首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A pit located near Ballyhorsey, 28 km south of Dublin (eastern Ireland), displays subglacially deposited glaciofluvial sediments passing upwards into proglacial subaqueous ice‐contact fan deposits. The coexistence of these two different depositional environments at the same location will help with differentiation between two very similar and easily confused glacial lithofacies. The lowermost sediments show aggrading subglacial deposits indicating a constrained accommodation space, mainly controlled by the position of an overlying ice roof during ice‐bed decoupling. These sediments are characterized by vertically stacked tills with large lenses of tabular to channelized sorted sediments. The sorted sediments consist of fine‐grained laminated facies, cross‐laminated sand and channelized gravels, and are interpreted as subglaciofluvial sediments deposited within a subglacial de‐coupled space. The subglaciofluvial sequence is characterized by glaciotectonic deformation structures within discrete beds, triggered by fluid overpressure and shear stress during episodes of ice/bed recoupling (clastic dykes and folds). The upper deposits correspond to the deposition of successive hyperpycnal flows in a proximal proglacial lake, forming a thick sedimentary wedge erosively overlying the subglacial deposits. Gravel facies and large‐scale trough bedding sand are observed within this proximal wedge, while normally graded sand beds with developed bedforms are observed further downflow. The building of the prograding ice‐contact subaqueous fan implies an unrestricted accommodation space and is associated with deformation structures related to gravity destabilization during fan spreading (normal faults). This study facilitates the recognition of subglacial/submarginal depositional environments formed, in part, during localized ice/bed coupling episodes in the sedimentary record. The sedimentary sequence exposed in Ballyhorsey permits characterization of the temporal framework of meltwater production during deglaciation, the impact on the subglacial drainage system and the consequences on the Irish Sea Ice Stream flow mechanisms.  相似文献   

2.
The Pleistocene Higashikanbe Gravel, which crops out along the Pacific coast of the Atsumi Peninsula, central Japan, consists of well‐sorted, pebble‐ to cobble‐size gravel beds with minor sand beds. The gravel includes large‐scale foreset beds (5–10 m high) and overlying subhorizontal beds (0·5–3 m thick), showing foreset and topset structure, from which the gravel has previously been interpreted as deposits of a Gilbert‐type delta. However, (1) the gravel beds lack evidence of fluvial activity, such as channels in the subhorizontal beds; (2) the foresets incline palaeolandwards; (3) the gravels fill a fluvially incised valley; and (4) the gravels overlie low‐energy deposits of a restricted environment, such as a bay or an estuary. The foresets generally dip towards the inferred palaeoshoreline, indicating landward accretion of gravel. Reconstruction of the palaeogeography of the peninsula indicates that the Higashikanbe Gravel was deposited as a spit similar to that developed at the western tip of the present Atsumi Peninsula, rather than as a delta. According to the new interpretation, the large‐scale foreset beds are deposits on the slopes of spit platforms and accreted in part to the sides of small islets that are fragments of the submerging spit during relative sea‐level rise. The subhorizontal beds include nearshore deposits on the spit platform topsets and deposits of gravel shoals or bars, which are reworked sediments of the spit beach gravels during a transgression. The lack of spit beach facies in the subhorizontal beds results from truncation by shoreface erosion. Dome structure, which is a cross‐sectional profile of a recurved gravel spit at its extreme point, and sandy tidal channel deposits deposited between the small islets were also identified in the Higashikanbe Gravel. The Higashikanbe Gravel fills a fluvially incised valley and occupies a significant part of a transgressive systems tract, suggesting that gravelly spits are likely to be well developed during transgressions. The large‐scale foreset beds and subhorizontal beds of gravelly spits in transgressive systems tracts contrast with the foreset and topset beds of deltas, characteristic of highstand, lowstand and shelf‐margin systems tracts.  相似文献   

