首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years,landslide susceptibility mapping has substantially improved with advances in machine learning.However,there are still challenges remain in landslide mapping due to the availability of limited inventory data.In this paper,a novel method that improves the performance of machine learning techniques is presented.The proposed method creates synthetic inventory data using Generative Adversarial Networks(GANs)for improving the prediction of landslides.In this research,landslide inventory data of 156 landslide locations were identified in Cameron Highlands,Malaysia,taken from previous projects the authors worked on.Elevation,slope,aspect,plan curvature,profile curvature,total curvature,lithology,land use and land cover(LULC),distance to the road,distance to the river,stream power index(SPI),sediment transport index(STI),terrain roughness index(TRI),topographic wetness index(TWI)and vegetation density are geo-environmental factors considered in this study based on suggestions from previous works on Cameron Highlands.To show the capability of GANs in improving landslide prediction models,this study tests the proposed GAN model with benchmark models namely Artificial Neural Network(ANN),Support Vector Machine(SVM),Decision Trees(DT),Random Forest(RF)and Bagging ensemble models with ANN and SVM models.These models were validated using the area under the receiver operating characteristic curve(AUROC).The DT,RF,SVM,ANN and Bagging ensemble could achieve the AUROC values of(0.90,0.94,0.86,0.69 and 0.82)for the training;and the AUROC of(0.76,0.81,0.85,0.72 and 0.75)for the test,subsequently.When using additional samples,the same models achieved the AUROC values of(0.92,0.94,0.88,0.75 and 0.84)for the training and(0.78,0.82,0.82,0.78 and 0.80)for the test,respectively.Using the additional samples improved the test accuracy of all the models except SVM.As a result,in data-scarce environments,this research showed that utilizing GANs to generate supplementary samples is promising because it can improve the predictive capability of common landslide prediction models.  相似文献   

2.
The current study aimed at evaluating the capabilities of seven advanced machine learning techniques(MLTs),including,Support Vector Machine(SVM),Random Forest(RF),Multivariate Adaptive Regression Spline(MARS),Artificial Neural Network(ANN),Quadratic Discriminant Analysis(QDA),Linear Discriminant Analysis(LDA),and Naive Bayes(NB),for landslide susceptibility modeling and comparison of their performances.Coupling machine learning algorithms with spatial data types for landslide susceptibility mapping is a vitally important issue.This study was carried out using GIS and R open source software at Abha Basin,Asir Region,Saudi Arabia.First,a total of 243 landslide locations were identified at Abha Basin to prepare the landslide inventory map using different data sources.All the landslide areas were randomly separated into two groups with a ratio of 70%for training and 30%for validating purposes.Twelve landslide-variables were generated for landslide susceptibility modeling,which include altitude,lithology,distance to faults,normalized difference vegetation index(NDVI),landuse/landcover(LULC),distance to roads,slope angle,distance to streams,profile curvature,plan curvature,slope length(LS),and slope-aspect.The area under curve(AUC-ROC)approach has been applied to evaluate,validate,and compare the MLTs performance.The results indicated that AUC values for seven MLTs range from 89.0%for QDA to 95.1%for RF.Our findings showed that the RF(AUC=95.1%)and LDA(AUC=941.7%)have produced the best performances in comparison to other MLTs.The outcome of this study and the landslide susceptibility maps would be useful for environmental protection.  相似文献   

