首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Investigating more than 270 nightly mean magnitudes of the long-period RS CVn binary HK Lac, we can draw some conclusions about the nature of its complicated light variations. The mean brightness, the apparent photometric period, and the shape of the light curve all show strong variations. Analysis with a starspot model, assuming two large spots and a general uniform spottedness, indicates two comparably large spots which appear to have maintained their separate identities for the last 15 yr and drifted in longitude separation from each other smoothly by only about 45°. The phase of the two spots indicates both are rotating very nearly synchronously with the orbital motion, one slightly (0.025%) faster and the other slightly (0.080%) slower. the latitudes of the two spots, one farther above the equator and one closer to the equator, are consistent with solar-type differential rotation and yield an estimate of 25±12° for the co-rotating latitude. A correlation between mean spot latitude and instantaneous photometric period yields another estimate of 31±2°, in agreement with the first.  相似文献   

2.
3.
We have observed about 16 absorption lines of the ν2 SO2 vibrational band on Io, in disk-integrated 19-μm spectra taken with the TEXES high spectral resolution mid-infrared spectrograph at the NASA Infrared Telescope Facility in November 2001, December 2002, and January 2004. These are the first ground-based infrared observations of Io's sunlit atmosphere, and provide a new window on the atmosphere that allows better longitudinal and temporal monitoring than previous techniques. Dramatic variations in band strength with longitude are seen that are stable over at least a 2 year period. The depth of the strongest feature, a blend of lines centered at 530.42 cm−1, varies from about 7% near longitude 180° to about 1% near longitude 315° W, as measured at a spectral resolution of 57,000. Interpretation of the spectra requires modeling of surface temperatures and atmospheric density across Io's disk, and the variation in non-LTE ν2 vibrational temperature with altitude, and depends on the assumed atmospheric and surface temperature structure. About half of Io's 19-μm radiation comes from the Sun-heated surface, and half from volcanic hot spots with temperatures primarily between 150 and 200 K, which occupy about 8% of the surface. The observations are thus weighted towards the atmosphere over these low-temperature hot spots. If we assume that the atmosphere over the hot spots is representative of the atmosphere elsewhere, and that the atmospheric density is a function of latitude, the most plausible interpretation of the data is that the equatorial atmospheric column density varies from about 1.5×1017 cm−2 near longitude 180° W to about 1.5×1016 cm−2 near longitude 300° W, roughly consistent with HST UV spectroscopy and Lyman-α imaging. The inferred atmospheric kinetic temperature is less than about 150 K, at least on the anti-Jupiter hemisphere where the bands are strongest, somewhat colder than inferred from HST UV spectroscopy and millimeter-wavelength spectroscopy. This longitudinal variability in atmospheric density correlates with the longitudinal variability in the abundance of optically thick, near-UV bright SO2 frost. However it is not clear whether the correlation results from volcanic control (regions of large frost abundance result from greater condensation of atmospheric gases supported by more vigorous volcanic activity in these regions) or sublimation control (regions of large frost abundance produce a more extensive atmosphere due to more extensive sublimation). Comparison of data taken in 2001, 2002, and 2004 shows that with the possible exception of longitudes near 180° W between 2001 and 2002, Io's atmospheric density does not appear to decrease as Io recedes from the Sun, as would be expected if the atmosphere were supported by the sublimation of surface frost, suggesting that the atmosphere is dominantly supported by direct volcanic supply rather than by frost sublimation. However, other evidence such as the smooth variation in atmospheric abundance with latitude, and atmospheric changes during eclipse, suggest that sublimation support is more important than volcanic support, leaving the question of the dominant atmospheric support mechanism still unresolved.  相似文献   

4.
Space object orbital covariance data is required for collision risk assessments, but publicly accessible two line element (TLE) data does not provide orbital error information. This paper compared historical TLE data and GPS precision ephemerides of CHAMP to assess TLE orbit accuracy from 2002 to 2008, inclusive. TLE error spatial variations with longitude and latitude were calculated to analyze error characteristics and distribution. The results indicate that TLE orbit data are systematically biased from the limited SGP4 model. The biases can reach the level of kilometers, and the sign and magnitude are correlate significantly with longitude.  相似文献   

