首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
From June 2004 to October 2005, particle size distributions (PSD) and the mineralogy of inorganic colloids in Lake Brienz, a glacial flour-rich Swiss lake, and in its tributaries (the Aare and Lütschine rivers), were quantified by single particle counting based on light scattering (0.1-2 μm) combined with transmission electronic microscopy coupled with energy dispersive spectroscopy and selected area electron diffraction. The two lake tributaries differ in terms of the geology of their catchment area and in their hydrology: the River Lütschine’s glacial regime is unperturbed, while the River Aare has been significantly modified by hydroelectric installations. The dependence of the colloid concentration numbers on colloid diameters can be described by a power-law distribution in all cases. The power-law slopes in the River Aare were consistently smaller, and the total colloid number concentrations consistently higher, (mean values: −3.89 and 6.2 × 108 mL−1, respectively) than in the River Lütschine (−3.61 and 1.7 × 108 mL−1). The measured PSD in the lake were dependent on season and depth: homogenous in the whole epilimnion in winter and modified by river intrusions in summer. In this season, the presence of a river turbid plume above the thermocline is a significant source of colloids in the epilimnion, where their concentration was high (mean value: 5.1 × 107 mL−1). The same main mineral types were found in the different systems: 2:1 minerals, feldspars, chlorite and quartz; with a few particles of oxides. Differences in their relative concentrations in the rivers, essentially reflecting the geological differences of the respective catchment areas, made it possible to trace the origin of the mineral colloids present in lake surface waters throughout the year. The relationship between colloid size and mineralogy was assessed, showing that different minerals have distinct size distributions. In the rivers, where almost no aggregates were observed, PSD would essentially be the result of the nature (particle formation and mineralogy) of the colloids, whereas in the lake, aggregation and sedimentation processes would also play a role, particularly in summer.  相似文献   

2.
In muddy sediments, the distinction between sortable silt and aggregated silty clay is important for the understanding of fine particle dynamics because both have different hydraulic properties. The Wadden Sea of the southern North Sea is severely depleted in fine-grained sediments mainly due to high energy levels along the diked coastline. As a result, muddy sediments are restricted to a narrow belt along the diked mainland shore. In the present study, the mechanism by which this mud is deposited and how floc deposition and break-up are reflected in the size distribution, has been investigated. For this purpose, surficial sediments from four intertidal nearshore transects were monitored and repeatedly sampled in the course of two years. High-resolution grain-size analyses were performed by an automated settling tube and a Sedigraph particle analyser for the sand and mud fractions, respectively.The grain size frequency distributions of the fine fractions demonstrate that the Wadden Sea muds are composed of two subpopulations, a well-sorted coarse silt and an unsorted silty clay population. A depletion of grain size around 8 μm (7 phi) demarcates the grain-size boundary between the two populations, suggesting that the finer mud population (< 8 μm) is deposited in the form of flocs and aggregates which are hydraulically equivalent to the local sands and coarser silts. Floc break-up and reconstitution in response to seasonally changing energy regimes lead to apparent seasonal sedimentation patterns in the back-barrier tidal basins. Furthermore, in the course of sample preparation, the flocs and aggregates are broken down into their constituent particles. This mechanical artefact in the size distributions produces an artificial seasonal fining/coarsening pattern. It was found that the comparison of clay/silt and < 8 μm/63 − 8 μm particle ratios are good indicators of floc behaviour. Higher ratios are found in mixed flats which are relatively protected from wave action, thereby promoting deposition of flocs. In addition, progressive size sorting and mixing processes along the transects are recognized in the frequency distributions of sands. The skewness pattern shows a landward decrease in positive values, which is exactly opposite to previously reported patterns, suggesting progressive winnowing of fine particles caused by increased wave action over the last decade. This effect of climate change further promotes depletion of fine-grained sediments in the basin.  相似文献   