3.
Current understanding of submarine sediment density flows is based heavily on their deposits, because such flows are notoriously difficult to monitor directly. However, it is rarely possible to trace the facies architecture of individual deposits over significant distances. Instead, bed‐scale facies models that infer the architecture of ‘typical’ deposits encapsulate current understanding of depositional processes and flow evolution. In this study, the distribution of facies in 12 individual beds has been documented along downstream transects over distances in excess of 100 km. These deposits were emplaced in relatively flat basin‐plain settings in the Miocene Marnoso Arenacea Formation, north‐east Italy and the late Quaternary Agadir Basin, offshore Morocco. Statistical analysis shows that the most common series of vertical facies transitions broadly resembles established facies models. However, mapping of individual beds shows that they commonly deviate from generalized models in several important ways that include: (i) the abundance of parallel laminated sand, suggesting deposition of this facies from both high‐density and low‐density turbidity current; (ii) three distinctly different types of grain‐size break, suggesting waxing flow, erosional hiatuses and bypass of silty sediment; (iii) the presence of mud‐rich debrites demonstrating hybrid flow deposition; and (iv) dune‐scale cross‐lamination in fine‐medium grained sandstones. Submarine sediment density flows in basin‐plain settings flow over relatively simple topography. Yet, their deposits record complex flow events, involving transformation between different flow types, rather than the simple waning surges often associated with the distal parts of turbidite systems.  相似文献   

4.
Depositional slope systems along continental margins contain a record of sediment transfer from shallow‐water to deep‐water environments and represent an important area for natural resource exploration. However, well‐preserved outcrops of large‐scale depositional slopes with seismic‐scale exposures and tectonically intact stratigraphy are uncommon. Outcrop characterization of smaller‐scale depositional slope systems (i.e. < 700 m of undecompacted shelf‐to‐basin relief) has led to increased understanding of stratigraphic packaging of prograding slopes. Detailed stacking patterns of facies and sedimentary body architecture for larger‐scale slope systems, however, remain understudied. The Cretaceous Tres Pasos Formation of the Magallanes Basin, southern Chile, presents a unique opportunity to evaluate the stratigraphic evolution of such a slope system from an outcrop perspective. Inherited tectonic relief from a precursor oceanic basin phase created shelf‐to‐basin bathymetry comparable with continental margin systems (~1000 m). Sedimentological and architectural data from the Tres Pasos Formation at Cerro Divisadero reveal a record of continental margin‐scale depositional slope progradation and aggradation. Slope progradation is manifested as a vertical pattern exhibiting increasing amounts of sediment bypass upwards, which is interpreted as reflecting increasing gradient conditions. The well‐exposed, seismic‐scale outcrop is characterized by four 20 to 70 m thick sandstone‐rich successions, separated by mudstone‐rich intervals of comparable thickness (40 to 90 m). Sedimentary body geometry, facies distribution, internal bedding architecture, sandstone richness and degree of amalgamation were analysed in detail across a continuous 2·5 km long transect parallel to depositional dip. Deposition in the lower section (Units 1 and 2) was dominated by poorly channellized to unconfined sand‐laden flows and accumulation of mud‐rich mass transport deposits, which is interpreted as representing a base of slope to lower slope setting. Evidence for channellization and indicators of bypass of coarse‐grained turbidity currents are more common in the upper part of the > 600 m thick succession (Units 3 and 4), which is interpreted as reflecting increased gradient conditions as the system accreted basinward.  相似文献   

5.
Modern and ancient tidal straits are the least well understood of all tide‐dominated depositional systems. To provide an increased understanding of these systems, a facies‐based depositional model is assessed by comparing multibeam surveys of three present‐day tidally dominated seaways with a number of superbly exposed Neogene‐to‐Quaternary strait‐fill successions of Calabria (south Italy). The model points out the existence of four depositional zones, laterally adjacent from the narrowest strait centre to its terminations, distributed along symmetrical or asymmetrical seaways. These zones, whose signature is recorded in four facies associations in the Calabrian tidal straits, are as follows: (i) the strait‐centre zone, associated with the tidal current maxima and where sediments are scarce or absent; (ii) the dune‐bedded zone, where sediments form dune complexes due to tidal flow expansion; (iii) the strait‐end zone, where currents decelerate accumulating thinly bedded, fine‐grained deposits; and (iv) the strait‐margin zone, where sediment massflows descend tectonically active, steep margins towards the strait axis. In ancient, tectonically confined, narrow seaways, these facies generate a distinctive deepening‐upward vertical succession, where tidal currents are the dominant process in the sediment distribution.  相似文献   

