首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Sorption of U(VI) on Hanford fine sand (HFS) with varying Fe-oxide (especially ferrihydrite) contents showed that U(VI) sorption increased with the incremental addition of synthetic ferrihydrite into HFS, consistent with ferrihydrite being one of the most reactive U(VI) sorbents present in natural sediments. Surface complexation model (SCM) calculations for U(VI) sorption, using only U(VI) surface-reaction constants obtained from U(VI) sorption data on freshly synthesized ferrihydrite at different pHs, were similar to the measured U(VI) sorption results on pure synthetic ferrihydrite and on HFS with high contents of ferrihydrite (5 wt%) added. However, the SCM prediction using only U(VI) sorption reactions and constants for synthetic ferrihydrite overestimated U(VI) sorption on the natural HFS or HFS with addition of low amounts of added ferrihydrite (1 wt% added). Over-predicted U(VI) sorption was attributed to reduced reactivity of natural ferrihydrite present in Hanford Site sediments, compared to freshly prepared synthetic ferrihydrite. Even though the SCM general composite (GC) approach is considered to be a semi-quantitative estimation technique for contaminant sorption, which requires systematic experimental data on the sorbent–sorbate system being studied to obtain credible SCM parameters, the general composite SCM model was still found to be a useful technique for describing U(VI) sorption on natural sediments. Based on U(VI) batch sorption results, two simple U(VI) monodentate surface species, SO_UO2HCO3 and SO_UO2OH on ferrihydrite and phyllosillicate in HFS, respectively, can be successfully used to describe U(VI) sorption onto Hanford Site sediment contacting varying geochemical solutions.  相似文献   

2.
Recent studies of uranium(VI) geochemistry have focused on the potentially important role of the aqueous species, CaUO2(CO3)32− and Ca2UO2(CO3)30(aq), on inhibition of microbial reduction and uranium(VI) aqueous speciation in contaminated groundwater. However, to our knowledge, there have been no direct studies of the effects of these species on U(VI) adsorption by mineral phases. The sorption of U(VI) on quartz and ferrihydrite was investigated in NaNO3 solutions equilibrated with either ambient air (430 ppm CO2) or 2% CO2 in the presence of 0, 1.8, or 8.9 mM Ca2+. Under conditions where the Ca2UO2(CO3)30(aq) species predominates U(VI) aqueous speciation, the presence of Ca in solution lowered U(VI) adsorption on quartz from 77% in the absence of Ca to 42% and 10% at Ca concentrations of 1.8 and 8.9 mM, respectively. U(VI) adsorption to ferrihydrite decreased from 83% in the absence of Ca to 57% in the presence of 1.8 mM Ca. Surface complexation model predictions that included the formation constant for aqueous Ca2UO2(CO3)30(aq) accurately simulated the effect of Ca2+ on U(VI) sorption onto quartz and ferrihydrite within the thermodynamic uncertainty of the stability constant value. This study confirms that Ca2+ can have a significant impact on the aqueous speciation of U(VI), and consequently, on the sorption and mobility of U(VI) in aquifers.  相似文献   

3.
In order to evaluate thermodynamic speciation calculations inherent in biotic ligand models, the speciation of dissolved Cd, Cu, Pb, and Zn in aquatic systems influenced by historical mining activities is examined using equilibrium computer models and the diffusive gradients in thin films (DGT) technique. Several metal/organic-matter complexation models, including WHAM VI, NICA-Donnan, and Stockholm Humic model (SHM), are used in combination with inorganic speciation models to calculate the thermodynamic speciation of dissolved metals and concentrations of metal associated with biotic ligands (e.g., fish gills). Maximum dynamic metal concentrations, determined from total dissolved metal concentrations and thermodynamic speciation calculations, are compared with labile metal concentrations measured by DGT to assess which metal/organic-matter complexation model best describes metal speciation and, thereby, biotic ligand speciation, in the studied systems. Results indicate that the choice of model that defines metal/organic-matter interactions does not affect calculated concentrations of Cd and Zn associated with biotic ligands for geochemical conditions in the study area, whereas concentrations of Cu and Pb associated with biotic ligands depend on whether the speciation calculations use WHAM VI, NICA-Donnan, or SHM. Agreement between labile metal concentrations and dynamic metal concentrations occurs when WHAM VI is used to calculate Cu speciation and SHM is used to calculate Pb speciation. Additional work in systems that contain wide ranges in concentrations of multiple metals should incorporate analytical speciation methods, such as DGT, to constrain the speciation component of biotic ligand models.  相似文献   