3.
The identification of landslide-prone areas is an essential step in landslide hazard assessment and mitigation of landslide-related losses.In this study,we applied two novel deep learning algorithms,the recurrent neural network(RNN)and convolutional neural network(CNN),for national-scale landslide susceptibility mapping of Iran.We prepared a dataset comprising 4069 historical landslide locations and 11 conditioning factors(altitude,slope degree,profile curvature,distance to river,aspect,plan curvature,distance to road,distance to fault,rainfall,geology and land-sue)to construct a geospatial database and divided the data into the training and the testing dataset.We then developed RNN and CNN algorithms to generate landslide susceptibility maps of Iran using the training dataset.We calculated the receiver operating characteristic(ROC)curve and used the area under the curve(AUC)for the quantitative evaluation of the landslide susceptibility maps using the testing dataset.Better performance in both the training and testing phases was provided by the RNN algorithm(AUC=0.88)than by the CNN algorithm(AUC=0.85).Finally,we calculated areas of susceptibility for each province and found that 6%and 14%of the land area of Iran is very highly and highly susceptible to future landslide events,respectively,with the highest susceptibility in Chaharmahal and Bakhtiari Province(33.8%).About 31%of cities of Iran are located in areas with high and very high landslide susceptibility.The results of the present study will be useful for the development of landslide hazard mitigation strategies.  相似文献   

4.
The accurate prediction of displacement is crucial for landslide deformation monitoring and early warning. This study focuses on a landslide in Wenzhou Belt Highway and proposes a novel multivariate landslide displacement prediction method that relies on graph deep learning and Global Navigation Satellite System (GNSS) positioning. First model the graph structure of the monitoring system based on the engineering positions of the GNSS monitoring points and build the adjacent matrix of graph nodes. Then construct the historical and predicted time series feature matrixes using the processed temporal data including GNSS displacement, rainfall, groundwater table and soil moisture content and the graph structure. Last introduce the state-of-the-art graph deep learning GTS (Graph for Time Series) model to improve the accuracy and reliability of landslide displacement prediction which utilizes the temporal-spatial dependency of the monitoring system. This approach outperforms previous studies that only learned temporal features from a single monitoring point and maximally weighs the prediction performance and the priori graph of the monitoring system. The proposed method performs better than SVM, XGBoost, LSTM and DCRNN models in terms of RMSE (1.35 mm), MAE (1.14 mm) and MAPE (0.25) evaluation metrics, which is provided to be effective in future landslide failure early warning.  相似文献   

5.
对于滑坡易发性预测建模,连续型环境因子在频率比分析时的属性区间划分数量(attribute interval numbers,AIN)和不同易发性预测模型是两个重要不确定性因素.为研究这两个因素对建模的影响规律,以江西省上犹县为例,考虑5种连续型环境因子AIN划分(4、8、12、16及20)和5种数据驱动模型(层次分析法(analytic hierarchy process,AHP)、逻辑回归(logistic regression,LR)、BP神经网络(back-propagation neural network,BPNN)、支持向量机(support vector machine,SVM)和随机森林(random forest,RF)),总计25种不同工况下的滑坡易发性预测研究.再开展滑坡易发性指数的不确定性(包括精度评价和统计规律等)分析.结果表明:(1)对于同一模型,随着AIN值从4增加至8再到20时,易发性预测精度先逐渐提升,然后缓慢提升直至稳定;(2)对于同一AIN值,RF模型预测精度最高,其后依次为SVM、BPNN、LR和AHP模型;(3)在25种组合工况下,AIN=20和RF模型的预测精度最高,AIN=4和AHP模型精度最低,但在AIN=8和RF模型组合下的易发性建模效率较高且精度也较高;(4)更大的AIN值和更先进的机器学习模型预测出的滑坡易发性指数的不确定性相对较低,更符合实际的滑坡概率分布特征.在环境因子属性区间划分为8和RF模型工况下高效准确地构建滑坡易发性预测模型.   相似文献   