5.
Observations have consistently pointed out that the longitudinal and latitudinal motions of sunspots are correlated. The magnitude of the covariance was found to increase with latitude, and its sign was found to be positive in the N-hemisphere and negative in the S-hemisphere. This correlation was believed to be due to the underlying turbulence where the sunspot flux tubes are anchored, and the covariance had the right sign and magnitude needed to explain the transfer of angular momentum toward the equator through Reynolds stresses.Here we present an alternate explanation for these sunspot velocity correlations: It is believed that the dynamo operates in a thin overshoot layer beneath the base of the convection zone, and the flux tubes generated there produce sunspots at the photosphere. By studying the dynamics of flux tubes emerging from the base of the convection zone to the photosphere, we show that these velocity correlations of sunspots could be merely a consequence of the effect of Coriolis force on rising flux tubes. The effect of the Coriolis force, as demonstrated by even a back-of-the-envelope calculation, is to push the faster rotating spots equatorward and the slower rotating spots poleward, giving rise to a correlation in their longitudinal and latitudinal velocities, which is positive in the N-hemisphere and negative in the S-hemisphere. The increase in the correlation with latitude is due to the increase in magnitude of the Coriolis force. Hence we show that these velocity correlations might have nothing to do with the Reynolds stresses of the underlying turbulence.We present analyses of observations, and show that the covariances of plages are an order of magnitude higher than the sunspot covariances. If plages and sunspots share the same origin, and if their horizontal velocity correlations are wholly due to the effect of Coriolis force on rising flux tubes, then the study of their dynamics suggests that the flux tubes that form plages should have diameters of a couple of thousand km at the base of the convection zone and remain intact until they reach the photosphere, whereas sunspots should be formed by a collection of small flux tubes (each measuring about a hundred km in diameter), that rise through the convection zone as individual elements and coalesce when they emerge through the photosphere.Operated by the Association of Universities for Research in Astronomy, Inc., under Cooperative Agreement with the National Science Foundation.  相似文献   

6.
The light outside the eclipses of the totally eclipsing RS CVn binary SV Camelopardalis (SV Cam) is Fourier analysed and the amplitudes of the distortion waves have been derived. The distribution of the percentage contributions of these amplitudes inV, B andU colours with respect to the luminosities of the binary components indicates that the hotter component is the source of the distortion waves. These distortion waves, attributed to star spots, are modelled according to Budding (1977) and spot parameters like longitude, latitude, temperature and size are obtained. From this study it is noticed that while symmetric waves with two minima could be fitted satisfactorily, asymmetric waves with more than two minima could not be fitted well. From the longitudes of the minima of the best fitted curves, migration periods of four spot groups are determined. Assuming synchronism between rotation and orbital periods, the rotation periods of the four spot groups are derived from their migration periods. The period of rotation of one of the spot groups having direct motion is found to be 0d.5934209 while the periods of the other three spot groups having retrograde motion are 0d.5926588, 0d.592607 and 0d.5924688. As the latitudes of these spots are known from modelling parameters, the latitude having a rotation period equal to that of the orbital period (co-rotating latitude) is found to be about 30°  相似文献   

7.
8.
We examine daily records of sunspot group areas (measured in millionths of a solar hemisphere or μHem) for the last 130 years to determine the rate of decay of sunspot group areas. We exclude observations of groups when they are more than 60° in longitude from the central meridian and only include data when at least three days of observations are available following the date of maximum area for a group’s disk passage. This leaves data for over 18 000 measurements of sunspot group decay. We find that the decay rate increases linearly from 28 μHem day−1 to about 140 μHem day−1 for groups with areas increasing from 35 μHem to 1000 μHem. The decay rate tends to level off for groups with areas larger than 1000 μHem. This behavior is very similar to the increase in the number of sunspots per group as the area of the group increases. Calculating the decay rate per individual sunspot gives a decay rate of about 3.65 μHem day−1 with little dependence upon the area of the group. This suggests that sunspots decay by a Fickian diffusion process with a diffusion coefficient of about 10 km2 s−1. Although the 18 000 decay rate measurements are lognormally distributed, this can be attributed to the lognormal distribution of sunspot group areas and the linear relationship between area and decay rate for the vast majority of groups. We find weak evidence for variations in decay rates from one solar cycle to another and for different phases of each sunspot cycle. However, the strongest evidence for variations is with latitude and the variations with cycle and phase of each cycle can be attributed to this variation. High latitude spots tend to decay faster than low latitude spots.  相似文献   