4.
《Applied Geochemistry》2005,20(7):1268-1283
A geochemical model is developed for the immobilization of U in the presence of metallic Fe. Zero-valent iron (ZVI) serves as a reducing agent inducing the reductive-precipitation of U, and ZVI corrosion products can serve as absorbing agents for U. The numerical model developed allows the complex interactions of U in solution in differing concentrations to be examined, under variable pH and redox conditions, with or without carbonate, in the presence of ZVI of different size and surface area. It incorporates Fe corrosion, Fe(II) and Fe(III) corrosion product formation, reductive-precipitation of U from the soluble U(VI) valence to the poorly soluble U(IV) valence, adsorption/de-sorption of U onto the Fe oxide corrosion products, and aqueous speciation. The processes of Fe corrosion and reductive precipitation of U are simulated as non-equilibrium, an improvement over other geochemical models. The reductive-precipitation process may use either ZVI or Fe(II) as the reducing agent. The model is calibrated using 3 separate sets of experimental data from published literature that cover a wide range of redox conditions. Sensitivity of the model predictions to variations in input parameters is examined. The simulation results show that the different published experimental results can be explained by different solution chemistries in the studies, specifically O2 and CO2 availability and pH, and the amount and surface area of the metallic Fe. With this numerical model the behavior of U in ZVI containing systems over a range of conditions realistic for groundwater can be investigated. By synthesizing observations across several experimental studies, it will lead to a broader understanding of the processes controlling U immobilization under varied geochemical conditions.  相似文献   

5.
Remediation of U-contaminated sites relies upon thermodynamic speciation calculations to predict U(VI) movement in the subsurface. However, reliability and applicability of geochemical speciation and reactive transport models may be limited by determinate (model) errors and random (uncertainty) errors in the equilibrium speciation calculations. This study examines propagated uncertainty in two types of subsurface calculations: I. Dissolved U(VI) speciation based on measured analytical constraints and solution phase equilibria and II. Overall U(VI) speciation which combined the dissolved phase equilibria with previously published adsorption reactions. Three levels of uncertainty, instrumental uncertainty, temporal variation and spatial variation across a site, were investigated using first-derivative sensitivity calculations and Monte Carlo simulations. Dissolved speciation calculations were robust, with minimal amplification of uncertainty and normal output distributions. The most critical analytical constraints in the dissolved system are pH, DIC, total U and total Ca, with some effect from dissolved . When considering adsorption equilibria, calculations were robust with respect to adsorbed U(VI) concentration prediction, but bimodal distributions of dissolved U(VI) concentrations were observed in simulations with background levels of total U(VI) and higher (spatial and temporal variability) estimates of input uncertainty. Consequently, sorption model predictions of dissolved U(VI) may not be robust with respect these higher levels of uncertainty.  相似文献   

6.
Uranium(VI) adsorption onto aquifer sediments was studied in batch experiments as a function of pH and U(VI) and dissolved carbonate concentrations in artificial groundwater solutions. The sediments were collected from an alluvial aquifer at a location upgradient of contamination from a former uranium mill operation at Naturita, Colorado (USA). The ranges of aqueous chemical conditions used in the U(VI) adsorption experiments (pH 6.9 to 7.9; U(VI) concentration 2.5 · 10−8 to 1 · 10−5 M; partial pressure of carbon dioxide gas 0.05 to 6.8%) were based on the spatial variation in chemical conditions observed in 1999-2000 in the Naturita alluvial aquifer. The major minerals in the sediments were quartz, feldspars, and calcite, with minor amounts of magnetite and clay minerals. Quartz grains commonly exhibited coatings that were greater than 10 nm in thickness and composed of an illite-smectite clay with occluded ferrihydrite and goethite nanoparticles. Chemical extractions of quartz grains removed from the sediments were used to estimate the masses of iron and aluminum present in the coatings. Various surface complexation modeling approaches were compared in terms of the ability to describe the U(VI) experimental data and the data requirements for model application to the sediments. Published models for U(VI) adsorption on reference minerals were applied to predict U(VI) adsorption based on assumptions about the sediment surface composition and physical properties (e.g., surface area and electrical double layer). Predictions from these models were highly variable, with results overpredicting or underpredicting the experimental data, depending on the assumptions used to apply the model. Although the models for reference minerals are supported by detailed experimental studies (and in ideal cases, surface spectroscopy), the results suggest that errors are caused in applying the models directly to the sediments by uncertain knowledge of: 1) the proportion and types of surface functional groups available for adsorption in the surface coatings; 2) the electric field at the mineral-water interface; and 3) surface reactions of major ions in the aqueous phase, such as Ca2+, Mg2+, HCO3, SO42−, H4SiO4, and organic acids. In contrast, a semi-empirical surface complexation modeling approach can be used to describe the U(VI) experimental data more precisely as a function of aqueous chemical conditions. This approach is useful as a tool to describe the variation in U(VI) retardation as a function of chemical conditions in field-scale reactive transport simulations, and the approach can be used at other field sites. However, the semi-empirical approach is limited by the site-specific nature of the model parameters.  相似文献   

