convection in the Inter-Tropical Convergence Zone (ITCZ) being enhanced in the trough and ahead of it, with a wide meridional extension. Compared to the 3–5-day waves, the 6–9-day regime is intermittent and the corresponding wind field pattern has both similar and contrasting characteristics. The only main track is located north of the AEJ along 17.5 °N both over West Africa and the Atlantic. The mean wavelength is higher, about 5000 km long, and the average phase speed is about 7 m s-1. Then the wind field perturbation is mostly evident at the AEJ latitude and north of it. The perturbation structure is similar to that of 3–5-days in the north except that the more developed circulation centers, moving more to the north, lead to a large modulation of the jet zonal wind component. South of the AEJ, the wind field perturbation is weaker and quite different. The zonal wind core of the jet appears to be an almost symmetric axis in the 6–9-day wind field pattern, a clockwise circulation north of the AEJ being associated with a counter-clockwise circulation south of the jet, and vice versa. These 6–9-day easterly waves also affect significantly rainfall, convection and monsoon flux but in a different way, inducing large zonal convective bands in the ITCZ, mostly in the trough and behind it. As opposed to the 3–5-day wave regime, these rainfall anomalies are associated with anomalies of opposite sign over the Guinea coast and the Sahelian regions. Over the continent, these waves are more active in June–July, and in August–September over the ocean. GATE phase I gave an example of such an active 6–9-day wave pattern. Considered as a sequence of weak easterly wave activity, this phase was also a sequence of high 6–9-day easterly wave activity. We suggest that the 6–9-day regime results from an interaction between the 3–5-day easterly wave regime (maintained by the barotropic/baroclinic instability of the AEJ), and the development of strong anticyclonic circulations, north of the jet over West Africa, and both north and south of the jet over the Atlantic, significantly affecting the jet zonal wind component. The permanent subtropical anticyclones (Azores, Libya, St Helena) could help initiation and maintenance of such regime over West Africa and tropical Atlantic. Based on an a priori period-band criterion, our synoptic classification has enabled us to point out two statistical and meteorological easterly wave regimes over West Africa and tropical Atlantic. NCEP/NCAR and ECMWF reanalyses are in good agreement, the main difference being a more developed easterly wave activity in the NCEP/NCAR reanalyses, especially for the 3–5-day regime over the Atlantic. Received: 28 May 1998 / Accepted: 2 May 1999  相似文献   

4.
The West African monsoon has over the years proven difficult to represent in global coupled models. The current operational seasonal forecasting system of the UK Met Office (GloSea4) has a good representation of monsoon rainfall over West Africa. It reproduces the various stages of the monsoon: a coastal phase in May and June, followed by onset of the Sahelian phase in July when rainfall maxima shift northward of 10N until September; and a secondary coastal rainfall maximum in October. We explore the dynamics of monsoon onset in GloSea4 and compare it to reanalyses. An important difference is the change in the Saharan heat low around the time of Sahelian onset. In Glosea4 the deepening heat low introduces moisture convergence across an east-west Sahelian band, whereas in the reanalyses such an east-west organisation of moisture does not occur and moisture is transported northwards to the Sahara. Lack of observations in the southern Sahara makes it difficult to verify this process in GloSea4 and also suggests that reanalyses may not be strongly constrained by station observations in an area key to Sahelian onset. Timing of monsoon onset has socio-economic importance for many countries in West Africa and we explore onset predictability in GloSea4. We use tercile categories to calculate probabilities for onset occurring before, near and after average in four different onset indicators. Glosea4 has modest skill at 2–3 months’ lead time, with ROC scores of 0.6–0.8. Similar skill is seen in hindcasts with models from the ENSEMBLES project, even in models with large rainfall biases over the Sahel. Forecast skill derives from tropical SST in June and many models capture at least the influence of the tropical Atlantic. This suggests that long-range skill for onset could be present in other seasonal forecasting systems in spite of mean rainfall biases.  相似文献   

