首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The shape of the Sun’s secular activity cycle is found to be a saw-tooth curve. The additional Schwabe cycle 4′ (1793–1799) suggested by Usoskin, Mursula, and Kovaltsov (2001a) is taken into account in the telescopic sunspot record (1610–2001). Instead of a symmetrical Gleissberg cycle, a saw-tooth of exactly eight Schwabe sunspot maxima (‘Pulsation’) is found. On average, the last sunspot maximum of an eight-Schwabe-cycle saw-tooth pulsation has been about three times as high as its first maximum. The Maunder Minimum remains an exception to this pattern. The Pulsation is defined as a secular-scale envelope of Schwabe-cycle maxima, whereas the Gleissberg cycle is a result of long-term smoothing of the sunspot series.  相似文献   

2.
The shape of the Sun’s secular activity cycle is found to be a saw-tooth curve. The additional Schwabe cycle 4′ (1793–1799) suggested by Usoskin, Mursula, and Kovaltsov (2001a) is taken into account in the telescopic sunspot record (1610–2001). Instead of a symmetrical Gleissberg cycle, a saw-tooth of exactly eight Schwabe sunspot maxima (‘Pulsation’) is found. On average, the last sunspot maximum of an eight-Schwabe-cycle saw-tooth pulsation has been about three times as high as its first maximum. The Maunder Minimum remains an exception to this pattern. The Pulsation is defined as a secular-scale envelope of Schwabe-cycle maxima, whereas the Gleissberg cycle is a result of long-term smoothing of the sunspot series.  相似文献   

3.
F. De Meyer 《Solar physics》1981,70(2):259-272
The sunspot record for the time interval 1749–1977 can be represented conveniently by an harmonic model comprising a relatively large number of lines. Solar activity can otherwise be considered as a sequence of partly overlapping events, triggered periodically at intervals of the order of 11 years. Each individual cycle is approximated by a function of the Maxwell distribution type; the resulting impulse model consists of the superposition of the independent pulses. Application of these two models for the prediction of annual values of the Wolf sunspot numbers leads to controversial results. Mathematical modelling of the sunspot time series does not give an unambiguous result.  相似文献   

4.
On the stability of the 11-year solar cycle period (and a few others)   总被引:2,自引:0,他引:2  
J. P. Rozelot 《Solar physics》1994,149(1):149-154
The existence of an 11.1-yr periodic variation in the sunspot number record has been recognized for many years; however, periodicities other than this remain questionable. Power spectral analysis of the International sunspot number is performed and the results are compared with those for the same period using values that were taken randomly inside the error bars. The findings are that only a few periodicities show noticeable peaks. These include periodicities of 8.49, 10.01, 10.58, 11.10, 12.50, 58.50, and 97.20 yr. On the basis of these seven periodicities, one can loosely simulate the observable sunspot record (r = 0.75). We find that discrepancies in number and value of periodicities with other authors appear to be related to the length of the sunspot record used in the analysis and to the occurrence of 0.3-yr windows around the inferred periodicities.  相似文献   

5.
We have analyzed the direct records of sunspot number between 1749 and 1990 with the same technique currently used in the study of stellar activity cycles observed with Mount Wilson Observatory's 60-inch telescope. In order to mimic the stellar time series, which span only two decades, we analyzed twenty- and fifty-year intervals of the sunspot data in comparison to the entire record. We also examined the reliability of the oldest (pre-1850) sunspot records. The mean solar cycle period determined from the entire record (1749–1990) is 11.04 yr with a computed precision of ± 0.01 yr, but an overall accuracy of only ±1.1 yr. The large uncertainty is caused by variation of the cycle period with time and not observational uncertainty.The correct sunspot period is found slightly more often (82%) in 50-year intervals compared to 20-year (74%). The cause is twofold: first, a more precise period results from the longer sample length, and second, other periodicities exist in the sunspot record, so that a more accurate determination of the dominant 11.0-year period results from the longer time series. As a guideline for cycle periodicities in other stars, the solar results indicate that the 50-year intervals would produce more precise and accurate periods than the 20-year time series. On the other hand, useful statistics concerning long-term activity could be obtained from a less-frequently sampled group of stars that is substantially larger than the group of 100 lower Main-Sequence stars currently observed at Mount Wilson, although knowledge of short-term variability would be sacrificed.Pre-doctoral fellow, Harvard-Smithsonian Center for Astrophysics.  相似文献   