7.
The speciation and solubility of kimberlite pathfinder metals (Ni, Nd, Ba and K) in shallow peat groundwaters is investigated over the Yankee, Zulu and Golf kimberlites in the Attawapiskat region, James Bay Lowlands, Canada. The purpose of this study is to examine the relationship between dissolved organic matter (DOM) complexation with kimberlite pathfinder metals and determine the spatial distribution of those metals in shallow peat groundwaters along sampling transects over subcropping kimberlites. Nickel, Nd, Ba and K complexation with DOM and the adsorption of these metals onto ferrihydrite were calculated using Visual MINTEQ 3.0 and the NICA-Donnan database. Calculations predict almost 100% of soluble Nd, Ni and Ba form complexes with DOM at sampling sites with little to no contribution from upwelling groundwater (i.e., dissolved organic C (DOC) concentrations = 40–132 mg/L, pH = 3.9–5.5, and log ionic strength ??3). In only the most ombrotrophic peat groundwater conditions does a majority fraction of K bind to DOM. By contrast, under conditions with large contributions from upwelling groundwaters (i.e., DOC concentrations ?40 mg/L, pH = 5.5–6.5, and log ionic strength = ?3 to ?2), as little as 10% of Nd and Ni, and 0% K and Ba are predicted to complex with DOM. The modeling calculations suggest the dominant control on metal–DOM complexation, particularly with respect to Ni and Nd, is competitive effects for DOM binding sites due to elevated ionic strength where there is evidence of strong groundwater upwelling. Visual MINTEQ modeling of metal adsorption on ferrihydrite surfaces predicts that under strong upwelling conditions, Ni and Nd are scavenged from solution due to increased ferrihydrite precipitation and decreased fractions of metals complexed with DOM. Analytical geochemical data are consistent with model predictions of metal adsorption on ferrihydrite. Total dissolved Ni and Nd concentrations at sites of strong upwelling are up to five times lower than waters with little to no upwelling and log ferrihydrite saturation indices (logSIferr) indicate precipitation (values up to 5) at sites of strong groundwater upwelling. Where the majority of Ni and Nd complex with DOM and ferrihydrite is highly under saturated (logSIferr = ?18 to ?5), the concentrations of total Ni and Nd are elevated compared to other sites along sampling transects. Metal complexation with DOM effectively inhibits metal scavenging from solution via adsorption and/or from forming secondary mineral precipitates. Also, because alkaline earth metals do not compete strongly with Ni and Nd for adsorption sites on ferrihydrite surfaces, but do compete strongly for insoluble organic sites, Ni and Nd are more likely to adsorb onto ferrihydrite.  相似文献   