6.
Deglacial sequences typically include backstepping grounding zone wedges and prevailing glaciomarine depositional facies. However, in coastal domains, deglacial sequences are dominated by depositional systems ranging from turbiditic to fluvial facies. Such deglacial sequences are strongly impacted by glacio‐isostatic rebound, the rate and amplitude of which commonly outpaces those of post‐glacial eustatic sea‐level rise. This results in a sustained relative sea‐level fall covering the entire depositional time interval. This paper examines a Late Quaternary, forced regressive, deglacial sequence located on the North Shore of the St. Lawrence Estuary (Portneuf Peninsula, Québec, Canada) and aims to decipher the main controls that governed its stratigraphic architecture. The forced regressive deglacial sequence forms a thick (>100 m) and extensive (>100 km2) multiphased deltaic complex emplaced after the retreat of the Laurentide Ice Sheet margin from the study area ca 12 500 years ago. The sedimentary succession is composed of ice‐contact, glaciomarine, turbiditic, deltaic, fluvial and coastal depositional units. A four‐stage development is recognized: (i) an early ice‐contact stage (esker, glaciomarine mud and outwash fan); (ii) an in‐valley progradational stage (fjord head or moraine‐dammed lacustrine deltas) fed by glacigenics; (iii) an open‐coast deltaic progradation, when proglacial depositional systems expanded beyond the valley outlets and merged together; and (iv) a final stage of river entrenchment and shallow marine reworking that affected the previously emplaced deltaic complex. Most of the sedimentary volume (10 to 15 km3) was emplaced during the three‐first stages over a ca 2 kyr interval. In spite of sustained high rates of relative sea‐level fall (50 to 30 mm·year?1), delta plain accretion occurred up to the end of the proglacial open‐coast progradational stage. River entrenchment only occurred later, after a significant decrease in the relative sea‐level fall rates (<30 mm·year?1), and was concurrent with the formation and preservation of extensive coastal deposits (raised beaches, spit platform and barrier sands). The turnaround from delta plain accretion to river entrenchment and coastal erosion is interpreted to be a consequence of the retreat of the ice margin from the river drainage basins that led to the drastic drop of sediment supply and the abrupt decrease in progradation rates. The main internal stratigraphic discontinuity within the forced regressive deglacial sequence does not reflect changes in relative sea‐level variations.  相似文献   

7.
The Upper Cretaceous Qingshankou Formation (K2qn) and Nenjiang Formation (K2n) in the Songliao Basin (SLB), China, contain discrete ostracod-bearing deposits. The ostracod-bearing layers range in thickness from 5 to 380 cm. Based on integrated analysis of seismic, drilling, core and logging data, the sedimentary characteristics, distribution patterns and hydrocarbon implications of the ostracod-bearing beds have been studied. Compared with mudstone and sandstone in lacustrine settings, ostracod-bearing beds have distinctive characteristics in terms of seismic response and logging features. Three types of depositional pattern of ostracod-bearing beds are recognised in different facies: mixed siliciclastic–ostracod deposits in the delta front, sheeted ostracod deposits, and dotted ostracod deposits in shallow or semi-deep lacustrine settings. In plan view, ostracod-bearing beds mainly occur in the Daqing area, the Longhupao–Honggang terraces and the Heidimiao depression, and are relatively less developed in the east of the SLB. Shallow and semi-deep lacustrine settings were favourable environments for the survival of ostracods. In the stratigraphic succession, ostracod-bearing beds mainly occur in the upper K2qn1, K2qn2, lower K2qn3 and K2n1 units. High-frequency sequence cycles controlled ostracod reproduction and death, and mass mortalities of ostracods commonly occurred during periods in which the lake base-level fell, leading to water shallowing, increasing salinity and sand intrusion into the shore-shallow lakes. Ostracod mortality was not associated with expansion of the lake area, marine transgression or volcanic eruptions. The ostracod-bearing beds were widely formed in shallow and semi-deep lacustrine settings in the SLB. Tight oil/gas reservoirs can be developed in thick ostracod-bearing beds. In addition, areas containing ostracod can be regarded as sweet spots for mud or shale oil/gas exploration, because extensive ostracods can improve the content of brittle minerals in mudstone.  相似文献   