5.
 The horizontal and vertical structure of the 3–5-day and 6–9-day easterly waves over West Africa and tropical Atlantic are investigated. NCEP/NCAR reanalyses are used for the period 1979–1995 to produce a 17-year climatology of both 3–5-day and 6–9-day easterly waves. Composite patterns of convection, wind, temperature and vertical velocity are analysed with respect to the following: the modulation by 3–5-day and 6–9-day wave regimes; the contrasts between the ITCZ (5°N–10°N) and the Sahelo-Saharan band (15°N–20°N); the difference between land and ocean, and seasonal variations. Similarities and differences in the characteristics of the two wave regimes are identified. Received: 18 August 1999 / Accepted: 14 March 2001  相似文献   

6.
Besides sea surface temperature (SST), soil moisture (SM) exhibits a significant memory and is likely to contribute to atmospheric predictability at the seasonal timescale. In this respect, West Africa was recently highlighted as a “hot spot” where the land–atmosphere coupling could play an important role, through the recycling of precipitation and the modulation of the meridional gradient of moist static energy. Particularly intriguing is the observed relationship between summer monsoon rainfall over Sahel and the previous second rainy season over the Guinean Coast, suggesting the possibility of a soil moisture memory beyond the seasonal timescale. The present study is aimed at revisiting this question through a detailed analysis of the instrumental record and a set of numerical sensitivity experiments. Three ensembles of global atmospheric simulations have been designed to assess the relative influence of SST and SM boundary conditions on the West African monsoon predictability over the 1986–1995 period. On the one hand, the results indicate that SM contributes to rainfall predictability at the end and just after the rainy season over the Sahel, through a positive soil-precipitation feedback that is consistent with the “hot spot” hypothesis. On the other hand, SM memory decreases very rapidly during the dry season and does not contribute to the predictability of the all-summer monsoon rainfall. Though possibly model dependent, this conclusion is reinforced by the statistical analysis of the summer monsoon rainfall variability over the Sahel and its link with tropical SSTs. Our results indeed suggest that the apparent relationship with the previous second rainy season over the Guinean Coast is mainly an artefact of rainfall teleconnections with tropical modes of SST variability both at interannual and multi-decadal timescales.  相似文献   

7.
Summary By analyzing 12-year (1979–1990) 200 hPa wind data from National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis, we demonstrate that the intraseasonal time scale (30–60 days) variability of the Tropical Easterly Jet (TEJ) reported in individual case studies occurs during most years. In the entrance region (east of ∼70° E), axis of the TEJ at 200 hPa is found along the near equatorial latitudes during monsoon onset/monsoon revivals and propagates northward as the monsoon advances over India. This axis is found along ∼5° N and ∼15° N during active monsoon and break monsoon conditions respectively. Examination of the European Centre for Medium Range Weather Forecasts reanalysis wind data also confirms the northward propagation of the TEJ on intraseasonal time scales. During the intraseasonal northward propagations, axis of the TEJ is found about 10°–15° latitudes south of the well-known intraseasonally northward propagating monsoon convective belts. Because of this 10°–15° displacement, axis of the TEJ arrives over a location about two weeks after the arrival of the monsoon convection. Systematic shifting of the locations by convection, low level monsoon flow and TEJ in a collective way during different phases of the monsoon suggests that they all may be related.  相似文献   