3.
The interaction of Cs(I), Eu(III), Th(IV) and U(VI) with montmorillonite colloids was investigated in natural Grimsel Test Site groundwater over a 3 years period. The asymmetric flow field-flow fractionation combined with various detectors was applied to study size variations of colloids and to monitor colloid association of trace metals. The colloids suspended directly in the low ionic strength (I), slightly alkaline granitic groundwater (I = 10−3 mol/L, pH 9.6) showed a gradual agglomeration with a size distribution shift from initially 10-200 nm to 50-400 nm within over 3 years. The Ca2+ concentration of 2.1 × 10−4 mol/L in the ground water is believed to be responsible for the slow agglomeration due to Ca2+ ion exchange against Li+ and Na+ at the permanently charged basal clay planes. Furthermore, the Ca2+ concentration lies close to the critical coagulation concentration (CCC) of 10−3 mol L−1 for clay colloids. Slow destabilization may delimit clay colloid migration in this specific groundwater over long time scales. Eu(III) and Th(IV) are found predominantly bound to clay colloids, while U(VI) prevails as the UO2(OH)3 complex and Cs(I) remains mainly as aquo ion under our experimental conditions. Speciation calculations qualitatively represent the experimental data. A focus was set on the reversibility of metal ion-colloid binding. Addition of humic acid as a competing ligand induces rapid metal ion dissociation from clay colloids in the case of Eu(III) even after previous aging for about 3 years. Interestingly only partial dissociation occurs in the case of Th(IV). Experiments and calculations prove that the humate complexes dominate the speciation of all metal ions under given conditions. The partial irreversibility of clay bound Th(IV) is presently not understood but might play an important role for the colloid-mediated transport of polyvalent actinides over wide distances in natural groundwater.  相似文献   

4.
In this study, microscopic and spectroscopic techniques (scanning electron microscopy coupled with energy-dispersive X-ray analysis, Raman microspectroscopy, micro X-ray fluorescence spectroscopy, micro X-ray fine structure adsorption spectroscopy, and micro laser-induced breakdown spectroscopy) were combined to decipher the chemical and mineralogical properties of a saturated Fe–clay interface reacted at 90 °C and 50 bar for 8 months. The results collectively confirm the presence of a corrosion layer and a clay transformation layer. The corrosion layer is made of a magnetite-containing internal sublayer and a Fe-phyllosilicate external sublayer enriched in Na, with traces of goethite presumably resulting from sample reaction with air. The clay transformation layer is made of predominantly Ca-rich siderite (FeCO3). It is depleted in Al and K, suggesting dissolution of rock-forming minerals. The corroded thickness determined from the amount of Fe in corrosion and transformation layers and assuming zero porosity equals 19 ± 9 μm. These data indicate that the interfacial clay was transformed by dissolution of calcite and clay minerals and precipitation of siderite close to the original surface. Silica released upon clay dissolution diffused into the corrosion layer and coprecipitated with oxidized Fe to form Fe-phyllosilicate.  相似文献   

5.
Geochemical study of clays used as barriers in landfills   总被引:1,自引:0,他引:1  
This is a hydraulic and geochemical study on 2 materials: natural clay (AN) and a regenerated material made up of a sand-bentonite (SB) mixture. The hydraulic part allowed us to conclude that a 10% industrial bentonite content mixed with sand offers hydraulic properties that are similar to those of AN material and are lower than the required standards. The geochemical properties of both AN and SB matrixes are comparable with those of some of the synthetic leachates studied. Furthermore, the Langmuir model helped us to identify the adsorption capacities of both matrixes with the following selectivities: Pb > Cu > Cd > Zn.  相似文献   