8.
The Pennsylvanian to Permian lower Cutler beds comprise a 200 m thick mixed continental and shallow marine succession that forms part of the Paradox foreland basin fill exposed in and around the Canyonlands region of south‐east Utah. Aeolian facies comprise: (i) sets and compound cosets of trough cross‐bedded dune sandstone dominated by grain flow and translatent wind‐ripple strata; (ii) interdune strata characterized by sandstone, siltstone and mudstone interbeds with wind‐ripple, wavy and horizontal planar‐laminated strata resulting from accumulation on a range of dry, damp or wet substrate‐types in the flats and hollows between migrating dunes; and (iii) extensive, near‐flat lying wind‐rippled sandsheet strata. Fluvial facies comprise channel‐fill sandstones, lag conglomerates and finer‐grained overbank sheet‐flood deposits. Shallow marine facies comprise carbonate ramp limestones, tidal sand ridges and bioturbated marine mudstones. During episodes of sand sea construction and accumulation, compound transverse dunes migrated primarily to the south and south‐east, whereas south‐westerly flowing fluvial systems periodically punctuated the dune fields from the north‐east. Several vertically stacked aeolian sequences are each truncated at their top by regionally extensive surfaces that are associated with abundant calcified rhizoliths and bleaching of the underlying beds. These surfaces record the periodic shutdown and deflation of the dune fields to the level of the palaeo‐water‐table. During episodes of aeolian quiescence, fluvial systems became more widespread, forming unconfined braid‐plains that fed sediment to a coastline that lay to the south‐west and which ran approximately north‐west to south‐east for at least 200 km. Shallow marine systems repeatedly transgressed across the broad, low‐relief coastal plain on at least 10 separate occasions, resulting in the systematic preservation of units of marine limestone and calcarenite between units of non‐marine aeolian and fluvial strata, to form a series of depositional cycles. The top of the lower Cutler beds is defined by a prominent and laterally extensive marine limestone that represents the last major north‐eastward directed marine transgression into the basin prior to the onset of exclusively non‐marine sedimentation of the overlying Cedar Mesa Sandstone. Styles of interaction between aeolian, fluvial and marine facies associations occur on two distinct scales and represent the preserved expression of both small‐scale autocyclic behaviour of competing, coeval depositional systems and larger‐scale allocyclic changes that record system response to longer‐term interdependent variations in climatic and eustatic controlling mechanisms. The architectural relationships and system interactions observed in the lower Cutler beds demonstrate that the succession was generated by several cyclical changes in both climate and relative sea‐level, and that these two external controls probably underwent cyclical change in harmony with each other in the Paradox Basin during late Pennsylvanian and Permian times. This observation supports the hypothesis that both climate and eustasy were interdependent at this time and were probably responding to a glacio‐eustatic driving mechanism.  相似文献   

9.
ABSTRACT The middle Miocene sedimentary fill of the Calatayud Basin in north‐eastern Spain consists of proximal to distal alluvial fan‐floodplain and shallow lacustrine deposits. Four main facies groups characteristic of different sedimentary environments are recognized: (1) proximal and medial alluvial fan facies that comprise clast‐supported gravel and subordinate sandstone and mudstone, the latter exhibiting incipient pedogenic features; (2) distal alluvial fan facies, formed mainly of massive mudstone, carbonate‐rich palaeosols and local carbonate pond deposits; (3) lake margin facies, which show two distinct lithofacies associations depending on their distribution relative to the alluvial fan system, i.e. front (lithofacies A), comprising massive siliciclastic mudstone and tabular carbonates, or lateral (lithofacies B) showing laminated and/or massive siliciclastic mudstone alternating with tabular and/or laminated carbonate beds; and (4) mudflat–shallow lake facies showing a remarkable cyclical alternation of green‐grey and/or red siliciclastic mudstone units and white dolomitic carbonate beds. The cyclic mudflat–shallow lake succession, as exposed in the Orera composite section (OCS), is dominantly composed of small‐scale mudstone–carbonate/dolomite cycles. The mudstone intervals of the sedimentary cycles are interpreted as a result of sedimentation from suspension by distal sheet floods, the deposits evolving either under subaerial exposure or water‐saturated conditions, depending on their location on the lacustrine mudflat and on climate. The dolomite intervals accumulated during lake‐level highstands with Mg‐rich waters becoming increasingly concentrated. Lowstand to highstand lake‐level changes indicated by the mudstone/dolomite units of the small‐scale cycles reflect a climate control (from dry to wet conditions) on the sedimentation in the area. The spatial distribution of the different lithofacies implies that deposition of the small‐scale cycles took place in a low‐gradient, shallow lake basin located in an interfan zone. The development of the basin was constrained by gradual alluvial fan aggradation. Additional support for the palaeoenvironmental interpretation is derived from the isotopic compositions of carbonates from the various lithofacies that show a wide range of δ18O and δ13C values varying from ?7·9 to 3·0‰ PDB and from ?9·2 to ?1·7‰ PDB respectively. More negative δ18O and δ13C values are from carbonate‐rich palaeosols and lake‐margin carbonates, which extended in front of the alluvial fan systems, whereas more positive values correspond to dolomite beds deposited in the shallow lacustrine environment. The results show a clear trend of δ18O enrichment in the carbonates from lake margin to the centre of the shallow lake basin, thereby also demonstrating that the lake evolved under hydrologically closed conditions.  相似文献   