8.
9.
 Monthly sea surface temperature anomalies (SSTA) at near-global scale (60 °N–40 °S) and May to October rainfall amounts in West Africa (16 °N–5 °N; 16 °W–16 °E) are first used to investigate the seasonal and interannual evolutions of their relationship. It is shown that West African rainfall variability is associated with two types of oceanic changes: (1) a large-scale evolution involving the two largest SSTA leading eigenmodes (16% of the total variance with stronger loadings in the equatorial and southern oceans) related to the long-term (multiannual) component of rainfall variability mainly expressed in the Sudan–Sahel region; and (2) a regional and seasonally coupled evolution of the meridional thermal gradient in the tropical Atlantic due to the linear combination of the two largest SSTA modes in the Atlantic (11% with strong inverse loadings over the northern and southern tropics) which is associated with the interannual and quasi-decadal components of regional rainfall in West Africa. Linear regression and discriminant analyses provide evidence that the main July–September rainfall anomalies in Sudan–Sahel can be detected with rather good skills using the leading (April–June) or synchronous (July–September) values of the four main oceanic modes. In particular, the driest conditions over Sahel, more marked since the beginning of the 1970s, are specifically linked to the warm phases of the two global modes and to cold/warm anomalies in the northern/southern tropical Atlantic. Idealized but realistic SSTA patterns, obtained from some basic linear combinations of the four main oceanic modes appear sufficient to generate quickly (from mid-July to the end of August) significant West African rainfall anomalies in model experiments, consistent with the statistical results. The recent negative impact on West African rainfall exerted by the global oceanic forcing is primarily due to the generation of subsidence anomalies in the mid-troposphere over West Africa. When an idealized north to south SSTA gradient is added in the tropical Atlantic, strong north to south height gradients in the middle levels appear. These limit the northward excursion of the rainbelt in West Africa: the Sahelian area experiences drier conditions due to the additive effect (subsidence anomalies+latitudinal blocking) while over the Guinea regions wet conditions do not significantly increase, since the subsidence anomalies and the blocking effect act here in opposite ways. Received: 26 June 1997 / Accepted: 3 October 1997  相似文献   

10.
Multi-stage onset of the summer monsoon over the western North Pacific   总被引:9,自引:1,他引:9  
R. Wu  B. Wang 《Climate Dynamics》2001,17(4):277-289
 The climatological summer monsoon onset displays a distinct step wise northeastward movement over the South China Sea and the western North Pacific (WNP) (110°–160°E, 10°–20°N). Monsoon rain commences over the South China Sea-Philippines region in mid-May, extends abruptly to the southwestern Philippine Sea in early to mid-June, and finally penetrates to the northeastern part of the domain around mid-July. In association, three abrupt changes are identified in the atmospheric circulation. Specifically, the WNP subtropical high displays a sudden eastward retreat or quick northward displacement and the monsoon trough pushes abruptly eastward or northeastward at the onset of the three stages. The step wise movement of the onset results from the slow northeastward seasonal evolution of large-scale circulation and the phase-locked intraseasonal oscillation (ISO). The seasonal evolution establishes a large-scale background for the development of convection and the ISO triggers deep convection. The ISO over the WNP has a dominant period of about 20–30 days. This determines up the time interval between the consecutive stages of the monsoon onset. From the atmospheric perspective, the seasonal sea surface temperature (SST) change in the WNP plays a critical role in the northeastward advance of the onset. The seasonal northeastward march of the warmest SST tongue (SST exceeding 29.5 °C) favors the northeastward movement of the monsoon trough and the high convective instability region. The seasonal SST change, in turn, is affected by the monsoon through cloud-radiation and wind-evaporation feedbacks. Received: 19 October 1999 / Accepted: 5 June 2000  相似文献   