6.
Landslide is considered as one of the most severe threats to human life and property in the hilly areas of the world. The number of landslides and the level of damage across the globe has been increasing over time. Therefore, landslide management is essential to maintain the natural and socio-economic dynamics of the hilly region. Rorachu river basin is one of the most landslide-prone areas of the Sikkim selected for the present study. The prime goal of the study is to prepare landslide susceptibility maps(LSMs) using computer-based advanced machine learning techniques and compare the performance of the models.To properly understand the existing spatial relation with the landslide, twenty factors, including triggering and causative factors, were selected. A deep learning algorithm viz. convolutional neural network model(CNN) and three popular machine learning techniques, i.e., random forest model(RF), artificial neural network model(ANN), and bagging model, were employed to prepare the LSMs. Two separate datasets including training and validation were designed by randomly taken landslide and nonlandslide points. A ratio of 70:30 was considered for the selection of both training and validation points.Multicollinearity was assessed by tolerance and variance inflation factor, and the role of individual conditioning factors was estimated using information gain ratio. The result reveals that there is no severe multicollinearity among the landslide conditioning factors, and the triggering factor rainfall appeared as the leading cause of the landslide. Based on the final prediction values of each model, LSM was constructed and successfully portioned into five distinct classes, like very low, low, moderate, high, and very high susceptibility. The susceptibility class-wise distribution of landslides shows that more than 90% of the landslide area falls under higher landslide susceptibility grades. The precision of models was examined using the area under the curve(AUC) of the receiver operating characteristics(ROC) curve and statistical methods like root mean square error(RMSE) and mean absolute error(MAE). In both datasets(training and validation), the CNN model achieved the maximum AUC value of 0.903 and 0.939, respectively. The lowest value of RMSE and MAE also reveals the better performance of the CNN model. So, it can be concluded that all the models have performed well, but the CNN model has outperformed the other models in terms of precision.  相似文献   

7.
准确可靠的中长期径流预报是支撑水资源科学调配、提高水资源利用效率的关键。本研究采用AdaBoost模型(AdB)、随机森林模型(RF)和支持向量机模型(SVM)进行淮河流域王家坝和蚌埠站当年11月至次年10月共12个月的中长期径流预报研究。采用置换准确度重要性度量法从130项气象-气候因子及前期降雨/流量构建的1 562个因子变量中筛选出影响各月径流的关键因子,构建了基于AdB、RF和SVM模型的各月径流预报模型,模型参数采用随机搜索技术并结合交叉验证方式确定。采用变幅误差合格率和等级(五级)预报合格率指标对模型的预报精度进行了评估。变幅误差合格率指标表明,王家坝12个月的平均合格率分别为99.8%(AdB)、96.6%(RF)和95.9%(SVM),蚌埠站分别为100%(AdB)、94.8%(RF)和93.8%(SVM);等级预报合格率指标表明,王家坝12个月的平均合格率分别为79.0%(AdB)、76.4%(RF)和79.9%(SVM),蚌埠站分别为81.0%(AdB)、75.6%(RF)和76.6%(SVM)。模型均具有较好的预报效果,但RF和SVM模型对于高流量值的预报存在偏低现象,AdB模型整体上优于RF和SVM模型。  相似文献   

8.
《地学前缘(英文版)》2020,11(3):871-883
Landslides are abundant in mountainous regions.They are responsible for substantial damages and losses in those areas.The A1 Highway,which is an important road in Algeria,was sometimes constructed in mountainous and/or semi-mountainous areas.Previous studies of landslide susceptibility mapping conducted near this road using statistical and expert methods have yielded ordinary results.In this research,we are interested in how do machine learning techniques help in increasing accuracy of landslide susceptibility maps in the vicinity of the A1 Highway corridor.To do this,an important section at Ain Bouziane(NE,Algeria) is chosen as a case study to evaluate the landslide susceptibility using three different machine learning methods,namely,random forest(RF),support vector machine(SVM),and boosted regression tree(BRT).First,an inventory map and nine input factors were prepared for landslide susceptibility mapping(LSM) analyses.The three models were constructed to find the most susceptible areas to this phenomenon.The results were assessed by calculating the receiver operating characteristic(ROC) curve,the standard error(Std.error),and the confidence interval(CI) at 95%.The RF model reached the highest predictive accuracy(AUC=97.2%) comparatively to the other models.The outcomes of this research proved that the obtained machine learning models had the ability to predict future landslide locations in this important road section.In addition,their application gives an improvement of the accuracy of LSMs near the road corridor.The machine learning models may become an important prediction tool that will identify landslide alleviation actions.  相似文献   