9.
We present a few newly found old sunspot observations from the years AD 1708, 1709, and 1710, which were obtained by Peter Becker from Rostock, Germany. For 1709, Becker gave a detailed drawing: he observed a sunspot group made up of two spots on January 5, 6, and 7, and just one of the two spots was observed on January 8 and 9. We present his drawing and his explanatory text. We can measure the latitude and longitude of these two spots and estimate their sizes for all five days. While the spots and groups in 1708 and the spot on four of the five days in January 1709 were known before from other observers (e.g. Hoyt & Schatten 1998), the location of the spots in early January 1709 were not known before, so that they can now be considered in reconstructed butterfly diagrams. The sunspots detected by Becker on 1709 January 5 and 1710 September 10 were not known before at all, as the only observer known for those two dates, La Hire, did not detect that spot (group). We estimate new group sunspot numbers for the relevant days, months, and years. The time around 1708–1710 is important, because it documents the recovery of solar activity towards the end of the Maunder Grand Minimum. We also show two new spot observations from G. Kirch for 1708 September 13 and 14 as described in his letter to Wurzelbaur (dated Berlin AD 1708 December 19). (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The appearance of sunspot groups between August 1959 and December 1964 is investigated in search of sunspot nests. A sunspot nest is a relatively small space on the surface within which a succession of spot groups appears. A single-linkage clustering technique is used to trace clusters in the three dimensions longitude, latitude and time. The number of genuine sunspot nests is estimated and their properties are determined.At least one third of the sunspot appearances belong to intrinsically physical clusters. Even a substantial fraction of the clusters of two-member groups is genuine.The clustering criteria are set such that the smallest scales in the clustering are brought out. The sizes of the nests turn out very small: the typical (1-) spread about the longitude-time regression line is about 2°, and the spread about the mean latitude is about 1°. The lifetimes range from one to seven months. The nests follow the rotation rate-latitude relation of recurrent sunspots within a small but intrinsic spread of about 15 m s–1. In the present sample the displacements in latitude are extremely small: the amplitude of any large-scale flow pattern must be less than 3 m s–1, whereas the intrinsic proper motions in latitude are less than 5 m s–1.The appearance of spot groups in a nest is intermittent. On one hand, in an active nest spots may be absent for nearly two complete rotations. On the other hand, in many nests more than one spot group has been recorded during one disk crossing.There is a strong tendency for the nests to cluster once again in larger nests: more than 1/3 of the compact nests are components in larger nests. Within such a large nest the components overlap in time, their mean latitudes differ by less than 2°.5, but the difference in longitude may extend up to 55°.The present and earlier results are either in harmony, or seemingly discordant results are readily explained by properties of the nests and differences in the search criteria.  相似文献   

11.
We suggest a model based on the representation of the stellar magnetic field as a superposition of a finite number of poloidal and toroidal free decay modes to describe the dynamo action in fully convective stars. For the adopted law of stellar differential rotation, we determined the dynamo number in exceeding which the generation of a cyclically varying magnetic field is possible in stars without a radiative core and derived an expression for the period of the cycle. The dynamo cycles in fully convective stars and in stars with thin convective envelopes are shown to differ qualitatively: first, the distributions of spots in latitude during the cycle are different for these two types of stars and, second, the model predicts a great weakening of the spot formation in fully convective stars at certain phases of the cycle. To compare the theory with observations, we have analyzed the historical light curve for the weak-line T Tauri star V410 Tau and found that its long-term activity is not a well-defined cycle with a definite period—its activity is more likely quasi-cyclic with a characteristic time of ~4 yr and with a chaotic component superimposed. we have also concluded that a redistribution of spots in longitude is responsible for the secular brightness variations in the star. This does not allow the results of photometric observations to be directly compared with predictions of ourmodel, in which, for simplicity, we assumed a symmetry in longitude and investigated the temporal evolution of the spot distribution in latitude. Therefore, we discuss the questions of what and how observations can be compared with predictions of the dynamo theory.  相似文献   

