首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The late Quaternary paleoclimate of eastern Beringia has primarily been studied by drawing qualitative inferences from vegetation shifts. To quantitatively reconstruct summer temperatures, we analyzed lake sediments for fossil chironomids, and additionally we analyzed the sediments for fossil pollen and organic carbon content. A comparison with the δ18O record from Greenland indicates that the general climatic development of the region throughout the last glaciation–Holocene transition differed from that of the North Atlantic region. Between  17 and 15 ka, mean July air temperature was on average 5°C colder than modern, albeit a period of near-modern temperature at  16.5 ka. Total pollen accumulation rates ranged between  180 and 1200 grains cm− 2 yr− 1. At  15 ka, approximately coeval with the Bølling interstadial, temperatures again reached modern values. At  14 ka, nearly 1000 yr after warming began, Betula pollen percentages increased substantially and mark the transition to shrub-dominated pollen contributors. Chironomid-based inferences suggest no evidence of the Younger Dryas stade and only subtle evidence of an early Holocene thermal maximum, as temperatures from  15 ka to the late Holocene were relatively stable. The most recognizable climatic oscillation of the Holocene occurred from  4.5 to 2 ka.  相似文献   

2.
Dated oxygen and carbon isotopic profiles from a Holocene stalagmite (11.9–1.1 ka) from the Jeita cave, Lebanon, are compared to variations in crystallographic habit, stalagmite diameter and growth rate. The profiles show generally high δ18O and δ13C values during the late-glacial period, low values during the early Holocene, and again high values after 5.8 ka. On the basis of the good correlation between the morphological and crystallographic aspect of the stalagmite and its isotopic records, as well as the isotopic response of speleothems from central and northern Israel, we relate high δ18O and δ13C values to drier conditions. Between 6.5 and 5.8 ka an increase in isotopic values, a decrease in growth rate and stalagmite diameter suggest a transition from wet conditions in the early Holocene towards drier conditions in the mid-Holocene. The transition occurred in two steps, first a progressive change to drier conditions started at 6.5 ka but was interrupted by a short ( 100 years) return to wetter conditions, followed by an equally rapid (< 200 years) change to drier conditions.  相似文献   

3.
Melting glaciers and ice caps on Baffin Island contribute roughly half of the sea-level rise from all ice in Arctic Canada, although they comprise only one-fourth of the total ice in the region. The uncertain future response of arctic glaciers and ice caps to climate change motivates the use of paleodata to evaluate the sensitivity of glaciers to past warm intervals and to constrain mechanisms that drive glacier change. We review the key patterns and chronologies of latest Pleistocene and Holocene glaciation on Baffin Island. The deglaciation by the Laurentide Ice Sheet occurred generally slowly and steadily throughout the Holocene to its present margin (Barnes Ice Cap) except for two periods of rapid retreat: An early interval 12 to 10 ka when outlet glaciers retreated rapidly through deep fiords and sounds, and a later interval 7 ka when ice over Foxe Basin collapsed. In coastal settings, alpine glaciers were smaller during the Younger Dryas period than during the Little Ice Age. At least some alpine glaciers apparently survived the early Holocene thermal maximum, which was several degrees warmer than today, although data on glacier extent during the early Holocene is extremely sparse. Following the early Holocene thermal maximum, glaciers advanced during Neoglaciation, beginning in some places as early as 6 ka, although most sites do not record near-Little Ice Age positions until 3.5 to 2.5 ka. Alpine glaciers reached their largest Holocene extents during the Little Ice Age, when temperatures were 1–1.5 °C cooler than during the late 20th century. Synchronous advances across Baffin Island throughout Neoglaciation indicate sub-Milankovitch controls on glaciation that could involve major volcanic eruptions and solar variability. Future work should further elucidate the state of glaciers and ice caps during the early Holocene thermal maximum and glacier response to climate forcing mechanisms.  相似文献   

4.
High-resolution pollen analysis of Alborán Sea core MD95-2043 provides a 48-ka continuous vegetation record that can be directly correlated with sea surface and deep-water changes. The reliability of this record is supported by comparison with that of Padul (Sierra Nevada, Spain). Marine Isotope Stage (MIS) 3 was characterised by fluctuations in Quercus forest cover in response to Dansgaard-Oeschger climate variability. MIS 2 was characterised by the dominance of semi-desert vegetation. Despite overall dry and cold conditions during MIS 2, Heinrich events (HEs) 2 and 1 were distinguished from the last glacial maximum by more intensely arid conditions. Taxon-specific vegetation responses to a tripartite climatic structure within the HEs are observed. In MIS 1, the Bölling-Allerød was marked by rapid afforestation, while a re-expansion of semi-desert environments occurred during the Younger Dryas. The maximum development of mixed Quercus forest occurred between 11.7 and 5.4 cal ka BP, with forest decline since 5.4 cal ka BP. On orbital timescales, a long-term expansion of semi-desert vegetation from MIS 3 into MIS 2 reflects global ice-volume trends, while Holocene arboreal decline reflects summer insolation decrease. The influence of precession on the amplitude of forest development and vegetation composition is also detected.  相似文献   