8.
The Stockholm Humic Model (SHM) and Humic Ion-Binding Models V and VI were compared for their ability to predict the role of dissolved organic matter (DOM) in the speciation of rare earth elements (REE) in natural waters. Unlike Models V and VI, SHM is part of a speciation code that also allows us to consider dissolution/precipitation, sorption/desorption and oxidation/reduction reactions. In this context, it is particularly interesting to test the performance of SHM. The REE specific equilibrium constants required by the speciation models were estimated using linear free-energy relationships (LFER) between the first hydrolysis constants and the stability constants for REE complexation with lactic and acetic acid. Three datasets were used for the purpose of comparison: (i) World Average River Water (Dissolved Organic Carbon (DOC) = 5 mg L−1), previously investigated using Model V, was reinvestigated using SHM and Model VI; (ii) two natural organic-rich waters (DOC = 18-24 mg L−1), whose REE speciation has already been determined with both Model V and ultrafiltration studies, were also reinvestigated using SHM and Model VI; finally, (iii) new ultrafiltration experiments were carried out on samples of circumneutral-pH (pH 6.2-7.1), organic-rich (DOC = 7-20 mg L−1) groundwaters from the Kervidy-Naizin and Petit-Hermitage catchments, western France. The results were then compared with speciation predictions provided by Model VI and SHM, successively. When applied to World Average River Water, both Model VI and SHM yield comparable results, confirming the earlier finding that a large fraction of the dissolved REE in rivers occurs as organic complexes This implies that the two models are equally valid for calculating REE speciation in low-DOC waters at circumneutral-pH. The two models also successfully reproduced ultrafiltration results obtained for DOC-rich acidic groundwaters and river waters. By contrast, the two models yielded different results when compared to newly obtained ultrafiltration results for DOC-rich (DOC > 7 mg L−1) groundwaters at circumneutral-pH, with Model VI predictions being closer to the ultrafiltration data than SHM. Sensitivity analysis indicates that the “active DOM parameter” (i.e., the proportion of DOC that can effectively complex with REE) is a key parameter for both Model VI and SHM. However, a survey of ultrafiltration results allows the “active DOM parameter” to be precisely determined for the newly ultrafiltered waters studied here. Thus, the observed discrepancy between SHM predictions and ultrafiltration results cannot be explained by the use of inappropriate “active DOM parameter” values in this model. Save this unexplained discrepancy, the results presented in this study demonstrate that both Model VI and SHM can provide reliable estimates of REE speciation in organic-rich waters. However, it is essential to know the proportion of DOM that can actively complex REE before running these two speciation models.  相似文献   

9.
Macro- and molecular-scale knowledge of uranyl (U(VI)) partitioning reactions with soil/sediment mineral components is important in predicting U(VI) transport processes in the vadose zone and aquifers. In this study, U(VI) reactivity and surface speciation on a poorly crystalline aluminosilicate mineral, synthetic imogolite, were investigated using batch adsorption experiments, X-ray absorption spectroscopy (XAS), and surface complexation modeling. U(VI) uptake on imogolite surfaces was greatest at pH ∼7-8 (I = 0.1 M NaNO3 solution, suspension density = 0.4 g/L [U(VI)]i = 0.01-30 μM, equilibration with air). Uranyl uptake decreased with increasing sodium nitrate concentration in the range from 0.02 to 0.5 M. XAS analyses show that two U(VI) inner-sphere (bidentate mononuclear coordination on outer-wall aluminol groups) and one outer-sphere surface species are present on the imogolite surface, and the distribution of the surface species is pH dependent. At pH 8.8, bis-carbonato inner-sphere and tris-carbonato outer-sphere surface species are present. At pH 7, bis- and non-carbonato inner-sphere surface species co-exist, and the fraction of bis-carbonato species increases slightly with increasing I (0.1-0.5 M). At pH 5.3, U(VI) non-carbonato bidentate mononuclear surface species predominate (69%). A triple layer surface complexation model was developed with surface species that are consistent with the XAS analyses and macroscopic adsorption data. The proton stoichiometry of surface reactions was determined from both the pH dependence of U(VI) adsorption data in pH regions of surface species predominance and from bond-valence calculations. The bis-carbonato species required a distribution of surface charge between the surface and β charge planes in order to be consistent with both the spectroscopic and macroscopic adsorption data. This research indicates that U(VI)-carbonato ternary species on poorly crystalline aluminosilicate mineral surfaces may be important in controlling U(VI) mobility in low-temperature geochemical environments over a wide pH range (∼5-9), even at the partial pressure of carbon dioxide of ambient air (pCO2 = 10−3.45 atm).  相似文献   