10.
Sedimentological outcrop analysis and sub‐surface ground‐penetrating radar (GPR) surveys are combined to characterize the three‐dimensional sedimentary architecture of Quaternary coarse‐grained fluvial deposits in the Neckar Valley (SW Germany). Two units characterized by different architectural styles are distinguished within the upper part of the gravel body, separated by an erosional unconformity: (i) a lower unit dominated by trough‐shaped depositional elements with erosional, concave‐up bounding surfaces that are filled by cross‐bedded sets of mainly openwork and filled framework gravel; and (ii) an upper unit characterized by gently inclined sheets of massive and openwork gravels with thin, sandy interlayers that show lateral accretion on a lower erosional unconformity. The former is interpreted as confluence scour pool elements formed in a multi‐channel, possibly braided river system, the latter as extensive point bar deposits formed by the lateral migration of a meandering river channel. The lateral accretion elements are locally cut by chute channels mainly filled by gravels rich in fines, and by fine‐grained abandoned channel fills. The lateral accretion elements are associated with gravel dune deposits characterized by steeply inclined cross‐beds of alternating open and filled framework gravel. Floodplain fines with a cutbank and point bar morphology cover the gravel deposits. The GPR images, revealing the three‐dimensional geometries of the depositional elements and their stacking patterns, confirm a change in sedimentary style between the two stratigraphic units. The change occurred at the onset of the Holocene, as indicated by 14C‐dating of wood fragments, and is related to a re‐organization of the fluvial system that probably was driven by climatic changes. The integration of sedimentological and GPR results highlights the heterogeneity of the fluvial deposits, a factor that is important for modelling groundwater flow in valley‐fill aquifers.  相似文献   

11.
Although facies models of braided, meandering and anastomosing rivers have provided the cornerstones of fluvial sedimentology for several decades, the depositional processes and external controls on sheetflow fluvial systems remain poorly understood. Sheetflow fluvial systems represent a volumetrically significant part of the non‐marine sedimentary record and documented here are the lithofacies, depositional processes and possible roles of rapid subsidence and arid climate in generating a sheetflow‐dominated fluvial system in the Cenozoic hinterland of the central Andes. A 6500 m thick succession comprising the Late Eocene–Oligocene Potoco Formation is exposed continuously for >100 km along the eastern limb of the Corque syncline in the high Altiplano plateau of Bolivia. Fluvial sandstone and mudstone units were deposited over an extensive region (>10 000 km2) with remarkably few incised channels or stacked‐channel complexes. The Potoco succession provides an exceptional example of rapid production of accommodation sustained over a prolonged period of time in a non‐marine setting (>0·45 mm year−1 for 14 Myr). The lower ≈4000 m of the succession coarsens upward and consists of fine‐grained to medium‐grained sandstone, mudstone and gypsum deposits with palaeocurrent indicators demonstrating eastward transport. The upper 2500 m also coarsens upward, but contains mostly fine‐grained to medium‐grained sandstone that exhibits westward palaeoflow. Three facies associations were identified from the Potoco Formation and are interpreted to represent different depositional environments in a sheetflow‐dominated system. (i) Playa lake deposits confined to the lower 750 m are composed of interbedded gypsum, gypsiferous mudstone and sandstone. (ii) Floodplain deposits occur throughout the succession and include laterally extensive (>200 m) laminated to massive mudstone and horizontally stratified and ripple cross‐stratified sandstone. Pedogenic alteration and root casts are common. (iii) Poorly confined channel and unconfined sheet sandstone deposits include laterally continuous beds (50 to >200 m) that are defined primarily by horizontally stratified and ripple cross‐stratified sandstone encased in mudstone‐rich floodplain deposits. The ubiquitous thin‐sheet geometry and spatial distribution of individual facies within channel sandstone and floodplain deposits suggest that confined to unconfined, episodic (flash) flood events were the primary mode of deposition. The laterally extensive deposition and possible distributary nature of this sheetflow‐dominated system are attributed to fluvial fan conditions in an arid to semi‐arid, possibly seasonal, environment. High rates of sediment accumulation and tectonic subsidence during early Andean orogenesis may have favoured the development and long‐term maintenance of a sheetflow system rather than a braided, meandering or anastomosing fluvial style. It is suggested here that rapidly produced accommodation space and a relatively arid, seasonal climate are critical conditions promoting the generation of sheetflow‐dominated fluvial systems.  相似文献   