6.
We have identified abundant exsolutions in apatite aggregates from eclogitic drillhole samples of the Chinese Continental Scientific Drilling (CCSD) project. Electron microscope and laser Raman spectroscopy analyses show that the apatite is fluorapatite, whereas exsolutions that can be classified into four types: (A) platy to rhombic monazite exsolutions; (B) needle-like hematite exsolutions; (C) irregular magnetite and hematite intergrowths; and (D) needle-like strontian barite exsolutions. The widths and lengths of type A monazite exsolutions range from about 6-10 μm (mostly 6 μm) and about 50-75 μm, respectively. Type B exsolutions are parallel with the C axis of apatite, with widths ranging from 0.5 to 2 μm, with most around 1.5 μm, and lengths that vary dramatically from 6 to 50 μm. Type C exsolutions are also parallel with the C axis of apatite, with lengths of ∼30-150 μm and widths of ∼10 to 50 μm. Type D strontian barite exsolutions coexist mostly with type B hematite exsolutions, with widths of about 9 μm and lengths of about 60-70 μm. Exsolutions of types B, C and D have never been reported in apatites before. Most of the exsolutions are parallel with the C axis of apatite, implying that they were probably exsolved at roughly the same time. Dating by the chemical Th-U-total Pb isochron method (CHIME) yields an U-Pb isochron age of 202 ± 28 Ma for monazite exsolutions, suggesting that these exsolutions were formed during recrystallization and retrograde metamorphism of the exhumed ultrahigh pressure (UHP) rocks. Quartz veins hosting apatite aggregates were probably formed slightly earlier than 202 Ma. Abundant hematite exsolutions, as well as coexistence of magnetite/hematite and barite/hematite in the apatite, suggest that the oxygen fugacity of apatite aggregates is well above the sulfide-sulfur oxide buffer (SSO). Given that quartz veins host these apatite aggregates, they were probably deposited from SiO2-rich hydrous fluids formed during retrogression of the subducted slab. Such SiO2-rich hydrous fluids may act as an oxidizing agent, a feasible explanation for the high oxygen fugacity in convergent margin systems.  相似文献   

7.
Particle size distributions and the mineralogy of inorganic colloids in waters draining the adit of an abandoned mine (Goesdorf, Luxembourg) were quantified by single particle counting based on light scattering (100 nm–2 μm) combined with transmission electronic microscopy coupled with energy dispersive spectroscopy and selected area electron diffraction. This water system was chosen as a surrogate for groundwaters. The dependence of the colloid number concentration on colloid diameters can be described by a power-law distribution in all cases. Power-law slopes ranged from −3.30 to −4.44, depending on water ionic strength and flow conditions. The same main mineral types were found in the different samples: 2:1 phyllosilicates (illite and mica), chlorite, feldspars (albite and orthoclase), calcite and quartz; with a variable number of Fe oxide particles. The colloid mineralogical composition closely resembles the composition of the parent rock. Spatial variations in the structure and composition of the rock in contact with the waters, i.e. fissured rock versus shear joints, are reflected in the colloid composition. The properties of the study colloids, as well as the processes influencing them, can be considered as representative of the colloids present in groundwaters.  相似文献   

8.
To explore the effects of layer-charge distribution on the thermodynamic and microscopic properties of Cs-smectites, classical molecular dynamic simulations are performed to derive the swelling curves, distributions and mobility of interlayer species, and Cs binding structures. Three representative smectites with distinct layer-charge distributions are used as model clay frameworks and interlayer water content is set within a wide range from 0 to 380 mgwater/gclay. All the three smectites swell in a similar way, presenting the characteristic swelling plateaus and similar trends of swelling energetic profiles. The full-monolayer hydrate, corresponding to the global minima of the immersion energy, is the most stable hydrated state of Cs-smectites. The calculated diffusion coefficients of interlayer species disclose the confining effects in all smectites: both water molecules and ions diffuse slower than corresponding bulk cases and they are much more mobile in the direction parallel to the clay surfaces than perpendicular to them. The formed inner-sphere complex structures are very similar in different smectites: ions bind on the H-sites or T-sites and water molecules form cage-like caps covering the ions. Layer-charge distribution is found to have significant influences on the mobility of interlayer species and preference of ion binding sites. A general sequence is proposed to elucidate the preferences of various hexagonal sites (H-sites) and triangular sites (T-sites), that is, tetrahedrally substituted H-sites > nonsubstituted H-sites > tetrahedrally substituted T-sites > nonsubstituted T-sites, but the influence of octahedral substitutions on the preference of the neighboring sites is not obvious. Analysis of mobility indicates that H-sites are more stable Cs-fixation positions than T-sites and smectite with higher fraction of octahedral charges seems to be the most effective barrier material no matter how water content varies although all smectites can immobilize Cs ions in relatively dry conditions. These findings will not only facilitate basic research in geochemistry and material sciences, but also promote the barrier material designing.  相似文献   