11.
The West African monsoon (WAM) circulation and intensity have been shown to be influenced by the land surface in numerous numerical studies using regional scale and global scale atmospheric climate models (RCMs and GCMs, respectively) over the last several decades. The atmosphere–land surface interactions are modulated by the magnitude of the north–south gradient of the low level moist static energy, which is highly correlated with the steep latitudinal gradients of the vegetation characteristics and coverage, land use, and soil properties over this zone. The African Multidisciplinary Monsoon Analysis (AMMA) has organised comprehensive activities in data collection and modelling to further investigate the significance land–atmosphere feedbacks. Surface energy fluxes simulated by an ensemble of land surface models from AMMA Land-surface Model Intercomparison Project (ALMIP) have been used as a proxy for the best estimate of the “real world” values in order to evaluate GCM and RCM simulations under the auspices of the West African Monsoon Modelling Experiment (WAMME) project, since such large-scale observations do not exist. The ALMIP models have been forced in off-line mode using forcing based on a mixture of satellite, observational, and numerical weather prediction data. The ALMIP models were found to agree well over the region where land–atmosphere coupling is deemed to be most important (notably the Sahel), with a high signal to noise ratio (generally from 0.7 to 0.9) in the ensemble and a inter-model coefficient of variation between 5 and 15%. Most of the WAMME models simulated spatially averaged net radiation values over West Africa which were consistent with the ALMIP estimates, however, the partitioning of this energy between sensible and latent heat fluxes was significantly different: WAMME models tended to simulate larger (by nearly a factor of two) monthly latent heat fluxes than ALMIP. This results due to a positive precipitation bias in the WAMME models and a northward displacement of the monsoon in most of the GCMs and RCMs. Another key feature not found in the WAMME models is peak seasonal latent heat fluxes during the monsoon retreat (approximately a month after the peak precipitation rates) from soil water stores. This is likely related to the WAMME northward bias of the latent heat flux gradient during the WAM onset.  相似文献   

12.
Based on calculations of data from FGGE Level III b, a discussion is made of the energy balance in the 40-50 day periodic oscillation over the Asian monsoon region during the 1979 summer. It is found that the main source of 40-50 day periodic perturbation is the monsoon region extending from central South Asia to Southeast Asia. In the upper layer over the North Pacific subtropical area (10-20oN, 150oE-150oW) pres-sure work turns into kinetic energy that maintains 40-50 day periodic perturbation associated with the variation in position and intensity of the mid-Pacific trough. The mean energy budget in the three-dimensional space (0-30oE, 30oE-150oW, 100-1000 hPa) indicates that the 40-50 day periodic perturbation transports kinetic energy to a seasonal mean and a transient perturbation wind field.  相似文献   

13.
利用ERA-Interim再分析资料分析了夏秋季西北太平洋季风槽的气候特征以及季节和年际变化特征及其对西北太平洋热带气旋和台风(TCs)生成大尺度环境因子的影响。研究结果表明了西北太平洋季风槽有很明显的季节变化,在6~7月,季风槽和强对流活动区在5°N~15°N的南海和西北太平洋西侧上空,并逐渐东伸;到了8~9月,季风槽和强对流活动区向北移动、并向东扩展,一般位于10°N~20°N的南海和西北太平洋西侧、中部上空,有的年份可东伸到西北太平洋东侧,强度加强;到了10~11月,季风槽迅速减弱,并成为涡旋,强对流活动区也向南移和向西收缩。同时,研究还表明了西北太平洋季风槽有明显的年际变化。在季风槽强的年份,季风槽和强对流活动区可以从南海经西北太平洋西侧和中部东伸到西北太平洋的东侧上空;而在季风槽弱的年份,季风槽和强对流活动区主要位于南海和西北太平洋西侧和中部上空,季风槽强度的年际变化对它的季节变化也有重要影响。此外,研究还表明了随着季风槽的季节和年际变化,西北太平洋TCs生成的大尺度环境因子分布也发生很明显的变化。  相似文献   

14.
Summary The paper examines the annual cycle of the mid-tropospheric easterly jet (MTJ) over West Africa against the background of many reviews indicating different locations and characteristics of the jet and considering it as a summer feature. NCEP–NCAR reanalysis zonal wind datasets for the period 1971–2000 and upper air datasets over the region are used. The results exhibit realistic spatial structure of the easterly jet. The long-term mean of the datasets suggests that the jet over West Africa is not only a summer feature but can also be found in winter with the same order of magnitude in the wind velocity at the core. The jet axis is located at about lat. 2° N close to the Guinean Coast in winter and at lat. 14° N in summer. The meridional oscillation of the jet suggests that as it advances northward, it maintains an altitude of 700 hPa in winter and transits in mid-spring to 650 hPa and reaches 600 hPa in summer. In the retreat, it displaces to 650 hPa at the end of September rather sharply to reach 700 hPa in October. The jet’s core has been observed to have a northeast–southwest orientation from season to season, covering a longitude of 29° from its southernmost to the northernmost positions.  相似文献   