12.
The Lower Jurassic erg (aeolian sand sea) deposits of the Wingate Sandstone on the Colorado Plateau are beautifully exposed near Many Farms, Arizona. These 3-D outcrops allow a detailed study of structures and sequenses in the erg body. The erg sequence comprises chiefly oblique dune deposits. The dune facies are in most cases characterized by a well-developed tripartite upbuilding. Each dune coset contains unusually thick and intricate bottomsets, medial low-angle dipping toesets, and upper steeply dipping foresets. The foresets reveal significant across-crest transport of sand and dip within a narrow range of directions towards the ESE. The bottomset beds are composed of compound cross-bedding that documents strong along-crest transport towards the SSW, whereas the toeset beds reveal upslope, downslope, and along-crest transport of sand. The ancient dunes apparently formed in a directionally varying wind flow with prevailing winds (early summer) from the NW and periodic strong winds (late summer) from the SW. The dunes were oblique not only to seasonal transport directions, but also to the resultant annual transport direction and dune migration direction. This was caused by the interaction of the dune system with the primary winds which resulted in secondary airflow and significant along-crest transport of sand. The erg deposits at Many Farms are separated by a number of super bounding surfaces suggesting several episodes of erg formation and destruction. The initial erg system was dominated by transverse dunes, but overlying ergs only contained oblique dunes. All erg systems were bounded to the SW by wide regions of erg margin environments in which aeolian sand sheet, fluvial, and lacustrine facies were deposited. Even though fluvial deposits are absent from the main part of the sequence at the study area, the effects of this system are reflected within the erg deposits at Many Farms.  相似文献   

13.
束鹿凹陷古近系沙三下段沉积相特征研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文通过岩相特征、沉积构造特征、化石及地球化学特征,对束鹿凹陷古近系沙三下段的总体沉积特征进行了概述,将研究区的沉积相类型定为湖泊相。通过对研究区沉积微相的详细分析,认为厚层块状砂砾岩主要发育贫基质的碎屑流沉积,浊流沉积及颗粒流沉积少见;泥灰岩主要发育具有复杂沉积模式的混合沉积,细分为互层混合沉积、结构混合沉积和夹层混合沉积三种类型。通过对沉积相的平面展布特征的研究表明,研究区是以碎屑流沉积和混合沉积为主体的半深湖-深湖沉积体系。  相似文献   

14.
Abstract The Red River, Manitoba, is a mud‐dominated, meandering stream that occupies a shallow valley eroded into a clay plain. The valley‐bottom alluvium is the product of incision and lateral migration of river meanders. As revealed by a transect of five boreholes located across the floodplain at each of two successive river meanders, the alluvial deposits range from about 15 to 22 m thick and are composed primarily of silt. Sedimentary structures in the cores are weakly defined and consist mostly of beds of massive silt, thick (>0·4 m) massive silt and disturbed silt. Interlaminated sand and silt, and sand beds form relatively minor deposits, principally within the lower half of the alluvium, and thin beds of medium‐coarse sand and pea gravel can be present locally within the lower metre of the alluvium. The alluvium is interpreted to consist of overbank deposits from 0 to 2–3 m depth, oblique accretion deposits from 2–3 to 8–12 m depth and oblique accretion and/or channel deposits from 8–12 m to the base of the sequence. The massive bedding within the oblique accretion deposits is interpreted to represent the remnants of couplet deposits that were initially composed of interbedded, muddy silt and sand‐sized silt aggregates, as is consistent with the contemporary bank sedimentation. The post‐depositional disintegration and/or compaction of the aggregates has caused the loss of the sand‐sized texture. The disturbed silt beds are interpreted as slump structures caused by large‐scale rotational failures along the convex banks. Overall, the Red River represents a portion of a continuum of muddy, fine‐grained streams; where the alluvium lacks a distinct coarse unit, oblique accretion deposits form a majority of the floodplain, and large‐scale slump features are present.  相似文献   