6.
The paper presents a Neuro-Fuzzy model to predict the features of the forthcoming sunspot cycles 24 and 25. The sunspot time series were analyzed with the proposed model. It is optimized based on Backpropagation scheme and applied to the yearly smoothed sunspot numbers. The appropriate number of network inputs for the sunspots data series is obtained based on sequential forward search for the Neuro-Fuzzy model. According to the model prediction the maximum amplitudes of the cycles 24 and 25 will occur in the year 2013 and year 2022 with peaks of 101±8 and 90.7±8, respectively. The correlation and error analysis are discussed to ensure the performance of the proposed Neuro-Fuzzy approach as a predictor for sunspot time series. The correlation coefficient between Neuro-Fuzzy model forecasted sunspot number values with the actual ones is 0.96.  相似文献   

7.
We use the recently presented group sunspot number series to show that a persistent 22-year cyclicity exists in sunspot activity throughout the entire period of about 400 years of direct sunspot observations. The amplitude of this cyclicity is about 10% of the present sunspot activity level. A 22-year cyclicity in sunspot activity is naturally produced by the 22-year magnetic polarity cycle in the presence of a relic dipole magnetic field. Accordingly, a persistent 22-year cyclicity in sunspot activity gives an evidence for the existence of such a relic magnetic field in the Sun. The stable phase and the roughly constant amplitude of this cyclicity during times of very different sunspot activity level strongly support this interpretation.  相似文献   

8.
Vaquero  J.M.  Gallego  M.C. 《Solar physics》2002,206(1):209-211
It is the purpose of this paper to present evidence concerning the appearance of a sunspot in A.D. 939 observed by Arabs from the Iberian Peninsula. The sunspot record appears in the Arab source known as al-Muqtabis V.  相似文献   

9.
Wilson  Robert M. 《Solar physics》1998,182(1):217-230
Samuel Heinrich Schwabe, the discoverer of the sunspot cycle, observed the Sun routinely from Dessau, Germany during the interval of 1826–1868, averaging about 290 observing days per year. His yearly counts of ‘clusters of spots’ (or, more correctly, the yearly number of newly appearing sunspot groups) provided a simple means for describing the overt features of the sunspot cycle (i.e., the timing and relative strengths of cycle minimum and maximum). In 1848, Rudolf Wolf, a Swiss astronomer, having become aware of Schwabe's discovery, introduced his now familiar ‘relative sunspot number’ and established an international cadre of observers for monitoring the future behavior of the sunspot cycle and for reconstructing its past behavior (backwards in time to 1818, based on daily sunspot number estimates). While Wolf's reconstruction is complete (without gaps) only from 1849 (hence, the beginning of the modern era), the immediately preceding interval of 1818–1848 is incomplete, being based on an average of 260 observing days per year. In this investigation, Wolf's reconstructed record of annual sunspot number is compared against Schwabe's actual observing record of yearly counts of clusters of spots. The comparison suggests that Wolf may have misplaced (by about 1–2 yr) and underestimated (by about 16 units of sunspot number) the maximum amplitude for cycle 7. If true, then, cycle 7's ascent and descent durations should measure about 5 years each instead of 7 and 3 years, respectively, the extremes of the distributions, and its maximum amplitude should measure about 86 instead of 70. This study also indicates that cycle 9's maximum amplitude is more reliably determined than cycle 8's and that both appear to be of comparable size (about 130 units of sunspot number) rather than being significantly different. Therefore, caution is urged against the indiscriminate use of the pre-modern era sunspot numbers in long-term studies of the sunspot cycle, since such use may lead to specious results.  相似文献   

10.
Using multi-wavelength data of Hinode, the rapid rotation of a sunspot in ac-tive region NOAA 10930 is studied in detail. We found extraordinary counterclockwise rotation of the sunspot with positive polarity before an X3.4 flare. From a series of vector magnetograms, it is found that magnetic force lines are highly sheared along the neu-tral line accompanying the sunspot rotation. Furthermore, it is also found that sheared loops and an inverse S-shaped magnetic loop in the corona formed gradually after the sunspot rotation. The X3.4 flare can be reasonably regarded as a result of this movement. A detailed analysis provides evidence that sunspot rotation leads to magnetic field linestwisting in the photosphere. The twist is then transported into the corona and triggers flares.  相似文献   