15.
This study examines the tropical cyclone (TC) genesis frequency over the western North Pacific simulated in atmosphere–ocean coupled general circulation models from the World Climate Research Programme’s Coupled Model Intercomparison Project phase 3. We first evaluate performances of eight models with atmospheric horizontal resolution of T63 or T106 by analyzing their daily-mean atmospheric outputs of twentieth-century climate simulations available from the Program for Climate Model Diagnosis and Intercomparison database. The genesis frequency is validated against the best-track data issued by the Japan Meteorological Agency. Five of the eight models reproduce realistic horizontal distribution of the TC genesis with a large fraction over the 10°–20°N, 120°–150°E area. These five high-performance models also realistically simulate the summer–winter contrast of the frequency. However, detailed seasonal march is slightly unrealistic; four of the models overestimate the frequency in the early season (May–June) while all of them underestimate the frequency in the mature season (July–September). Reasons for these biases in the seasonal march for the five high-performance models are discussed using the TC genesis potential (GP) index proposed by Emanuel and Nolan (in Am Meteor Soc, pp 240–241, 2004). The simulated GP has seasonal biases consistent with those of the TC genesis frequency. For all five models, the seasonal biases in GP are consistent with those in environmental lower-tropospheric vorticity, vertical wind shear, and relative humidity, which can be attributed to the simulated behavior of monsoon trough. The observed trough migrates northward from the equatorial region to reach the 10°–20°N latitudinal band during the mature season and contributes to the TC frequency maximum, whereas the simulated trough migrates northward too rapidly and reaches this latitude band in the early season, leading to the overestimation of the TC genesis frequency. In the mature season, the simulated trough reaches as far as 15°–25°N, accompanied by a strong vertical shear south of the trough, providing an unfavorable condition for TC genesis. It is concluded that an adequate simulation of the monsoon trough behavior is essential for a better reproduction of the TC frequency seasonal march.  相似文献   

16.
By the utilization of monthly precipitation data from all stations in the Northern Hemisphere annexed to the “World Survey of climatology, Vol. 1-15, the distributions of the maximum precipitation months (MPM), the annual relative precipitation (ARP) and the monthly relative precipitation (percent of annual) in January and July are respectively mapped. Moreover the distributions of intermonthly relative precipitation variabilities from January to December are plotted as well. From these figures, the precipitation in the Northern Hemisphere may be classified into three types (continental, oceanic and transitional types) and 17 regions. The precipitation regime may also be divided into two patterns, the global and regional patterns. The global pattern consists of planetary front system and ITCZ and its inter-monthly variation shows the north-and-south shift of the rain belt; the regional pattern consists of the sea-land monsoon and plateau monsoon regime, in which the inter-monthly variation of rain belt shows a east- and-west shift.  相似文献   

17.
A nine-member ensemble of simulations with a state-of-the-art atmospheric model forced only by the observed record of sea surface temperature (SST) over 1930–2000 is shown to capture the dominant patterns of variability of boreal summer African rainfall. One pattern represents variability along the Gulf of Guinea, between the equator and 10°N. It connects rainfall over Africa to the Atlantic marine Intertropical Convergence Zone, is controlled by local, i.e., eastern equatorial Atlantic, SSTs, and is interannual in time scale. The other represents variability in the semi-arid Sahel, between 10°N and 20°N. It is a continental pattern, capturing the essence of the African summer monsoon, while at the same time displaying high sensitivity to SSTs in the global tropics. A land–atmosphere feedback associated with this pattern translates precipitation anomalies into coherent surface temperature and evaporation anomalies, as highlighted by a simulation where soil moisture is held fixed to climatology. As a consequence of such feedback, it is shown that the recent positive trend in surface temperature is consistent with the ocean-forced negative trend in precipitation, without the need to invoke the direct effect of the observed increase in anthropogenic greenhouse gases. We advance plausible mechanisms by which the balance between land–ocean temperature contrast and moisture availability that defines the monsoon could have been altered in recent decades, resulting in persistent drought. This discussion also serves to illustrate ways in which the monsoon may be perturbed, or may already have been perturbed, by anthropogenic climate change.  相似文献   