10.
The adsorption and speciation of U(VI) was investigated on contaminated, fine grained sediment materials from the Hanford 300 area (SPP1 GWF) in simulated groundwater using cryogenic laser-induced U(VI) fluorescence spectroscopy combined with chemometric analysis. A series of reference minerals (montmorillonite, illite, Michigan chlorite, North Carolina chlorite, California clinochlore, quartz and synthetic 6-line ferrihydrite) was used for comparison that represents the mineralogical constituents of SPP1 GWF. Surface area-normalized Kd values were measured at U(VI) concentrations of 5 × 10−7 and 5 × 10−6 mol L−1 that displayed the following affinity series: 6-line-ferrihydrite > North Carolina chlorite ≈ California clinochlore > quartz ≈ Michigan chlorite > illite > montmorillonite. Both time-resolved spectra and asynchronous two-dimensional (2D) correlation analysis of SPP1 GWF at different delay times indicated that two major adsorbed U(VI) species were present in the sediment that resembled U(VI) adsorbed on quartz and phyllosilicates. Simulations of the normalized fluorescence spectra confirmed that the speciation of SPP1 GWF was best represented by a linear combination of U(VI) adsorbed on quartz (90%) and phyllosilicates (10%). However, the fluorescence quantum yield for U(VI) adsorbed on phyllosilicates was lower than quartz and, consequently, its fractional contribution to speciation may be underestimated. Spectral comparison with literature data suggested that U(VI) exist primarily as inner-sphere complexes with surface silanol groups on quartz and as surface U(VI) tricarbonate complexes on phyllosilicates.  相似文献   

11.
Adsorption of U(VI) on 6 samples of natural Fe-rich sands from Oyster, VA was studied over a range of U(VI) concentrations (0.1–100 μM), pH values (3–7.6), and dithionite–citrate–bicarbonate (DCB) extractable amounts of Fe (3.1–12.3 μmol/g). Four modeling approaches were applied to represent the U(VI) adsorption data. Model I was a two-site, diffuse double layer, surface complexation model based on data for synthetic ferrihydrite [Geochim. Cosmochim. Acta 58 (1994) 5465–5478]. Considering the magnitude of approximations necessary for application of the laboratory-based model to natural sands, Model I was surprisingly accurate, as determined by the goodness of fit parameter, χ2/N of 53.1–22.2. Model II was based on the reactions and diffuse double layer treatment of Model I, but was calibrated to a portion of U(VI) adsorption data for each sand, and then used to predict adsorption data for the same sand under different experimental conditions. Model II did not increase the accuracy of the predictions made with Model I, χ2/N of 42.4–27.6. Models III and IV were four-site affinity spectrum models, without an explicit electric double layer model or explicit surface hydrolysis reactions. Model III was based on a discrete log K spectrum approach, and Model IV was obtained from adjusting all surface stability constants and site concentrations for all surface sites. Models III and IV represented the U(VI) adsorption data with the greatest accuracy, χ2/N ranged from 13.8 to 4.4. Model I provides evidence supporting the practice of using pure phase thermodynamic reaction constants for describing the adsorption characteristics of environmentally important sorbents in certain simple cases. Yet, affinity spectrum approaches (Models III and IV) become increasingly important as more accurate interpolation of adsorption data is necessary, the sorbent becomes increasingly complex, or the range of experimental conditions expands.  相似文献   

12.
《Applied Geochemistry》2001,16(5):503-511
The use of adsorption data from single sorbate systems to model metal adsorption in SO4-rich waters, such as acid mine drainage, can lead to inaccurate predictions of metal speciation. The adsorption of Cu and Zn on ferrihydrite, for example, is enhanced at low pH values in the presence of SO4. This effect can only be accurately modeled using the diffuse layer model and surface complexation theory if ternary surface complexes, ≡FeOHCuSO4 or ≡FeOHZnSO4, are taken into consideration. Intrinsic adsorption constants for the formation of these ternary complexes on ferrihydrite have been derived from experimental data. When included in the model, Cu and Zn adsorption in the presence of SO4 is accurately predicted for a wide range of metal, ferrihydrite and SO4 concentrations. Adsorption of Cu and Zn onto the SO4-rich Fe oxyhydroxide, schwertmannite, could also be accurately predicted and is indistinguishable from adsorption onto ferrihydrite in the presence of high solution SO4 concentrations (e.g. 0.01 mol kg−1 SO4).  相似文献   