15.
鄂尔多斯盆地东胜地区沉积体系与砂岩型铀成矿   总被引:7,自引:0,他引:7  
赵宏刚  欧光习 《铀矿地质》2006,22(3):136-142,189
沉积体系分析在可地浸砂岩型铀矿床的研究中起着非常重要的作用.本文以沉积体系分析和层序地层学为依据,对鄂尔多斯盆地东胜地区中侏罗统直罗组沉积体系特征、沉积相的空间展布、沉积环境的演化和层序地层学等方面进行了研究,认为:(1)沉积相的平面分布控制着砂体的空间展布,进而影响着赋铀砂体的空间分布;(2)沉积相和沉积环境的演化创造了良好的岩相及岩性组合条件,有利于层间氧化作用的进行;(3)沉积层序控制了3层结构的岩性空间组合.  相似文献   

16.
通过野外地质露头和钻孔岩心观察以及对大量钻孔岩心编录和测井解释资料的综合统计分析,笔者将伊犁盆地南缘西段中下侏罗统水西沟群划分出4个大的沉积体系:八道湾组(J1b)的冲积扇沉积体系、三工河组—西山窑组一段的辫状河三角洲沉积体系、西山窑组二段至三段的浅湖沼泽沉积体系和西山窑组四段至五段的曲流河三角洲沉积体系。文中详细讨论了伊犁盆地南缘西段水西沟群各沉积体系的沉积相特征,研究了水西沟群沉积体系及沉积相与砂岩型铀矿的成矿关系,指出辫状河三角洲沉积体系是砂岩型铀矿成矿最有利的沉积体系,三角洲前缘河口坝及席状砂亚相、三角洲平原辫状河流亚相、扇中-扇端亚相及三角洲平原分流河道亚相是砂岩型铀矿主要的控矿沉积相。  相似文献   

17.
The Barataria barrier coast formed between two major distributaries of the Mississippi River delta: the Plaquemines deltaic headland to the east and the Lafourche deltaic headland to the west. Rapid relative sea‐level rise (1·03 cm year?1) and other erosional processes within Barataria Bay have led to substantial increases in the area of open water (> 775 km2 since 1956) and the attendant bay tidal prism. Historically, the increase in tidal discharge at inlets has produced larger channel cross‐sections and prograding ebb‐tidal deltas. For example, the ebb delta at Barataria Pass has built seaward > 2·2 km since the 1880s. Shoreline erosion and an increasing bay tidal prism also facilitated the formation of new inlets. Four major lithofacies characterize the Barataria coast ebb‐tidal deltas and associated sedimentary environments. These include a proximal delta facies composed of massive to laminated, fine grey‐brown to pale yellow sand and a distal delta facies consisting of thinly laminated, grey to pale yellow sand and silty sand with mud layers. The higher energy proximal delta deposits contain a greater percentage of sand (75–100%) compared with the distal delta sediments (60–80%). Associated sedimentary units include a nearshore facies consisting of horizontally laminated, fine to very fine grey sand with mud layers and an offshore facies that is composed of grey to dark grey, laminated sandy silt to silty clay. All facies coarsen upwards except the offshore facies, which fines upwards. An evolutionary model is presented for the stratigraphic development of the ebb‐tidal deltas in a regime of increasing tidal energy resulting from coastal land loss and tidal prism growth. Ebb‐tidal delta facies prograde over nearshore sediments, which interfinger with offshore facies. The seaward decrease in tidal current velocity of the ebb discharge produces a gradational contact between proximal and distal tidal delta facies. As the tidal discharge increases and the inlet grows in dimensions, the proximal and distal tidal delta facies prograde seawards. Owing to the relatively low gradient of the inner continental shelf, the ebb‐tidal delta lithosome is presently no more than 5 m thick and is generally only 2–3 m in thickness. The ebb delta sediment is sourced from deepening of the inlet and the associated channels and from the longshore sediment transport system. The final stage in the model envisages erosion and segmentation of the barrier chain, leading to a decrease in tidal discharge through the former major inlets. This process ultimately results in fine‐grained sedimentation seaward of the inlets and the encasement of the ebb‐tidal delta lithosome in mud. The ebb‐tidal deltas along the Barataria coast are distinguished from most other ebb deltas along sand‐rich coasts by their muddy content and lack of large‐scale stratification produced by channel cut‐and‐fills and bar migration.  相似文献   