9.
Landslide susceptibility assessment using SVM machine learning algorithm   总被引:10,自引:0,他引:10  
This paper introduces the current machine learning approach to solving spatial modeling problems in the domain of landslide susceptibility assessment. The latter is introduced as a classification problem, having multiple (geological, morphological, environmental etc.) attributes and one referent landslide inventory map from which to devise the classification rules. Three different machine learning algorithms were compared: Support Vector Machines, Decision Trees and Logistic Regression. A specific area of the Fruška Gora Mountain (Serbia) was selected to perform the entire modeling procedure, from attribute and referent data preparation/processing, through the classifiers' implementation to the evaluation, carried out in terms of the model's performance and agreement with the referent data. The experiments showed that Support Vector Machines outperformed the other proposed methods, and hence this algorithm was selected as the model of choice to be compared with a common knowledge-driven method – the Analytical Hierarchy Process – to create a landslide susceptibility map of the relevant area. The SVM classifier outperformed the AHP approach in all evaluation metrics (κ index, area under ROC curve and false positive rate in stable ground class).  相似文献   

10.
拟深入探讨滑坡与其环境因子间的非线性联接计算以及不同数据驱动模型等因素,对滑坡易发性预测建模不确定性的影响规律.以江西省瑞金市为例共获取370处滑坡和10种环境因子,通过概率统计(probability statistics,PS)、频率比(frequency ratio,FR)、信息量(information value,Ⅳ)、熵指数(index of entropy,IOE)和证据权(weight of evidence,WOE)等5种联接方法分别耦合逻辑回归(logistic regression,LR)、BP神经网络(BP neural networks,BPNN)、支持向量机(support vector machines,SVM)和随机森林(random forest,RF)模型共构建出20种耦合模型,同时构建无联接方法直接将原始数据作为输入变量的4种单独LR、BPNN、SVM和RF模型,预测出总计24种工况下的滑坡易发性;最后分别使用ROC曲线、均值、标准差和差异显著性等指标分析上述24种工况下易发性结果的不确定性.结果表明:(1)基于WOE的耦合模型预测滑坡易发性的平均精度最高且不确定性较低,基于PS的耦合模型预测精度最低且不确定性最高,基于FR、Ⅳ和IOE的耦合模型介于两者之间;(2)单独数据驱动模型易发性预测精度略低于耦合模型,且未能计算出环境因子各子区间对滑坡发育的影响规律,但其建模效率高于耦合模型;(3)RF模型预测精度最高且不确定性较低,其次分别为SVM、BPNN和LR模型.总之WOE是更优秀的联接法且RF模型预测性能最优,WOE-RF模型预测的滑坡易发性不确定性较低且更符合实际滑坡概率分布特征.   相似文献   

11.
Xiao  Ting  Yin  Kunlong  Yao  Tianlu  Liu  Shuhao 《中国地球化学学报》2019,38(5):654-669

Landslide susceptibility mapping is vital for landslide risk management and urban planning. In this study, we used three statistical models [frequency ratio, certainty factor and index of entropy (IOE)] and a machine learning model [random forest (RF)] for landslide susceptibility mapping in Wanzhou County, China. First, a landslide inventory map was prepared using earlier geotechnical investigation reports, aerial images, and field surveys. Then, the redundant factors were excluded from the initial fourteen landslide causal factors via factor correlation analysis. To determine the most effective causal factors, landslide susceptibility evaluations were performed based on four cases with different combinations of factors (“cases”). In the analysis, 465 (70%) landslide locations were randomly selected for model training, and 200 (30%) landslide locations were selected for verification. The results showed that case 3 produced the best performance for the statistical models and that case 2 produced the best performance for the RF model. Finally, the receiver operating characteristic (ROC) curve was used to verify the accuracy of each model’s results for its respective optimal case. The ROC curve analysis showed that the machine learning model performed better than the other three models, and among the three statistical models, the IOE model with weight coefficients was superior.