9.
Microbial reduction of Fe(III) in clay minerals is an important process that affects properties of clay-rich materials and iron biogeochemical cycling in natural environments. Microbial reduction often ceases before all Fe(III) in clay minerals is exhausted. The factors causing the cessation are, however, not well understood. The objective of this study was to assess the role of biogenic Fe(II) in microbial reduction of Fe(III) in clay minerals nontronite, illite, and chlorite. Bioreduction experiments were performed in batch systems, where lactate was used as the sole electron donor, Fe(III) in clay minerals as the sole electron acceptor, and Shewanella putrefaciens CN32 as the mediator with and without an electron shuttle (AQDS). Our results showed that bioreduction activity ceased within two weeks with variable extents of bioreduction of structural Fe(III) in clay minerals. When fresh CN32 cells were added to old cultures (6 months), bioreduction resumed, and extents increased. Thus, cessation of Fe(III) bioreduction was not necessarily due to exhaustion of bioavailable Fe(III) in the mineral structure, but changes in cell physiology or solution chemistry, such as Fe(II) production during microbial reduction, may have inhibited the extent of bioreduction. To investigate the effect of Fe(II) inhibition on CN 32 reduction activity, a typical bioreduction process (consisting of lactate, clay, cells, and AQDS in a single tube) was separated into two steps: (1) AQDS was reduced by cells in the absence of clay; (2) Fe(III) in clays was reduced by biogenic AH2DS in the absence of cells. With this method, the extent of Fe(III) reduction increased by 45-233%, depending on the clay mineral involved. Transmission electron microscopy observation revealed a thick halo surrounding cell surfaces that most likely resulted from Fe(II) sorption/precipitation. Similarly, the inhibitory effect of Fe(II) sorbed onto clay surfaces was assessed by presorbing a certain amount of Fe(II) onto clay surfaces followed by AH2DS reduction of Fe(III). The reduction extent consistently decreased with an increasing amount of presorbed Fe(II). The relative reduction extent [i.e., the reduction extent normalized to that when the amount of presorbed Fe(II) was zero] was similar for all clay minerals studied and showed a systematic decrease with an increasing clay-presorbed Fe(II) concentration. These results suggest a similar inhibitory effect of clay-sorbed Fe(II) for different clay minerals. An equilibrium thermodynamic model was constructed with independently estimated parameters to evaluate whether the observed cessation of Fe(III) reduction by AH2DS was due to exhaustion of reaction free energy. Model-calculated reduction extents were, however, over 50% higher than experimentally measured, indicating that other factors, such as blockage of the electron transfer chain and mineralogy, restricted the reduction extent. Another important result of this study was the relative reducibility of Fe(III) in different clays: nontronite > chlorite > illite. This order was qualitatively consistent with the differences in the crystal structure and layer charge of these minerals.  相似文献   

10.
Non-conservative behaviour of dissolved Mo was observed during specific time periods in the water column of the Wadden Sea of NW Germany. In July 2005 dissolved Mo declined within 36 h from a level only slightly below seawater (82 nM) to a minimum value of 30 nM, whereas in August 2002 dissolved Mo revealed a tidal cyclicity with maximum values up to 158 nM at low tide. In contrast, cruises in August 2003 and 2004 displayed an almost conservative behaviour of Mo. The decrease in dissolved Mo during July 2005 and elevated values in August 2002 were accompanied by Mo enrichments on aggregates in the water column of the Wadden Sea. Along with Mo, dissolved Mn showed unusual concentration patterns in July 2005, with values distinctly below the common summer level (by a factor of five). A direct relation between the loss of Mo and scavenging by freshly formed MnOx phases could not be inferred from our data because both metals revealed inverse patterns. Parallel to decreasing dissolved Mo concentrations dissolved Mn showed an increasing trend while particulate Mn decreased. Such finding is compatible with the formation of oxygen-depleted zones in aggregates, which provide suitable conditions for the rapid fixation of Mo and parallel release of Mn by chemically and/or microbially mediated processes. Our assumption is supported by biological (e.g. number of aggregate-associated bacteria) and sedimentological (e.g. aggregate abundance and size) parameters. The production of organic components (e.g. TEP) during breakdown of an algae bloom in July 2005 led to the formation of larger Mo-enriched aggregates, thus depleting the water column in dissolved Mo. After deposition on and incorporation into sandy tidal flats these aggregates are rapidly decomposed by microbial activity. Pore water profiles document that during microbial decomposition of these aggregates, substantial amounts of Mo are released and may replenish and even enrich Mo in the open water column. We postulate a conceptual model for the observed non-conservative behaviour of Mo in coastal waters, which is based on the tight coupling of geochemical, biological, and sedimentological processes.  相似文献   

11.