18.
A sedimentary model for hooked spit depositional systems based on ground‐penetrating radar and sedimentological data is presented. The recurved main spit of Sylt Island (southern North Sea) is dominated by migrating sand dunes; the investigated hooked spit exhibits a system of foredune ridges, oriented perpendicular to the dunes of the recurved spit. The development of the hooked spit is related closely to the presence of an adjacent tidal inlet, where strong tidal currents and a steep bathymetry prevent a further northward progradation of the main spit and trigger a deflection from northerly‐directed to easterly‐directed net sediment transport. Ground‐penetrating radar data and shallow sediment cores reveal the sedimentary architecture of the hooked spit in high resolution and allow the proposition of a genetic stratigraphic model. It is shown that the growth of the hooked spit is controlled by the interplay of alongshore migrating foreshore beach drifts under fair‐weather conditions and strong erosional events, interpreted as the result of rare severe storms. These storms may excavate scarps in the backshore, which play an important role in the development of foredune ridges. Accelerator mass spectrometry 14C ages indicate an absolute age of at least 1300 years for the hooked spit, which possibly correlates with strengthened erosion of the main spit. In contrast to the main spit, where the sediment budget is negative nowadays, growth of the hooked spit beach accelerated significantly during the last decades. This effect can probably be attributed to enhanced beach‐nourishments updrift along the main spit and makes the investigated hooked spit a natural laboratory to study the influence of increasing sediment supply into a system developing under the conditions of sea‐level rise. The study shows that the same external forces lead to distinct progradational processes along one barrier‐spit system.  相似文献   

19.
Thick till sheets deposited during the Quaternary form significant aquitards in many areas of North America. However, the detailed sedimentary heterogeneity and architecture and depositional history of till units are not well understood. This study utilizes architectural element analysis to delineate the internal sedimentary architecture of the Tiskilwa Formation exposed at two outcrop sections in north‐central Illinois, USA. Architectural element analysis facilitates systematic delineation of sedimentary architecture based on the nature of facies contacts and change in facies associations, delineation of unit geometries and understanding of depositional processes at different scales of resolution; making architectural element analysis suitable for the sedimentological analysis and palaeoenvironmental reconstruction of subglacial deposits. Eleven facies types are identified in this study, including sand, gravel and diamict facies that record a suite of subglacial depositional processes. Detailed analysis of facies contacts (bounding surface hierarchy) and change in facies associations allows the delineation of five architectural elements, including coarse‐grained lens, coarse‐grained sheet, mixed zone, diamict lens and diamict sheet elements. The spatial arrangement and genetic interpretation of elements, and their spatial relationship with fifth‐order bounding surfaces, allows the delineation of five larger scale architectural units (‘element associations’), which can be mapped in the local study area and record at least three stacked successions of meltwater accumulation and till deposition. The results of this study can be utilized for architectural analysis of till sheets and provide insight to groundwater flow pathways through till in the study area and elsewhere.  相似文献   

20.
Coastal dune systems consisting of allochemical grains are important sedimentary archives of Pleistocene age in both of the hemispheres between the latitudes of 20° to 40°. The south Saurashtra coast in western India exhibits a large section of Middle Pleistocene aeolianites in the form of coastal cliffs, which is famous as ‘Miliolite’. Miliolites of Gopnath in south‐east Saurashtra are the oldest known coastal aeolianite deposits (age >156 ka which corresponds to Marine Isotope Stage 6) in western India. Aeolian deposits of similar ages have also been reported from the Thar Desert in north‐west India and from Southern Arabia which were largely controlled by the south‐west monsoon wind system that affects the entire belt corresponding to Sahara–Sahel, the Arabian Peninsula and north‐western India. Miliolite deposits in Gopnath are characterized by grainfall, grainflow and wind ripple laminations. At least three types of aeolian bounding surfaces have been identified. Five major facies have been identified which represent the dune and interdune relationship within the coastal aeolian system. The major dune bodies are identified as transverse dune types. The Gopnath aeolianites were deposited under dominantly dry aeolian conditions. Facies association reveals two different phases of aeolian accumulation, namely initiation of aeolian sedimentation after a prolonged hiatus and the establishment of a regularized aeolian sedimentation system. While initiation of aeolian sedimentation is marked by vast stretches of sheet sand with occasional dune bodies, the overlying thick, tabular, laterally extensive cross‐stratified units manifest regular aeolian sedimentation. However, the dune building events in Gopnath were interrupted by development of laterally extensive palaeosol horizons. Eustasy and climate exerted the major allogenic controls on the aeolian sedimentation by affecting the sediment budget as well as influencing the sedimentation pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号