12.
利用多元逐步回归方法分析了太阳耀斑的日面经纬度、面积,持续时间、地球的日面纬度、地磁轴与日地连线的夹角和地磁扰动的关系。结果表明这6个因子对磁扰均有不同程度的影响,由太阳耀斑引起的地磁扰动除与耀斑的特征有关外,还受地球空间位置的影响。  相似文献   

13.
The high-resolution Voyager images of Ganymede show a class of fresh craters 6–89 km in diameter which is distinguished by an ejecta blanket similar to those seen for some types of Martian craters. One hundred and eighty-five were identified and studied for trends with respect to latitude, longitude, and terrain type. No correlation of the ratio of ejecta diameter to crater diameter was found as a function of latitude or longitude, and there is only a suggestion of a trend in this ratio with respect to major terrain types. Central peak frequency is greatest for the smaller crater diameters. Central pit occurrence dominates central peak occurrence at crater diameters ?35 km. We conclude that the ejecta morphology probably results from impact into an icy target. The question of whether atmospheric ejecta-particle drag contributes to ejecta blanket morphologies on planets with an atmospheric cannot be resolved entirely from the Voyager images. The image resolution is insufficient to show diagnostic flow features on the ejecta, if they exist, or to detect evidence of any other ejecta deposits which would lie beyond the pedestal, predicted by some researchers to exist only on bodies with an atmosphere.  相似文献   

14.
In the declining phase of solar cycle 20 (1970–74) three pulses of activity occurred and resulted in two well defined ‘stillstands’ in the smoothed means of sunspot, 2800 MHz, and calcium plage data. Marked diminutions in spot and 2800 MHz flux took place in 1970 and 1971, respectively, and were accompanied by concomitant decreases in flare-occurrence. Studies of the latitude distribution of spots and flares show the extent of the dominance of the northern hemisphere in cycle 20 and the marked phase shift between northern and southern hemispheres. In the years studied, the longitudes of centers of activity clustered in identifiable zones or hemispheres for relatively long intervals of time. From mid-1973 to mid-1974 the Sun had a relatively inactive hemisphere centered on ~0° longitude. The relationship of certain well defined ‘coronal holes’ to this inactive hemisphere of the chromosphere is noted. The first two spot groups of the new cycle formed in November 1974 and January 1975 in the longitude zone associated with relatively high levels of old cycle activity, a repetition of the pattern observed in 1963–64.  相似文献   

15.
Japanese Venus Climate Orbiter, Akatsuki, is cruising to approach to Venus again although its first Venus orbital insertion (VOI) has been failed. At present, we focus on the next opportunity of VOI and the following scientific observations.We have constructed an automated cloud tracking system for processing data obtained by Akatsuki in the present study. In this system, correction of the pointing of the satellite is essentially important for improving accuracy of the cloud motion vectors derived using the cloud tracking. Attitude errors of the satellite are reduced by fitting an ellipse to limb of an imaged Venus disk. Next, longitude–latitude distributions of brightness (cloud patterns) are calculated to make it easy to derive the cloud motion vectors. The grid points are distributed at regular intervals in the longitude–latitude coordinate. After applying the solar zenith correction and a highpass filter to the derived longitude–latitude distributions of brightness, the cloud features are tracked using pairs of images. As a result, we obtain cloud motion vectors on longitude–latitude grid points equally spaced. These entire processes are pipelined and automated, and are applied to all data obtained by combinations of cameras and filters onboard Akatsuki. It is shown by several tests that the cloud motion vectors are determined with a sufficient accuracy. We expect that longitude–latitude data sets created by the automated cloud tracking system will contribute to the Venus meteorology.  相似文献   