  相似文献   

12.
Landslide displacement prediction is an essential component for developing landslide early warning systems. In the Three Gorges Reservoir area (TGRA), landslides experience step-like deformations (i.e., periods of stability interrupted by abrupt accelerations) generally from April to September due to the influence of precipitation and reservoir scheduled level variations. With respect to many traditional machine learning techniques, two issues exist relative to displacement prediction, namely the random fluctuation of prediction results and inaccurate prediction when step-like deformations take place. In this study, a novel and original prediction method was proposed by combining the wavelet transform (WT) and particle swarm optimization-kernel extreme learning machine (PSO-KELM) methods, and by considering the landslide causal factors. A typical landslide with a step-like behavior, the Baishuihe landslide in TGRA, was taken as a case study. The cumulated total displacement was decomposed into trend displacement, periodic displacement (controlled by internal geological conditions and external triggering factors respectively), and noise. The displacement items were predicted separately by multi-factor PSO-KELM considering various causal factors, and the total displacement was obtained by summing them up. An accurate prediction was achieved by the proposed method, including the step-like deformation period. The performance of the proposed method was compared with that of the multi-factor extreme learning machine (ELM), support vector regression (SVR), backward propagation neural network (BPNN), and single-factor PSO-KELM. Results show that the PSO-KELM outperforms the other models, and the prediction accuracy can be improved by considering causal factors.  相似文献   

13.
Preparation of landslide susceptibility maps is considered as the first important step in landslide risk assessments, but these maps are accepted as an end product that can be used for land use planning. The main objective of this study is to explore some new state-of-the-art sophisticated machine learning techniques and introduce a framework for training and validation of shallow landslide susceptibility models by using the latest statistical methods. The Son La hydropower basin (Vietnam) was selected as a case study. First, a landslide inventory map was constructed using the historical landslide locations from two national projects in Vietnam. A total of 12 landslide conditioning factors were then constructed from various data sources. Landslide locations were randomly split into a ratio of 70:30 for training and validating the models. To choose the best subset of conditioning factors, predictive ability of the factors were assessed using the Information Gain Ratio with 10-fold cross-validation technique. Factors with null predictive ability were removed to optimize the models. Subsequently, five landslide models were built using support vector machines (SVM), multi-layer perceptron neural networks (MLP Neural Nets), radial basis function neural networks (RBF Neural Nets), kernel logistic regression (KLR), and logistic model trees (LMT). The resulting models were validated and compared using the receive operating characteristic (ROC), Kappa index, and several statistical evaluation measures. Additionally, Friedman and Wilcoxon signed-rank tests were applied to confirm significant statistical differences among the five machine learning models employed in this study. Overall, the MLP Neural Nets model has the highest prediction capability (90.2 %), followed by the SVM model (88.7 %) and the KLR model (87.9 %), the RBF Neural Nets model (87.1 %), and the LMT model (86.1 %). Results revealed that both the KLR and the LMT models showed promising methods for shallow landslide susceptibility mapping. The result from this study demonstrates the benefit of selecting the optimal machine learning techniques with proper conditioning selection method in shallow landslide susceptibility mapping.  相似文献   

14.
Machine learning algorithms are an important measure with which to perform landslide susceptibility assessments,but most studies use GIS-based classification methods to conduct susceptibility zonation.This study presents a machine learning approach based on the C5.0 decision tree(DT)model and the K-means cluster algorithm to produce a regional landslide susceptibility map.Yanchang County,a typical landslide-prone area located in northwestern China,was taken as the area of interest to introduce the proposed application procedure.A landslide inventory containing 82 landslides was prepared and subse-quently randomly partitioned into two subsets:training data(70%landslide pixels)and validation data(30%landslide pixels).Fourteen landslide influencing factors were considered in the input dataset and were used to calculate the landslide occurrence probability based on the C5.0 decision tree model.Susceptibility zonation was implemented according to the cut-off values calculated by the K-means clus-ter algorithm.The validation results of the model performance analysis showed that the AUC(area under the receiver operating characteristic(ROC)curve)of the proposed model was the highest,reaching 0.88,compared with traditional models(support vector machine(SVM)=0.85,Bayesian network(BN)=0.81,frequency ratio(FR)=0.75,weight of evidence(WOE)=0.76).The landslide frequency ratio and fre-quency density of the high susceptibility zones were 6.76/km2 and 0.88/km2,respectively,which were much higher than those of the low susceptibility zones.The top 20%interval of landslide occurrence probability contained 89%of the historical landslides but only accounted for 10.3%of the total area.Our results indicate that the distribution of high susceptibility zones was more focused without contain-ing more"stable"pixels.Therefore,the obtained susceptibility map is suitable for application to landslide risk management practices.  相似文献   