11.
We show that the Wolf sunspot numbers W and the group sunspot numbers GSN are physically different indices of solar activity and that it is improper to compare them. Based on the approach of the so-called “primary” indices from the observational series of W(t) and GSN(t), we suggest series of yearly mean sunspot areas beginning in 1610 and monthly mean sunspot areas beginning in 1749.  相似文献   

12.
The Elatina formation in South Australia, which provides a rich fossil record of presumptive solar activity in the late Precambrian, is of great potential significance for the physics of the Sun because it contains laminae grouped in cycles of about 12, an appearance suggestive of the solar cycle. The actual spectrum of the lamina-thickness series is rather complex, 20 or more spectral lines having been recognized by Fourier analysis. It is shown how these numerous lines arise as combination frequencies, from a much simpler intrinsic spectrum, by rectification. Optical studies of the Sun have shown that there is a magnetic polarity reversal on the Sun every 11 years approximately, but terrestrial consequences of solar activity, for example in the ozonosphere or ionosphere, do not respond to solar magnetism; thus the negative-going semi-cycles of the full magnetic cycle are in effect rectified according to a linear law. Application of this knowledge to the Elatina formation shows that derectification simplifies the spectrum of the laminathickness series in exactly the way that one would expect if the solar cycle were at work here also. Zig-zag effect, an alternation of cycle thickness, is taken to be due, not to a beat phenomenon, but to rectification in the presence of a weak 345-year oscillation; subtraction of this oscillation after derectification is essential to the simplifying procedure. The fundamental period is established at a new sharper value of 23.7 ± 0.2 years as compared with the looser 22.2 ± 1.8 years for the modern sunspot series. This paper treats the laminae as varves laid down yearly and modulated in thickness in accordance with the late Precambrian sunspot activity for the year of deposition. Since the difference between 23.7 and 22.2 is less than a standard deviation it is premature to speculate that the sunspot cycle period has undergone secular change; indeed the possibility that the solar oscillator has been secularly stable is not ruled out. The high Q now demonstrated for the varve oscillator (around 120 compared with a previous value of 12) weakens support for that part of solar dynamo theory that ascribes the solar cycle to a self-sustaining relaxation osculation; conversely, the evidence for an internal solar clock mechanism is strenghtened. A wave propagation zone intervening between the clock and the solar surface could produce the intrinsic spectrum.  相似文献   

13.
D. H. Hathaway 《Solar physics》2013,286(2):347-356
Daily records of sunspot group areas compiled by the Royal Observatory, Greenwich, from May of 1874 through 1976 indicate a curious history for the penumbral areas of the smaller sunspot groups. On average, the ratio of penumbral area to umbral area in a sunspot group increases from 5 to 6 as the total sunspot group area increases from 100 to 2000 μHem (a μHem is 10?6 the area of a solar hemisphere). This relationship does not vary substantially with sunspot group latitude or with the phase of the sunspot cycle. However, for the sunspot groups with total areas <?100 μHem, this ratio changes dramatically and systematically through this historical record. The ratio for these smallest sunspots is near 5.5 from 1874 to 1900. After a rapid rise to more than 7 in 1905, it drops smoothly to less than 3 by 1930 and then rises smoothly back to more than 7 in 1961. It then returns to near 5.5 from 1965 to 1976. The smooth variation from 1905 to 1961 shows no indication of any step-like changes that might be attributed to changes in equipment or personnel. The overall level of solar activity was increasing monotonically during this time period when the penumbra-to-umbra area ratio dropped to less than half its peak value and then returned. If this history can be confirmed by other observations (e.g. Mt. Wilson or Kodaikanal), it may impact our understanding of penumbra formation, our dynamo models, and our estimates of historical changes in the solar irradiance.  相似文献   