18.
In this paper we present results of a numerical study using the NASA finite-volume GCM to elucidate a plausible mechanism for aerosol impact on the Asian summer monsoon involving interaction with physical processes over the Tibetan Plateau (TP). During the pre-monsoon season of March–April, dusts from the deserts of western China, Afghanistan/Pakistan, and the Middle East are transported into and stacked up against the northern and southern slopes of the TP. The absorption of solar radiation by dust heats up the elevated surface air over the slopes. On the southern slopes, the atmospheric heating is reinforced by black carbon from local emission. The heated air rises via dry convection, creating a positive temperature anomaly in the mid-to-upper troposphere over the TP relative to the region to the south. In May through early June in a manner akin to an “elevated heat pump”, the rising hot air forced by the increasing heating in the upper troposphere, draws in warm and moist air over the Indian subcontinent, setting the stage for the onset of the South Asia summer monsoon. Our results suggest that increased dust loading coupled with black carbon emission from local sources in northern India during late spring may lead to an advance of the rainy periods and subsequently an intensification of the Indian summer monsoon. The enhanced rainfall over India is associated with the development of an aerosol-induced large-scale sea level pressure anomaly pattern, which causes the East Asia (Mei-yu) rain belt to shift northwestward, suppressing rainfall over East Asia and the adjacent oceanic regions.  相似文献   

19.
The total extent of the atmospheric impacts associated to the aerosol black carbon (BC) emissions from South America is not completed described. This work presents results of BC monitored during three scientific expeditions (2002, 2003 and 2004) on board of a Brazilian oceanographic vessel Ary Rongel that covered the South–West Atlantic coast between 22–62°S. This latitudinal band encloses major urban regions of South America and the outflow region of the SACZ (South Atlantic Convergent Zone), which is an important mechanism of advective transport of heat, moisture, minor gases and aerosols from the South America continental land to the Southern Atlantic Ocean. Our results showed that aerosol BC enhanced concentrations from urban/industrial origin can be transported to the South–West Atlantic Ocean due to the migration of sub-polar fronts that frequently reach tropical/subtropical regions. Despite the decrease of aerosol BC concentrations southwards (from ∼1,200 ng m−3 at latitude 22°S to ∼10 ng m−3 at latitude 62°S), several observed peak events were attributed to regional urban activities. Most of such events could be explained by the use of air mass back trajectories analysis. In addition, a global model simulation is presented (Goddard Institute for Space Studies – GISS GCM BC simulation) to explore the origins of aerosol BC in the South–West Atlantic. The model allowed isolating the biomass emissions from South America and Africa and industrial (non-biomass) pollution from other regions of the globe. This model suggests that the apportionment of about half of the aerosol BC at the South–West Atlantic may derive from South American biomass burning.  相似文献   

20.
The geographical position of the climatological polar front over the Russian plains in summer of 1948–1960, 1961–1990, and 1991–2007 is detailed. The location of the polar front is derived using the frequency of cyclonic centers and the module of horizontal temperature gradient computed from the reanalysis data of UEA CRU 2.5° × 2.5°. The East European and Asian branches of the polar front are reliably distinguished by all indicators. The geographical position of branches differs from S.P. Khromov’s polar front map in July in details only. The present-day southward shift of the polar front over the East European Plain and the northward shift over the West Siberian Plain are revealed relative to the period of 1948–1990.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号