15.
Multi-hazard susceptibility prediction is an important component of disasters risk management plan. An effective multi-hazard risk mitigation strategy includes assessing individual hazards as well as their interactions. However, with the rapid development of artificial intelligence technology, multi-hazard susceptibility prediction techniques based on machine learning has encountered a huge bottleneck. In order to effectively solve this problem, this study proposes a multi-hazard susceptibility mapping framework using the classical deep learning algorithm of Convolutional Neural Networks (CNN). First, we use historical flash flood, debris flow and landslide locations based on Google Earth images, extensive field surveys, topography, hydrology, and environmental data sets to train and validate the proposed CNN method. Next, the proposed CNN method is assessed in comparison to conventional logistic regression and k-nearest neighbor methods using several objective criteria, i.e., coefficient of determination, overall accuracy, mean absolute error and the root mean square error. Experimental results show that the CNN method outperforms the conventional machine learning algorithms in predicting probability of flash floods, debris flows and landslides. Finally, the susceptibility maps of the three hazards based on CNN are combined to create a multi-hazard susceptibility map. It can be observed from the map that 62.43% of the study area are prone to hazards, while 37.57% of the study area are harmless. In hazard-prone areas, 16.14%, 4.94% and 30.66% of the study area are susceptible to flash floods, debris flows and landslides, respectively. In terms of concurrent hazards, 0.28%, 7.11% and 3.13% of the study area are susceptible to the joint occurrence of flash floods and debris flow, debris flow and landslides, and flash floods and landslides, respectively, whereas, 0.18% of the study area is subject to all the three hazards. The results of this study can benefit engineers, disaster managers and local government officials involved in sustainable land management and disaster risk mitigation.  相似文献   

16.
Landslide susceptibility assessment using GIS has been done for part of Uttarakhand region of Himalaya (India) with the objective of comparing the predictive capability of three different machine learning methods, namely sequential minimal optimization-based support vector machines (SMOSVM), vote feature intervals (VFI), and logistic regression (LR) for spatial prediction of landslide occurrence. Out of these three methods, the SMOSVM and VFI are state-of-the-art methods for binary classification problems but have not been applied for landslide prediction, whereas the LR is known as a popular method for landslide susceptibility assessment. In the study, a total of 430 historical landslide polygons and 11 landslide affecting factors such as slope angle, slope aspect, elevation, curvature, lithology, soil, land cover, distance to roads, distance to rivers, distance to lineaments, and rainfall were selected for landslide analysis. For validation and comparison, statistical index-based methods and the receiver operating characteristic curve have been used. Analysis results show that all these models have good performance for landslide spatial prediction but the SMOSVM model has the highest predictive capability, followed by the VFI model, and the LR model, respectively. Thus, SMOSVM is a better model for landslide prediction and can be used for landslide susceptibility mapping of landslide-prone areas.  相似文献   