14.
Sunspot numbers form a comprehensive, long-duration proxy of solar activity and have been used numerous times to empirically investigate the properties of the solar cycle. A number of correlations have been discovered over the 24 cycles for which observational records are available. Here we carry out a sophisticated statistical analysis of the sunspot record that reaffirms these correlations, and sets up an empirical predictive framework for future cycles. An advantage of our approach is that it allows for rigorous assessment of both the statistical significance of various cycle features and the uncertainty associated with predictions. We summarize the data into three sequential relations that estimate the amplitude, duration, and time of rise to maximum for any cycle, given the values from the previous cycle. We find that there is no indication of a persistence in predictive power beyond one cycle, and we conclude that the dynamo does not retain memory beyond one cycle. Based on sunspot records up to October 2011, we obtain, for Cycle 24, an estimated maximum smoothed monthly sunspot number of 97±15, to occur in January??C?February 2014 ± six months.  相似文献   

15.
The Maunder Minimum is the period between 1645 and 1715. Its main characteristic is abnormally low and prolonged solar activity. However, some authors have doubted the low level of solar activity during that period by questioning the accuracy and objectivity of the observers. This work presents a particular case of a sunspot observed during the Maunder Minimum with an unusual shape of its umbra and penumbra: a hexagon. This sunspot was observed by Cassini in November 1676, just at the core of the Maunder Minimum. This historical observation is compared with a twin case that occurred recently in May 2016. The conclusion reached is that Cassini’s record is another example of the good quality of the observations that were made during the Maunder Minimum, showing the meticulousness of the astronomers of that epoch. This sunspot observation made by Cassini does not support the conclusions of Zolotova and Ponyavin (Astrophys. J. 800, 42, 2015) that professional astronomers in the seventeenth century only registered round sunspots. Finally, a discussion is given of the importance of this kind of unusual sunspot record for a better assessment of the true level of solar activity in the Maunder Minimum.  相似文献   

16.
Catalogues of non-telescopic sunspot observations from the Orient have been presented by several authors. Since atmospheric dust facilitates naked-eye observation of the Sun we investigate its possible influence by comparing the historical records of sunspot sightings and atmospheric dust storms. A distinction is made between the record up to the end of the Ming dynasty that is based on court documents and the post-Ming reports that are all provincial sightings. The earlier record is found to be significantly anti-correlated with C-14 fluctuations while the latter one is weakly anti-correlated. The provincial sightings contain a much larger signature of atmospheric turbidity, as is also indicated by their poor comparison with telescopic data.  相似文献   

17.
Several authors have shown different interesting characteristics of the long time series of solar activity reconstructed from historical naked-eye sunspot observation. For this, it is essential to make use of catalogues of this kind of observation. The aim of this note is to show a naked eye sunspot observed by Galileo. This sunspot was seen by naked eye and by telescope. It is curious that it has been forgotten until now by the compilers of the naked-eye sunspots catalogues in spite of Galileo’s fame.  相似文献   

18.
J. M. Vaquero 《Solar physics》2004,223(1-2):283-286
Several authors have shown different interesting characteristics of the long time series of solar activity reconstructed from historical naked-eye sunspot observation. For this, it is essential to make use of catalogues of this kind of observation. The aim of this note is to show a naked eye sunspot observed by Galileo. This sunspot was seen by naked eye and by telescope. It is curious that it has been forgotten until now by the compilers of the naked-eye sunspots catalogues in spite of Galileo’s fame.  相似文献   

19.
In an earlier paper of this series it was shown how the Wilson depression influences the determination of sunspot rotation velocities. Using this finding and the fact that stable recurrent sunspots show a very constant rotation velocity it is possible to determine the effect of wrong solar image radii on the determination of sunspot rotation velocities and correct them.Mitteilungen aus dem Kiepenheuer-Institut Nr. 238.  相似文献   

20.
Bravo  S.  Stewart  G. A. 《Solar physics》1997,173(1):193-198
We have shown in previous papers that a close relationship exists between the evolution of polar coronal hole area, estimated from K-coronameter observations, and the Wolf sunspot number, with a time lag of about half a solar cycle. In this paper we study the same relationship, but with the total coronal hole area at the base of the corona as obtained from a potential field model of the coronal magnetic field, which provides a more complete series of about three solar cycles. We confirm the relationship for the two last cycles and find that the forward time shift in the coronal hole area for the best correlation with sunspot number is almost the same for cycles 21 and 22, and this shift is also the time between peaks in both series. We use this result to make an early prediction of the time and size of the sunspot maximum for solar cycle 23, and find that this should occur early in 2001 and have a magnitude of about 190, similar to that of the two previous sunspot cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号