Lateritic clay is well recognized to contain significant amount of iron and aluminium oxides (sesquioxide). These oxides enhance the formation of soil aggregates which would greatly affect soil structure. So far, no study has been carried out purposely to investigate the influence of aggregate-dependent structure on the mechanical behaviour of the lateritic clay. In this study, structure effects on the compression and shear behaviour of a saturated lateritic clay were studied. Intact, recompacted and reconstituted specimens were studied through oedometer, isotropic compression and consolidated undrained shear tests. Microstructure of these specimens was determined using the mercury intrusion porosimetry and scanning electron microscopy (SEM) techniques and then used to explain the observed behaviour. It was found that the compressibility of recompacted/reconstituted specimens was about 90% larger than intact specimen. Different from soft clay, the influence of microstructure does not show an obvious reduction in compressibility after yielding. The peak shear strength of intact specimen was about 100% higher than those of reconstituted/recompacted specimens. The significant difference in compression and shear behaviour is mainly because the aggregates of intact specimen were about 90% larger than those of reconstituted/recompacted specimens, as revealed by the SEM results. As a result, particle contacts forming the force chain were therefore larger in the intact specimen. The intact specimen therefore became less compressible and more dilative.

  相似文献   

12.
In this study a series of CH4 adsorption experiments on clay-rich rocks were conducted at 35 °C, 50 °C and 65 °C and at CH4 pressure up to 15 MPa under dry conditions. The clay-dominated rock samples used are fresh samples from quarries and mines. Samples are individually dominated by montmorillonite, kaolinite, illite, chlorite, and interstratified illite/smectite. The experimental results show that clay mineral type greatly affects CH4 sorption capacity under the experimental conditions. In terms of relative CH4 sorption capacity: montmorillonite ? illite/smectite mixed layer > kaolinite > chlorite > illite. Physisorption is the dominant process for CH4 absorption on clay minerals, as a result, there is a linear correlation between CH4 sorption capacity and BET surface area in these clay-mineral dominated rocks. The abundance of micro-mesopores in the size range of a few to a few 10 s of nanometers in montmorillonite clay and illite–smectite interstratified clay results in large BET surface area values for these mineral species.  相似文献   

13.
Soils containing expansive clays undergo swelling that can be both detrimental and beneficial in various applications. In the Arabian Gulf coastal region, natural heterogeneous soils containing clay and sand (tills, shales, and clayey sands) support most of the civil infrastructure systems. Likewise, mixes of clay and sand are used for local earthwork construction such as roads and landfills. A clear understanding of the swelling behaviour of such soils is pivotal at the outset of all construction projects. The main objective of this paper was to understand the evolution of swelling with increasing clay content in local soils. A theoretical framework for clay–sand soils was developed using phase relationships. Laboratory investigations comprised of mineralogical composition and geotechnical index properties of the clay and sand and consistency limits, swelling potential, and morphology of clay–sand mixes. Results indicated that soil consistency of mixes of a local expansive clay and an engineered sand depends on the weighted average of the constituents. Mixes with 10% clay through 40% clay capture the transition from a sand-like behaviour to a clay-like behaviour. Influenced by the initial conditions and soil matrix, the swelling potential of the investigated mixes correlated well with soil plasticity (SP(%) = 0.16 (I p)1.188). The parameters sand void ratio and clay–water ratio were found to better explain the behaviour of blended clay–sand soils.  相似文献   