13.
《Applied Geochemistry》2004,19(10):1643-1653
Reactive solute transport simulations in groundwater require a large number of parameters to describe hydrologic and chemical reaction processes. Appropriate methods for determining chemical reaction parameters required for reactive solute transport simulations are still under investigation. This work compares U(VI) distribution coefficients (i.e. KD values) measured under field conditions with KD values calculated from a surface complexation model developed in the laboratory. Field studies were conducted in an alluvial aquifer at a former U mill tailings site near the town of Naturita, CO, USA, by suspending approximately 10 g samples of Naturita aquifer background sediments (NABS) in 17-5.1-cm diameter wells for periods of 3 to 15 months. Adsorbed U(VI) on these samples was determined by extraction with a pH 9.45 NaHCO3/Na2CO3 solution. In wells where the chemical conditions in groundwater were nearly constant, adsorbed U concentrations for samples taken after 3 months of exposure to groundwater were indistinguishable from samples taken after 15 months. Measured in situ KD values calculated from the measurements of adsorbed and dissolved U(VI) ranged from 0.50 to 10.6 mL/g and the KD values decreased with increasing groundwater alkalinity, consistent with increased formation of soluble U(VI)-carbonate complexes at higher alkalinities. The in situ KD values were compared with KD values predicted from a surface complexation model (SCM) developed under laboratory conditions in a separate study. A good agreement between the predicted and measured in situ KD values was observed. The demonstration that the laboratory derived SCM can predict U(VI) adsorption in the field provides a critical independent test of a submodel used in a reactive transport model.  相似文献   

14.
Past mining, processing, and waste disposal activities have left a legacy of uranium-contaminated soil and groundwater. Phosphate addition to subsurface environments can potentially immobilize U(VI) in-situ through interactions with uranium at mineral-water interfaces. Phosphate can induce the precipitation of low solubility U(VI)-phosphates, and it may enhance or inhibit U(VI) adsorption to iron(III) (oxy)hydroxide surfaces. Such surfaces may also facilitate the heterogeneous nucleation of U(VI)-phosphate precipitates. The interactions among phosphate, U(VI), and goethite (α-FeOOH) were investigated in a year-long series of experiments at pH 4. Reaction time, total U(VI), total phosphate, and the presence and absence of goethite were systematically varied to determine their effects on the extent of U(VI) uptake and the dominant uranium immobilization mechanism. Dissolved U(VI) and phosphate concentrations were interpreted within a reaction-based modeling framework that included dissolution-precipitation reactions and a surface complexation model to account for adsorption. The best available thermodynamic data and past surface complexation models were integrated to form an internally consistent framework. Additional evidence for the uptake mechanisms was obtained using scanning electron microscopy and X-ray diffraction. The formation and crystal growth of a U(VI)-phosphate phase, most likely chernikovite, UO2HPO4·4H2O(s), occurred rapidly for initially supersaturated suspensions both with and without goethite. Nucleation appears to occur homogeneously for almost all conditions, even in the presence of goethite, but heterogeneous nucleation was likely at one condition. The U(VI)-phosphate solids exhibited metastability depending on the TOTU:TOTP ratio. At the highest phosphate concentration studied (130 μM), U(VI) uptake was enhanced due to the likely formation of a ternary surface complex for low (∼1 μM) to intermediate (∼10 μM) TOTU concentrations and to U(VI)-phosphate precipitation for high TOTU (∼100 μM) concentrations. For conditions favoring precipitation, the goethite surface acted as a sink for dissolved phosphate that resulted in higher dissolved U(VI) concentrations relative to goethite-free conditions. Based on the total uranium and available sorption sites, a critical phosphate concentration between 15 μM and 130 μM was required for preferential precipitation of uranium phosphate over U(VI) adsorption.  相似文献   

