首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Ground-penetrating radar (GPR) experiments were conducted on a Quaternary sedimentary (made up of gravel, sand and loess) site to image the structures and tectonic features. Two sets of antennae, 50 and 100 MHz, have been tested in a water saturated alluvial deposits (mostly sand and gravel). The 100 MHz antennae provided adequate penetration depth and allowed better lateral continuity and resolution of the subsurface targets than the 50 MHz antennae. Results show that most of GPR data are contaminated by strong diffraction hyperbolae caused by above-ground objects near the survey line. Therefore, it is very important to recognize the diffractions through air and not to confuse them with the reflections from underground geologic features. Despite the air diffraction problem, the GPR data allow us to prospect subsurface sedimentary and tectonic structures. Water table, channels and meander bars are observed on GPR data. Most of these observations are correlated with borehole and trench data.  相似文献   

2.
Natural soil pipes are common and significant in upland blanket peat catchments yet there are major problems in finding and defining the subsurface pipe networks. This is particularly important because pipeflow can contribute a large proportion of runoff to the river systems in these upland environments and may significantly influence catchment sediment and solute yields. Traditional methods such as digging soil pits are destructive and time‐consuming (particularly in deep peat) and only provide single point sources of information. This paper presents results from an experiment to assess the use of ground‐penetrating radar (GPR) to remotely sense pipes in blanket peat. The technique is shown to be successful in identifying most of the pipes tested in the pilot catchment. Comparison of data on pipes identified by GPR and verified by manual measurement suggests that pipes can be located in the soil profile with a depth accuracy of 20 to 30 cm. GPR‐identified pipes were found throughout the soil profile; however, those within 10–20 cm of the surface could not be identified using the 100 or 200 MHz antennae due to multiple surface reflections. Generally pipes smaller than 10 cm in diameter could not be identified using the technique although modifications are suggested that will allow enhanced resolution. Future work would benefit from the development of dual‐frequency antennae that will allow the combination of high‐resolution data with the depth of penetration required in a wetland environment. The GPR experiment shows that pipe network densities were much greater than could be detected from surface observation alone. Thus, GPR provides a non‐destructive, fast technique which can produce continuous profiles of peat depth and indicate pipe locations across survey transects. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
Vertical fractures with openings of less than one centimetre and irregular karst cause abundant diffractions in Ground‐Penetrating Radar (GPR) records. GPR data acquired with half‐wavelength trace spacing are uninterpretable as they are dominated by spatially undersampled scattered energy. To evaluate the potential of high‐density 3D GPR diffraction imaging a 200 MHz survey with less than a quarter wavelength grid spacing (0.05 m × 0.1 m) was acquired at a fractured and karstified limestone quarry near the village of Cassis in Southern France. After 3D migration processing, diffraction apices line up in sub‐vertical fracture planes and cluster in locations of karstic dissolution features. The majority of karst is developed at intersections of two or more fractures and is limited in depth by a stratigraphic boundary. Such high‐resolution 3D GPR imaging offers an unprecedented internal view of a complex fractured carbonate reservoir model analogue. As seismic and GPR wave kinematics are similar, improvements in the imaging of steep fractures and irregular voids at the resolution limit can also be expected from high‐density seismic diffraction imaging.  相似文献   

4.
Field experiments show ground penetrating radar (GPR) can be used to image shallow carbonate stratigraphy effectively in a variety of settings. In south Florida, the position and structure of cap rock cover on limestone can be an important control on surface water flow and vegetation, but larger scale outcrops (tens of meters) of cap rock are sparse. GPR mapping through south Florida prairie, cypress swamp and hardwood hammock resolves variations in thickness and structure of cap rock to 3 m and holds the potential to test theories for cap rock–vegetation relationships. In other settings, carbonate strata are mapped to test models for the formation of local structural anomalies. A test of GPR imaging capabilities on an arid caliche (calcrete) horizon in southeastern Nevada shows depth penetration to 2 m with resolution of the base of caliche. GPR profiling also succeeds in resolving more deeply buried (5 m) limestone discontinuity surfaces that record subaerial exposure in south Florida.  相似文献   