14.
Several pieces of the Allende CV3 chondrite were heated up to different final temperatures (1100, 1250, 1450 °C) with the aim to study glassy and glass-bearing inclusions in olivines as well as the glass mesostasis of chondrules and aggregates. The experiments were performed in a Pt-Pt90Rh10 heating stage at 1 bar pressure. The oxygen fugacity is estimated to have been between 10−9 and 10−10 atm at 1200 °C. The variation of the chemical composition of the heated glasses gives information concerning the behavior of the incompatible elements (with respect to the host) Al, Ca and Na. The chemical variation in the heated mesostasis glass shows that Ca exchange between the gas and condensed phases at sub-solidus temperatures can occur in a short time. Laboratory heating experiments show that glass inclusions will behave as closed systems and therefore preserved the alkalis they acquired. On the other hand, the mesostasis glass can loose them when heated to temperatures higher than 1100 °C. Evidently, the presence of Na-rich glasses, in chondrules and aggregates available to us, indicate that if there was a thermal process that did affect them, it must have been a low temperature one.  相似文献   

15.
In the context of the potential confinement of high-level radioactive wastes (HLW) within the clay engineered barrier system (EBS) in deep geological formations, the evolution of the retention properties of smectite when interacting with Fe(0) needs to be assessed. If some potential natural analogues describing iron-clay reactivity are easily found, metallic iron-clay interactions are poorly described in studies regarding the Earth. Therefore, experimental investigations are needed. Several parameters influence Fe(0)-clay interactions, such as temperature, the interlayer composition of swelling clays, and the presence of octahedral Fe3+, etc. From a geometrical point of view, it is thought that clay destabilization is mainly controlled by phenomena starting at the edge faces of the particles. In the present work, the rates of the smectite-Fe(0) reaction at 80 °C were assessed by XRD, Mössbauer, and CEC analyses for three smectites. The investigations show marked differences in the degree of stability, which cannot be explained by the crystal-chemistry rules established in previous studies. Therefore, the Fe(0)-smectite interactions were studied in view of textural and energetic surface quantitative analyses. The studied smectites have equivalent nitrogen BET-specific surface areas, equivalent argon edge surface areas and slightly different basal surface areas. This similarity in particle shape indicates that the edge surface area cannot be accounted for when explaining the observed differences in reactivity. However, a correlation is obtained between smectite reactivity and the energetic heterogeneity of its edge faces. This is interpreted in terms of a multiplication of the number of sites on the edge faces, where the electron transfer between Fe(0) and the smectite structure can occur.  相似文献   

16.
Experiments indicate that at the high wind velocities characteristic of portions of the Martian surface, sand-sized particles will break down to silt and clay, which will then inevitably form sand-sized aggregates. Basalt and olivine aggregates held together by electrostatics were produced in an eolian abrasion device and their mass properties studied. It was difficult to examine aggregates after formation, as they separate and reform with very little handling, since electrostatic binding forces are quite weak.It is shown that aggregates range from 60 to more than 600 μm in diameter, that they generally are spheroidal in shape and become more elongate with increasing size, and that they tend to be layered with the inner portions more tightly bound than outer layers. After about one-and-one-half years, some aggregates lose their charge which is replaced with moisture; the aggregates retain their original sizes and shapes. None of the properties of electrostatic aggregates so far investigated are incompatible with the presence of these materials on Mars.  相似文献   

17.
Due to their potential retention capacity, clay minerals have been proposed for use in the engineered barriers for the storage of high-level radioactive actinides in deep geological waste repositories. However, there is still a lack of data on the sorption of actinides in clays in conditions simulating those of the repositories. The present article examines the sorption of two lanthanides (actinide analogues) in a set of smectitic clays (FEBEX bentonite, MX80 bentonite, hectorite, saponite, Otay montmorillonite, and Texas montmorillonite). Distribution coefficients (Kd) were determined in two media: water and 0.02 mol L−1 Ca, the latter representing the cement leachates that may modify the chemical composition of the water in contact with the clay. The Kd values of the lanthanides used in the experiments (La and Lu) varied greatly (25-50 000 L kg−1) depending on the ionic medium (higher values in water than in the Ca medium), the initial lanthanide concentration (up to three orders of magnitude decrease inversely with lanthanide concentration), and the examined clay (up to one order of magnitude for the same lanthanide and sorption medium). Freundlich and Langmuir isotherms were used to fit sorption data to allow comparison of the sorption parameters among smectites. The model based on the two-site Langmuir isotherms provided the best fit of the sorption data, confirming the existence of sorption sites with different binding energies. The sites with higher sorption affinity were about 6% of the total sorption capacity in the water medium, and up to 17% in the Ca medium, although in this latter site sorption selectivity was lower. The wide range of Kd values obtained regarding the factors examined indicated that the retention properties of the clays should also be considered when selecting a suitable clay for engineered barriers.  相似文献   