15.
We measured the kinetics of U(VI) reduction by Shewanella oneidensis MR-1 under anaerobic conditions in the presence of variable concentrations of either EDTA or dissolved Ca. We measured both total dissolved U and U(VI) concentrations in solution as a function of time. In separate experiments, we also measured the extent of U(VI) adsorption onto S. oneidensis in order to quantify the thermodynamic stabilities of the important U(VI)-bacterial surface complexes. In the EDTA experiments, the rate of U(IV) production increased with increasing EDTA concentration. However, the total dissolved U concentrations remained constant and identical to the initial U concentrations during the course of the experiments for all EDTA-bearing systems. Additionally, the U(VI) reduction rate in the EDTA experiments exhibited a strong correlation to the concentration of the aqueous U4+-EDTA complex. We conclude that the U(VI) reduction rate increases with increasing EDTA concentration, likely due to U4+-EDTA aqueous complexation which removes U(IV) from the cell surface and prevents UO2 precipitation.In the Ca experiments, the U(VI) reduction rate decreased as Ca concentration increased. Our thermodynamic modeling results based on the U(VI) adsorption data demonstrate that U(VI) was adsorbed onto the bacterial surface in the form of a Ca-uranyl-carbonate complex in addition to a number of other Ca-free uranyl complexes. The observed U(VI) reduction rates in the presence of Ca exhibit a strong negative correlation to the concentration of the Ca-uranyl-carbonate bacterial surface complex, but a strong positive correlation to the total concentration of all the other Ca-free uranyl surface complexes. Thus, the concentration of these Ca-free uranyl surface complexes appears to control the rate of U(VI) reduction by S. oneidensis in the presence of dissolved Ca. Our results demonstrate that U speciation, both of U(VI) before reduction and of U(IV) after reduction, affects the reduction kinetics, and that thermodynamic modeling of the U speciation may be useful in the prediction of reduction kinetics in realistic geologic settings.  相似文献   

16.
The adsorption of uranyl (UO22+) on ferrihydrite has been evaluated with the charge distribution (CD) model for systems covering a very large range of conditions, i.e. pH, ionic strength, CO2 pressure, U(VI) concentration, and loading. Modeling suggests that uranyl forms bidentate inner sphere complexes at sites that do not react chemically with carbonate ions. Uranyl is bound by singly-coordinated surface groups present at particular edges of Fe-octahedra of ferrihydrite while another set of singly-coordinated surface groups may form double-corner bidentate complexes with carbonate ions. The uranyl surface speciation strongly changes in the presence of carbonate due to the specific adsorption of carbonate ions as well as the formation of ternary uranyl-carbonate surface complexes. Data analysis with the CD model suggests that a uranyl tris-carbonato surface complex, i.e. (UO2)(CO3)34−, is formed. This species is most abundant in systems with a high pH and carbonate concentration. This finding differs significantly from previous interpretations made in the literature. At high pH and low carbonate concentrations, as can be prepared in CO2-closed systems, the model suggests the additional presence of a ternary uranyl-monocarbonato complex. The binding mode (type A or type B complex) is uncertain. At high uranyl concentrations, uranyl polymerizes at the surface of ferrihydrite giving, for instance, tris-uranyl surface complexes with and without carbonate. The similarities and differences between U(VI) adsorption by goethite and ferrihydrite are discussed from a surface structural point of view.  相似文献   

17.
Reliable thermodynamic models assessing the interaction of radionuclides with cementitious materials are important in connection with long-term predictions of the safe disposal of radioactive waste in cement-based repositories. In this study, a geochemical model of U(VI) interaction with calcium silicate hydrates (C–S–H phases), the main component of hardened cement paste (HCP), has been developed. Uranium(VI) sorption isotherms on C–S–H phases of different Ca:Si ratios (C:S) and structural data from spectroscopic studies provided the indispensable set of experimental data required for the model development. This information suggested that U(VI) is neither adsorbed nor incorporated in the Ca–O octahedral layers of the C–S–H structure, but rather is located in the interlayer, similar to Ca2+ and other cations. With a view to the high recrystallisation rates and the cryptocrystalline ‘gel-like’ structure of the C–S–H phases, these observations indicated a U(VI) uptake driven by the formation of a solid solution.  相似文献   