5.
Ground penetrating radar (GPR) survey was conducted in the Wushanting mud volcano field (Yanchao, Kaohsiung) using a 500 MHz antennae, which allowed high-resolution imaging of subsurface structures. Seven GPR reflection characteristics are recognized. Sigmoid GPR reflection patterns resulted from a recent mud lobe deposited above an underlying older mud lobe front. Contorted GPR facies resulted from recent mud flow which encountered obstacles. Subparallel reflections resulted from mud volcano deposits of limited flowability, low velocity and gentle gradient. Hummocky reflection patterns are formed by interfingering of recent mud lobes building onto low land. Disrupted GPR facies were due to lateral breaks of continuity from mud cracks, which, according to field observation, can provide channels for erosion and form deeper erosion gullies. GPR time slices of different depths are rendered as a three-dimensional model. Approximately orbicular GPR reflection characteristics can indicate arcuate stacked mud lobe fronts of different periods. Some depositional models to explain GPR reflection characteristics can be founded upon observations of recent sedimentary phenomena. The models of this study may be applied to paleoenvironments and the depositional evolution of mud volcanoes in similar geological settings.  相似文献   

6.
Since target reflections directly depend on the emitted pulse characteristics, a key factor for carrying out a successful GPR survey is to know as much as possible about the transmission features of the antennas used. This information is very important in order to choose the right antennas and set the appropriate configuration parameters for a specific survey. With this in mind this paper deals with the development of a set of laboratory experiments on the resolution capabilities of three bowtie antennas at frequencies of 500, 800 and 1000 MHz. Results from these measurements give a first estimation of the resolution of the antennas under test, showing the advantage of performing experiments rather than relying only on theoretical assumptions. The results are also expressed in terms of the central wavelength for each antenna and compared with some theoretical estimations proposed in the specialized bibliography.  相似文献   

7.
The structure and ice content of ice caves are poorly understood. Ground penetrating radar (GPR) can provide useful insights but has only rarely been applied to ice caves. This paper interprets GPR images (radargrams) in terms of internal structure, stratification, compaction, thickness and volume of the ice block in the Peña Castil ice cave (Central Massif of Picos de Europa, northern Spain), providing the endokarst geometry of the ice cave in GPR data reflections. Eight radargrams were obtained by applying a shielded ground‐coupled antenna with a nominal frequency of 400 MHz. Although the radargrams do not depict the ice–basal bedrock interface, they suggest that the ice block is at least 54 m deep and similarly thick. Some curved reflection signatures suggest a potential vertical displacement in the block of ice, and thus certain dynamics in the ice body. Other images show numerous interbedded clasts and thin sediment layers imaged as banded reflections. In this particular cave a direct visual inspection of the ice stratigraphy is a difficult task but GPR provides clear reflectivity patterns of some of its internal features, making GPR a suitable instrument for this and future studies to achieve a better and broader understanding of the internal behavior of ice caves.  相似文献   

8.
Ground penetrating radar (GPR) survey was conducted in the Wushanting mud volcano field (Yanchao, Kaohsiung) using a 500 MHz antennae, which allowed high-resolution imaging of subsurface structures. Seven GPR reflection characteristics are recognized. Sigmoid GPR reflection patterns resulted from a recent mud lobe deposited above an underlying older mud lobe front. Contorted GPR facies resulted from recent mud flow which encountered obstacles. Subparallel reflections resulted from mud volcano deposits of limited flowability, low velocity and gentle gradient. Hummocky reflection patterns are formed by interfingering of recent mud lobes building onto low land. Disrupted GPR facies were due to lateral breaks of continuity from mud cracks, which, according to field observation, can provide channels for erosion and form deeper erosion gullies. GPR time slices of different depths are rendered as a three-dimensional model. Approximately orbicular GPR reflection characteristics can indicate arcuate stacked mud lobe fronts of different periods. Some depositional models to explain GPR reflection characteristics can be founded upon observations of recent sedimentary phenomena. The models of this study may be applied to paleoenvironments and the depositional evolution of mud volcanoes in similar geological settings.  相似文献   

9.
探地雷达应用概述   总被引:29,自引:16,他引:13       下载免费PDF全文
以ASTM标准规范为基础对探地雷达(Ground Penetrating Radar 以下简称GPR)的地下探测方法的应用做了比较系统的概述,主要内容包括:部分专业术语的解释;测试过程中雷达探测深度及其中心频率、垂直分辨率、水平分辨率等的关系,测试过程中常见的天线移动方式,以及雷达波速的预测几种方法,数据显示方式;雷达数据解释和数据处理的一般过程及方法.目前我国尚没有关于GPR的国家规范或行业标准,文章对GPR的使用及规范的编制具有一定的参考意义.  相似文献   