18.
A data base for the composition and emission rates of more than 100 thermal manifestations including boiling geothermal systems and 23 volcanoes along the 1900 km long Kamchatka-Kuril (KK) arc is presented. These results were used to estimate mean fluxes of volatiles from the KK arc. The fluxes from the KK arc are compared with the fluxes from the best studied Central American (CA) arc and with the compiled literature data on global fluxes. The error ranges and the OUT/IN (in)balance calculations are also discussed. The estimated fluxes of volatiles from volcanic fumaroles and the observed, normalized to the Cl content, fluxes from hydrothermal systems are very close, with the higher hydrothermal flux from Kuril Islands due to a larger number of the acidic Cl-SO4 springs on the Islands and their outflow rates. The total volcanic SO2 flux from the whole KK arc is estimated to be higher than 3000 t/d. The measured S and C fluxes from hydrothermal systems are much lower than the volcanic output due to the loss of these components in the upper crust (mineral precipitation). The Cl/3He ratio is inferred to be a stable indicator of the arc setting for hydrothermal and volcanic fluids with a mean value of (2 ± 4) × 109. Comparison of the obtained volcano-hydrothermal fluxes with fluxes calculated from the erupted solid volcanic products at Kamchatka and Kurils during Holocene time reveals that the total estimated volatile output from the KK arc is compatible with the total magmatic output if the intruded to erupted ratio is close to 7, i.e. almost the same as assumed for the Central American arc. Calculated fluxes as well as the ratios for OUT/IN fluxes (volcanic + hydrothermal output/slab + mantle input) for CO2, S, H2O, Cl, N2, 4He and 3He from the KK arc normalized to the arc length are in general close to the global estimates. The fractions of CO2 and S in the total volatile output at KK arc derived directly from the mantle wedge are 18% and 16% (mole basis), respectively. Fractions of mantle derived H2O, N2 and Cl are much lower, less that 5% of their output.  相似文献   

19.
Smectite suspensions, at low solids contents, are known to be naturally high in volume with diverse structural properties. The changing structural properties of smectite aqueous suspensions in the absence and presence of calcium ions were investigated using an acoustosizer and an advanced cryo-SEM technique to further understand and thereby control their environmental impact.In the absence of Ca(II) ions, smectite particles are present as a colloidally stable sol due to electrical double layer repulsion of the negatively charged platelets. The smectite network is observed to be extended throughout the suspension via clay platelets networking with an edge–edge (EE) orientation due to high basal surface repulsion. After the initial addition of Ca(II) ions, the smectite negative zeta potential reduces and the smectite platelets coagulate forming 2 µm aggregates. The platelets are randomly orientated, lettuce-like, coagulated aggregates with a high presence of both edge–edge (EE) and edge–face (EF) orientations. After equilibration, the smectite platelets forming an orientated honeycomb cellular structure comprised of face–face (FF) multiply sheet aggregates. The voids in the cellular structure are larger than prior to Ca(II) addition, measured at 2–8 µm.The changing structural properties of a smectite suspension in the absence and presence of Ca(II) greatly influence smectite stability and in turn, mineral processing and/or environmental management. Adequate time is required to allow suppression of the initial swelling of the smectite, full Ca(II) exchange and platelet aggregation.  相似文献   

20.
Ferralsols are characterized by poorly-defined horizons, weak macrostructure and strong development of a fine granular structure comprising subangular micro-aggregates. In this study, the morphological and physical modifications caused by earthworm activity in a clayey ferralsol were analysed. After describing soil structures, undisturbed samples were taken for evaluating aggregates and determining clod bulk density and particle density. Soil water retention properties were measured and an inventory of soil invertebrate macrofauna was created. The structural and porous transformations were due to aggregates created by earthworm activity. Changes in bulk density can be associated with pore modifications caused by a change in the proportions of aggregate types, and a notable reduction of total porosity was measured, tending to increase soil volume with dense aggregates. Structural modifications affected the topsoil down to 0.5 m and water retention between −1 and −33 kPa, the principal water compartment of these soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号