17.
左仁广  彭勇  李童  熊义辉 《地球科学》2021,46(1):350-358
基于深度学习的地质找矿信息挖掘与集成已经成为数学地球科学的前沿领域.深度学习作为一种具有多级非线性变换的层级机器学习算法,在地质找矿大数据挖掘与集成中仍处于探索阶段,还有一系列问题亟需解决.以卷积神经网络为例,探讨了基于深度学习的地质找矿大数据挖掘与集成过程中两大挑战:训练样本不足和深度学习网络模型构建困难,重点分析了基于复制和添加噪声的地质找矿数据增强技术并开展了多组对比实验,构建了适用于地质找矿大数据挖掘与集成的训练样本和卷积神经网络模型.该模型对闽西南铁多金属成矿区的地质、地球物理和地球化学等多源数据进行了特征提取与集成融合,圈定了找矿远景区,为该区进一步找矿提供了科学依据.   相似文献   

18.
三峡水库区何家湾滑坡监测及防治措施研究   总被引:5,自引:1,他引:5  
在研究了三峡水库区何家湾滑坡体空间形态、自然地理及地层岩性的基础上,从气象、水文、库区蓄水及水位变动因素入手,分析了滑坡形成的原因。根据库区地质灾害监测预警工程设计,结合何家湾滑坡的结构和变形特征,确定具体监测方法。对该滑坡进行了大地形变监测、地下水位监测、滑体深部位移监测及宏观监测。其中,大地形变监测数据分析表明:何家湾滑坡的最大变形量已超过2cm,且一直呈现增大趋势;地下水位、滑体深部位移均未发现明显异常,宏观监测亦未发现明显的新的变形迹象。通过分析监测资料并考虑到未来三峡水库蓄水,认为何家湾滑坡目前处于潜在不稳定状态。滑坡体在饱水及水库蓄水后,将处于临界蠕滑或失稳状态。结合滑坡体实际情况对滑坡防治进行初步研究,提出了采用回填压脚支档为主、辅以排水的综合治理措施;并建议加强数据远程传输的研究与实践,以解决目前监测效率不高的问题。  相似文献   

19.
The aim of this study is to make a comparison of the performances of two machine-learning algorithms that support vector machine (SVM) and random forest (RF) for landslide susceptibility mapping. The study makes use of a sampling strategy called two-level random sampling (2LRS). During landslide susceptibility mapping, training and testing samples must be collected from different landslide seed cells, which are then put through a fully independent sampling using the 2LRS algorithm. This approach requires fewer samples for the improvement of the computation time of both machine-learning classifications. The proposed approach was tested in the Alakir catchment area (Western Antalya, Turkey) which features numerous active deep-seated rotational landslides. In order to compare the performance of the machine-learning algorithms, three random sets were generated for SVM and three random sets generated for 10, 100, 1000 and 10,000-tree size RF. A total of 15 models were generated for comparison, and their spatial performances were performed by the area under the receiver-operating characteristic curves, which ranged between 0.82 and 0.87. The highest and lowest performances were recorded from two models in SVM and two models from the 1000-tree and 10,000-tree sized RF, respectively. These results were confirmed the landslide happened just after producing the susceptibility maps in the field.  相似文献   

20.
In this study, we have evaluated and compared prediction capability of Bagging Ensemble Based Alternating Decision Trees (BADT), Logistic Regression (LR), and J48 Decision Trees (J48DT) for landslide susceptibility mapping at part of the Uttarakhand State (India). The BADT method has been proposed in the present study which is a novel hybrid machine learning ensemble approach of bagging ensemble and alternating decision trees. The J48DT is a relative new machine learning technique which has been applied only in few landslide studies, and the LR is known as a popular landslide susceptibility model. For the model studies, a spatial database of 930 historical landslide events and 15 landslide affecting factors have been collected and analyzed. This database has been used to build and validate the landslide models namely BADT, LR and J48DT Predictive capability of these models has been validated and compared using statistical analyzing methods and Receiver Operating Characteristic (ROC) curve. Results show that these three landslide models (BADT, LR and J48DT) performed well with the training dataset. However, using the validation dataset the BADT model has the highest prediction capability, followed by the LR model, and the J48DT model, respectively. This indicates that the BADT is a promising method which can be used for landslide susceptibility assessment also for other landslide prone areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号