10.
This study demonstrates the potential value of a combined unmanned aerial vehicle (UAV) Photogrammetry and ground penetrating radar (GPR) approach to map snow water equivalent (SWE) over large scales. SWE estimation requires two different physical parameters (snow depth and density), which are currently difficult to measure with the spatial and temporal resolution desired for basin-wide studies. UAV photogrammetry can provide very high-resolution spatially continuous snow depths (SD) at the basin scale, but does not measure snow densities. GPR allows nondestructive quantitative snow investigation if the radar velocity is known. Using photogrammetric snow depths and GPR two-way travel times (TWT) of reflections at the snow-ground interface, radar velocities in snowpack can be determined. Snow density (RSN) is then estimated from the radar propagation velocity (which is related to electrical permittivity of snow) via empirical formulas. A Phantom-4 Pro UAV and a MALA GX450 HDR model GPR mounted on a ski mobile were used to determine snow parameters. A snow-free digital surface model (DSM) was obtained from the photogrammetric survey conducted in September 2017. Then, another survey in synchronization with a GPR survey was conducted in February 2019 whilst the snowpack was approximately at its maximum thickness. Spatially continuous snow depths were calculated by subtracting the snow-free DSM from the snow-covered DSM. Radar velocities in the snowpack along GPR survey lines were computed by using UAV-based snow depths and GPR reflections to obtain snow densities and SWEs. The root mean square error of the obtained SWEs (384 mm average) is 63 mm, indicating good agreement with independent SWE observations and the error lies within acceptable uncertainty limits.  相似文献   

11.
In arctic streams, depth of thaw beneath the stream channel is likely a significant parameter controlling hyporheic zone hydrology and biogeochemical cycling. As part of an interdisciplinary study of this system, we conducted a field investigation to test the effectiveness of imaging substream permafrost using ground‐penetrating radar (GPR). We investigated three sites characterized by low‐energy water flow, organic material lining the streambeds, and water depths ranging from 0·2 to 2 m. We acquired data using a 200 MHz pulsed radar system with the antennas mounted in the bottom of a small rubber boat that was pulled across the stream while triggering the radar at a constant rate. We achieved excellent results at all three sites, with a clear continuous image of the permafrost boundary both peripheral to and beneath the stream. Our results demonstrate that GPR can be an effective tool for measuring substream thaw depth. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Multidimensional GPR array processing using Kirchhoff migration   总被引:1,自引:0,他引:1  
We compare the ability of several practical ground-penetrating radar (GPR) array processing methods to improve signal-to-noise ratio (SNR), increase depth of signal penetration, and suppress out-of-plane arrivals for data with SNR of roughly 1. The methods include two-dimensional (2-D) monostatic, three-dimensional (3-D) monostatic, and 3-D bistatic Kirchhoff migration. The migration algorithm is modified to include the radiation pattern for interfacial dipoles. Results are discussed for synthetic and field data. The synthetic data model includes spatially coherent noise sources that yield nonstationary signal statistics like those observed in high noise GPR settings. Array results from the model data clearly indicate that resolution and noise suppression performance increases as array dimensionality increases. Using 50-MHz array data collected on a temperate glacier (Gulkana Glacier, AK), we compare 2-D and 3-D monostatic migration results. The data have low SNR and contain reflections from a complex, steeply dipping bed. We demonstrate that the glacier bed can only be accurately localized with the 3-D array. In addition, we show that the 3-D array increases SNR (relative to a 2-D array) by a factor of three.  相似文献   

13.
Shear wave velocity–depth information is required for predicting the ground motion response to earthquakes in areas where significant soil cover exists over firm bedrock. Rather than estimating this critical parameter, it can be reliably measured using a suite of surface (non-invasive) and downhole (invasive) seismic methods. Shear wave velocities from surface measurements can be obtained using SH refraction techniques. Array lengths as large as 1000 m and depth of penetration to 250 m have been achieved in some areas. High resolution shear wave reflection techniques utilizing the common midpoint method can delineate the overburden-bedrock surface as well as reflecting boundaries within the overburden. Reflection data can also be used to obtain direct estimates of fundamental site periods from shear wave reflections without the requirement of measuring average shear wave velocity and total thickness of unconsolidated overburden above the bedrock surface. Accurate measurements of vertical shear wave velocities can be obtained using a seismic cone penetrometer in soft sediments, or with a well-locked geophone array in a borehole. Examples from thick soil sites in Canada demonstrate the type of shear wave velocity information that can be obtained with these geophysical techniques, and show how these data can be used to provide a first look at predicted ground motion response for thick soil sites.  相似文献   