16.
The heliocentric orbits of the two STEREO satellites are similar in radius and ecliptic latitude, with separation in longitude increasing by about 45° per year. This arrangement provides a unique opportunity to study the evolution of stream interfaces near 1 AU over time scales of hours to a few days, much less than the period of a Carrington rotation. Assuming nonevolving solar wind sources that corotate with the Sun, we calculated the expected time and longitude of arrival of stream interfaces at the Ahead observatory based on the in situ solar wind speeds measured at the Behind observatory. We find agreement to within 5° between the expected and actual arrival longitude until the spacecraft are separated by more than 20° in heliocentric inertial longitude. This corresponds to about one day between the measurement times. Much larger deviations, up to 25° in longitude, are observed after 20° separation. Some of the deviations can be explained by a latitude difference between the spacecraft, but other deviations most likely result from evolution of the source region. Both remote and in situ measurements show that changes at the source boundary can occur on a time scale much shorter than one solar rotation. In 32 of 41 cases, the interface was observed earlier than expected at STEREO/Ahead.  相似文献   

17.
S. Latushko 《Solar physics》1993,146(2):401-404
The pattern of torsional oscillations was detected in the rotation of the large-scale magnetic field using the method of two-dimensional correlation functions. The position of areas of fast and slow rotation agrees with the Doppler picture obtained by Ulrich et al. (1988). The torsional wave amplitude is 20–40 ms–1 and increases with latitude. A strong correlation of the pattern of residual E-W rate with the meridional drift pattern, obtained from the same data, was determined. The sign of correlation is consistent with the results reported by Ward (1965).  相似文献   

18.
In the framework of the space missions to Mercury, an accurate model of rotation is needed. Librations around the 3:2 spin-orbit resonance as well as latitudinal librations have to be predicted with the best possible accuracy. In this paper, we use a Hamiltonian analysis and numerical integrations to study the librations of Mercury, both in longitude and latitude. Due to the proximity of the period of the free libration in longitude to the orbital period of Jupiter, the 88-day and 11.86-year contributions dominate Mercury’s libration in longitude (with the Hermean parameters chosen). The amplitude of the libration in latitude is much smaller (under 1 arcsec) and should not be detected by the space missions. Nevertheless, we point out that this amplitude could be much larger (up to several tens of arcsec) if the free period related to the libration in latitude approaches the period of the Jupiter-Saturn Great Inequality (883 years). Given the large uncertainties on the planetary parameters, this new resonant forcing on Mercury’s libration in latitude should be borne in mind.  相似文献   

19.
The zonal mean ammonia abundance on Jupiter between the 400- and 500-mbar pressure levels is inferred as a function of latitude from Cassini Composite Infrared Spectrometer data. Near the Great Red Spot, the ammonia abundance is mapped as a function of latitude and longitude. The Equatorial Zone is rich in ammonia, with a relative humidity near unity. The North and South Equatorial Belts are depleted relative to the Equatorial Zone by an order of magnitude. The Great Red Spot shows a local maximum in the ammonia abundance. Ammonia abundance is highly correlated with temperature perturbations at the same altitude. Under the assumption that anomalies in ammonia and temperature are both perturbed from equilibrium by vertical motion, we find that the adjustment time constant for ammonia equilibration is about one third of the radiative time constant.  相似文献   

20.
Observations of the spotted rotating G8 V star HII 296, a member of the Pleiades cluster, are presented. The star has exhibited stable periodic brightness variations for several years. The apparent rotation period of the star in our observations was 2.53 and 2.58 days. The shape and amplitude of its light curve changed from year to year. During our observational monitoring from September to November 2012, we recorded an almost complete absence of brightness variations in September. A rapid (within a few weeks) and manyfold increase in the brightness variability amplitude was observed in October and November 2012. The changes in the rotation period, amplitude, and shape of the light curve suggest an intense relative motion of spots in latitude and longitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号