18.
A mixing of metal-loaded acid mine drainage with shallow groundwater or surface waters usually initiates oxidation and/or hydrolysis of dissolved metals such as iron (Fe) and aluminum (Al). Colloidal particles may appear and agglomerate with increasing pH. Likewise chemical conditions may occur while flooding abandoned uranium mines. Here, the risk assessment of hazards requires reliable knowledge on the mobility of uranium (U). A flooding process was simulated at mesocosm scale by mixing U-contaminated acid mine water with near-neutral groundwater under oxic conditions. The mechanism of U-uptake by fresh precipitates and the molecular structure of U bonding were determined to estimate the mobility of U(VI). Analytical and spectroscopic methods such as Extended X-ray Absorption Fine-Structure (EXAFS) spectroscopy at the Fe K-edge and the U LIII-edge, and Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy were employed. The freshly formed precipitate was identified as colloidal two-line ferrihydrite. It removed U(VI) from solution by sorption processes, while surface precipitation or structural incorporation of U was not observed. EXAFS data suggest a mononuclear inner-sphere, edge-sharing complex of U(VI) with ferrihydrite in the absence of dissolved carbonate. By employing a novel EXAFS analysis method, Monte Carlo Target Transformation Factor Analysis, we could for the first time ascertain a 3-D configuration of this sorption complex without the necessity to invoke formation of a ternary complex. The configuration suggests a slightly tilted position of the adsorbed unit relative to the edge-sharing Fe(O, OH)6 octahedra. In the presence of dissolved carbonate and at pH ∼8.0, a distal carbonate O-atom at ∼4.3 Å supports formation of ternary U(VI)-carbonato surface complexes. The occurrence of these complexes was also confirmed by ATR-FTIR. However, in slightly acidic conditions (pH 5-6) in equilibrium with atmospheric CO2, the U(VI) sorption on ferrihydrite was dominated by the binary complex species Fe(O)2UO2, whereas ternary U(VI)-carbonato surface complexes were of minor relevance. While sulfate and silicate were also present in the mine water, they had no detectable influence on U(VI) surface complexation. Our experiments demonstrate that U(VI) forms stable inner-sphere sorption complexes even in the presence of carbonate and at slightly alkaline pH, conditions which previously have been assumed to greatly accelerate the mobility of U(VI) in aqueous environments. Depending on the concentrations of U(VI) and carbonate, the type of surface complexes may change from binary uranyl-ferrihydrite to ternary carbonato-uranyl-ferrihydrite complexes. These different binding mechanisms are likely to influence the binding stability and retention of U(VI) at the macroscopic level.  相似文献   

19.
Iron-coated sands were prepared via two common protocols, a precipitation method, where Fe was precipitated directly onto the sand in a single step, and an adsorption method, where pure goethite was prepared in the first step and then adsorbed onto the sand in a second step. The coated sands from both the systems were characterized using scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, and selective Fe extraction. Although neither of the methods produced a completely crystalline Fe coating, the precipitation method produced sands with larger portions of amorphous Fe than the adsorption method, with the fraction of amorphous Fe decreasing with increasing Fe content. Uranium(VI) adsorption isotherms and pH adsorption edges were measured on three coated sands with Fe contents ranging from 0.04% to 0.3%. Experimentally, the adsorption of U(VI) onto the three sands was more comparable when normalized to surface area than when normalized to Fe content. A surface complexation model, although originally developed for U(VI) adsorption onto amorphous Fe oxide, captured the differences in adsorption when adjusted for the surface area of the coated sand. The findings indicate that surface area is a better scaling parameter than Fe content in predicting U(VI) adsorption to Fe-dominated media. These findings are significant because many common surface complexation models are parameterized on the basis of Fe content rather than specific surface area. Although the interactions of U(VI) and Fe-coated sands were used as representative adsorbate and adsorbent, the general principles may be applicable to other adsorbate–adsorbent systems as well.  相似文献   

20.
Uranium U(VI) adsorption was measured as function of pH (3–10) on goethite, kaolinite, quartz, two binary mixtures of goethite and kaolinite, and a vadose zone sediment collected on The Department of Energy’s Savannah River Site (SRS), the clay mineral fraction of which is composed largely of kaolinite and goethite. Diffuse-layer surface complexation models were parameterized using the code PEST together with PHREEQC to fit U(VI) sorption data for the pure goethite, kaolinite, and quartz. U(VI) adsorption on kaolinite and goethite was modeled as the formation of two bidentate U(VI) complexes at mineral edge sites on a variable charge site. U(VI) adsorption on quartz was described using a one-site diffuse-layer with the formation of bidentate complex on a variable charge site. These models were used to predict U(VI) adsorption on the binary sorbent mixtures and the SRS sediment using a simple component-additivity approach. In general, the predicted adsorption edges were in good agreement with measured data, with statistically similar goodness of fit compared to that obtained for the pure mineral systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号