14.
Ground penetrating radar (GPR) systems can be used in many applications of snow and ice research. The information from the GPR is used to identify and interpret layers, objects and different structures in the snow. A commercially available GPR system was further developed to work in the rough environment of snow and ice. The applied GPR is a 900 MHz system that easily reaches snow depths of up to 10 meters. The system was calibrated in the course of several manual snow depth measurements during each survey. The depth resolution depends on the snow type and is around ±0.1 m. The GPR system is carried alongside a line of interest and is triggered by an odometer wheel at regular adjustable steps. All equipment is mounted in a sledge and is pulled by a snowmobile over the snow surface. This setup allows for an efficient coverage of several kilometers of terrain profiles. The radar profiles give a real time two-dimensional impression of structures and objects and the interface between snow and the underlying ground. The actual radar profile is shown on a screen on the sledge allowing the immediate marking of objects and structures. During the past three years the instrument was successfully used for the study of snow distributions, for the detection of glacier crevasses under the snow cover, and for the search of avalanche victims in avalanche debris. The results show the capability of the instrument to detect persons and objects in the snow cover. In the future, this device may be a new tool for avalanche rescue operations. Today, the size and weight of the system prevents the accessing of very steep slopes and areas not accessible to snowmobiles. Further developments will decrease the size of the system and make it a valuable tool to quantify snow masses in avalanche release zones and run-out areas.  相似文献   

15.
Shallow carbonates are of utmost importance as potential sources of groundwater in karstified semi-arid terrains. Ground-Penetrating Radar (GPR) is being increasingly used as a prominent mapping tool in such environments. However, its potential in exploring and identifying shallow water-saturated zones (WSZs) in carbonates is constrained by the geoelectrical properties of carbonate soils as a function of moisture content. We report results of a case study that includes laboratory geoelectrical characterization and their comparison to in situ GPR attenuation measurements performed on Cretaceous Edwards Formation rudist mounds in central Texas, which we hypothesize as analogs for water-bearing formations in semi-arid karstified carbonate terrains. Dielectric measurements on field-collected rock samples carried out in the laboratory under controlled conditions of moisture saturation suggest that real and imaginary parts of dielectric constants of rocks with higher porosity and/or permeability have steeper dependence on pore moisture content; they produce better dielectric contrasts but allow shallower penetration. Our analyses suggest that within carbonates, dielectric contrasts improve with decrease in sounding frequency and/or increase in moisture content; and the relationship between dielectric permittivity and moisture content may be represented by 3rd order polynomial equations. GPR surveys using a wide-band 400 MHz antenna reveal subsurface mound morphologies with heights of ~ 1–2 m and basal diameters of ~ 8–10 m resembling outcrop analogs. Each mound appears to be composed of smaller amalgamated lithounits that seem geoelectrically similar. Amplitudes decays of the backscattered radar signal correlate to moisture distribution. Measuring the differences in signal attenuation allows differentiation between saturated and non-saturated zones. Velocity analyses of GPR profiles enable estimation of moisture distribution in the vicinity of the mounds. Optimal delineation and production of high-resolution GPR data up to a depth of ~ 10 m were observed for a sounding frequency of ~ 250 MHz with moisture content of ~ 5% by weight. Below this moisture level, the dielectric contrast is insufficient to uniquely identify water-saturated zones from the surrounding geoelectrical context, and above it, the radar signal is substantially attenuated leading to a total inefficiency of the method.  相似文献   

16.
This work illustrates the practicality of investigating sinkholes integrating data gathered by ground penetrating radar (GPR), electrical resistivity imaging (ERI) and trenching or direct logging of the subsidence‐affected sediments in combination with retrodeformation analysis. This mutidisciplinary approach has been tested in a large paleosinkhole developed during the deposition of a Quaternary terrace on salt‐bearing evaporites. The subsidence structure, exposed in an artificial excavation, is located next to Puilatos, a village that was abandoned in the 1970s due to severe subsidence damage. Detailed logging of the exposure revealed that the subsidence structure corresponds to an asymmetric sagging and collapse paleosinkhole with no clear evidence of recent activity. The sedimentological and structural relationships together with the retrodeformation analysis indicate that synsedimentary subsidence controlled channel location, the development of a palustrine environment and local changes in the channel pattern. GPR profiles were acquired using an array of systems with different antenna frequencies, including some recently developed shielded antennas with improved vertical resolution and penetration depth. Although radargrams imaged the faulted sagging structure and provided valuable data on fault throw, they did not satisfactorily image the complex architecture of the fluvial deposit. ERI showed lower resolution but higher penetration depth when compared to GPR, roughly capturing the subsidence structure and yielding information on the thickness of the high‐resistivity alluvium and the nature of the underlying low‐resistivity karstic residue developed on top of the halite‐bearing evaporitic bedrock. Data comparison allows the assessment of the advantages and limitations of these complementary techniques, highly useful for site‐specific sinkhole risk management. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Geophysical surveys and chemical analyses on cores were carried out in three Ontario peatlands, from which we have gained a better understanding of the peat properties that control the geophysical responses. The electrical conductivity depends linearly on the concentration of total dissolved solids in the peat pore waters and the pore waters in turn bear the ionic signatures of the underlying mineral sediments. The ionic concentration, and thus the electrical conductivity, increase linearly from the surface to basement. The average bulk electrical conductivity of peatlands at Ellice Marsh, near Stratford, and at Wally Creek Area Forest Drainage Project, near Cochrane, are of the order of 25 mS/m. The Mer Bleue peatland, near Ottawa, has extremely high electrical conductivity, reaching levels of up to 380 mS/m near the base of the peat. The Mer Bleue peatland water has correspondingly high values of total dissolved solids, which originate from the underlying Champlain Sea glaciomarine clays. The dielectric permittivity in peats is largely controlled by the bulk water content. Ground penetrating radar can detect changes in water content greater than 3%, occurring within a depth interval less than 15 cm. The principal peatland interfaces detected are the near-surface aerobic to anaerobic transition and the peat to mineral basement contact. The potential for the successful detection of the basement contact using the radar can be predicted using the radar instrument specifications, estimates of the peatland depth, and either the bulk peat or the peat pore water electrical conductivities. Predicted depths of penetration of up to 10 m for Ellice Marsh and Wally Creek exceed the observed depths of 1 to 2 m. At Mer Bleue, on the other hand, we observe that, as predicted, a 100 MHz signal will penetrate to the base of a 2 m thick peat but a 200 MHz signal will not.  相似文献   

18.
We evaluate the reliability of the joint use of Ground Penetrating Radar (GPR) and Time Domain Reflectometry (TDR) to map dry snow depth, layering, and density where the snowpack thickness is highly irregular and the use of classical survey methods (i.e., hand probes and snow sampling) is unsustainable.We choose a test site characterised by irregular ground morphology, slope, and intense wind action (about 3000 m a.s.l., Western Alps, northern Italy) in dry snow conditions and with a snow-depth ranging from 0.3 m to 3 m over a few tens of metres over the course of a season.The combined use of TDR and high-frequency GPR (at a nominal frequency of 900 MHz) allows for rapid high-resolution imaging of the snowpack. While the GPR data show the interface between the snowpack and the ground, the snow layering, and the presence of snow crusts, the TDR survey allows the local calibration of wave speed based on GPR measurements and the estimation of layer densities. From January to April, there was a slight increase in the average wave speed from 0.22 to 0.24 m/ns from the accumulation zone to the eroded zone. The values are consistent with density values in the range of 350–450 kg/m3, with peaks of 600 kg/m3, as gravimetrically measured from samples from snow pits at different times. The conversion of the electromagnetic wave speed into density agrees with the core samples, with an estimated uncertainty of about 10%.  相似文献   

19.
以SIR-3000单通道地质雷达的400MHz,900MHz天线为研究手段,说明地质雷达在探测同一目的区的应用效果。  相似文献   

20.
The US Geological Survey, in cooperation with the National Drilling Company of Abu Dhabi, is conducting a 4-year study of the fresh and slightly saline groundwater resources of the eastern Abu Dhabi Emirate. Most of this water occurs in a shallow aquifer, generally less than 150 m deep, in the Al Ain area. A critical part of the Al Ain area coincides with a former petroleum concession area where about 2780 km of vibroseis data were collected along 94 seismic lines during 1981–1983. Field methods, acquistion parameters, and section processing were originally designed to enhance reflections expected at depths ranging from 5000 to 6000 m, and subsurface features directly associated with the shallow aquifer system were deleted from the original seismic sections. The original field tapes from the vibroseis survey were reprocessed in an attempt to extract shallow subsurface information (depths less than 550 m) for investigating the shallow aquifer.A unique sequence of reproccessing parameters was established after reviewing the results from many experimental tests. Many enhancements to the resolution of shallow seismic reflections resulted from: (1) application of a 20-Hz, low-cut filter; (2) recomputation of static corrections to a datum nearer the land surface; (3) intensive velocity analyses; and (4) near-trace muting analyses. The number, resolution, and lateral continuity of shallow reflections were greatly enhanced on the reprocessed sections, as was the delineation of shallow, major faults. Reflections on a synthetic seismogram, created from a borehole drilled to a depth of 786 m on seismic line IQS-11, matcheddprecisely with shallow reflections on the reprocessed section. The 33 reprocessed sections were instrumental in preparing a map showing the major structural features that affect the shallow aquifer system. Analysis of the map provides a better understanding of the effect of these shallow features on the regional occurrence, movement, and quality of groundwater in the concession area. Results from this study demonstrate that original seismic field tapes collected for deep petroleum exploration can be reprocessed to explore for groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号