5.
Sedimentology, carbon isotope and sequence stratigraphic analysis of subsurface sediments from western part of Ganges–Brahmaputra (GB) delta plain shows that a Late Quaternary marine clay and fluvial channel-overbank sediments of MIS 5 and 3 highstands are traceable below the Holocene strata. During the Last Glacial Maximum (LGM) sea-level lowering of >100 m produced a regional unconformity (type 1), represented by palaeosols and incised valley. C4 vegetation expanded on exposed lowstand surface in an ambient dry glacial climate. At 9 ka transgression inundated the lowstand surface pushing the coastline and mangrove front 100 km inland. Simultaneous intensification of monsoon and very high sediment discharge (4–8 times than modern) caused a rapid aggradation of both floodplain and estuarine valley fill deposits between 8 and 7 ka. The Hoogli River remaining along its present drainage possibly acted as the main conduit for transgression and sediment discharge that was subsequently abandoned. C3 vegetation dominated the delta plain during this time. From 7 ka onward progradation of delta plain started and continued till recent. This period experienced a mixed C3–C4 vegetation with localized mangroves in the mid-Holocene to dominant return of C4 vegetation in the late Holocene period. The study indicates that while the initiation of western part of GB delta occurred at least 1 ka earlier than the global mean delta formation age, the progradation started at 7 ka, at least 2 ka earlier than thought before. The terrestrial vegetation change was modulated by changes in depositional environment, specific ecological niches and climate rather than pCO2.  相似文献   

6.
This paper explores the environmental conditions that faced the people of ancient Jawa during the Holocene, as well as previous prehistoric periods of the mid-late Pleistocene. Calcite speleothems in a lava tube are dated using the U-Th method, to marine oxygen isotope stage 7 from  250 to 240 ka and from  230 to  220 ka; and the stage 5/4 transition between  80 and 70 ka. The available evidence indicates general aridity of the Black Desert during most of the mid-late Quaternary, punctuated by short wetter periods, when the Mediterranean cyclonic systems intensified and penetrated the north Arabian Desert. These Mediterranean systems had a longer and more intense effect on the desert fringe closer to the Mediterranean and only rarely penetrated the Black Desert of Jawa. The results do not exclude some increase of rainfall which did not change water availability dramatically during the warm Holocene. The ancient Jawa city appears to have depended on technological ability to build elaborate runoff-collection systems, which became the prime condition for success.  相似文献   

7.
We compare six high-resolution Holocene, sediment cores along a S–N transect on the Norwegian–Svalbard continental margin from ca 60°N to 77.4°N, northern North Atlantic. Planktonic foraminifera in the cores were investigated to show the changes in upper surface and subsurface water mass distribution and properties, including summer sea-surface temperatures (SST). The cores are located below the axis of the Norwegian Current and the West Spitsbergen Current, which today transport warm Atlantic Water to the Arctic. Sediment accumulation rates are generally high at all the core sites, allowing for a temporal resolution of 10–102 years. SST is reconstructed using different types of transfer functions, resulting in very similar SST trends, with deviations of no more than ±1.0/1.5 °C. A transfer function based on the maximum likelihood statistical approach is found to be most relevant. The reconstruction documents an abrupt change in planktonic foraminiferal faunal composition and an associated warming at the Younger Dryas–Preboreal transition. The earliest part of the Holocene was characterized by large temperature variability, including the Preboreal Oscillations and the 8.2 k event. In general, the early Holocene was characterized by SSTs similar to those of today in the south and warmer than today in the north, and a smaller S–N temperature gradient (0.23 °C/°N) compared to the present temperature gradient (0.46 °C/°N). The southern proxy records (60–69°N) were more strongly influenced by slightly cooler subsurface water probably due to the seasonality of the orbital forcing and increased stratification due to freshening. The northern records (72–77.4°N) display a millennial-scale change associated with reduced insolation and a gradual weakening of the North Atlantic thermohaline circulation (THC). The observed northwards amplification of the early Holocene warming is comparable to the pattern of recent global warming and future climate modelling, which predicts greater warming at higher latitudes. The overall trend during mid and late Holocene was a cooling in the north, stable or weak warming in the south, and a maximum S–N SST gradient of ca 0.7 °C/°N at 5000 cal. years BP. Superimposed on this trend were several abrupt temperature shifts. Four of these shifts, dated to 9000–8000, 5500–3000 and 1000 and 400 cal. years BP, appear to be global, as they correlate with periods of global climate change. In general, there is a good correlation between the northern North Atlantic temperature records and climate records from Norway and Svalbard.  相似文献   

8.
Seasonality of precipitation is an important yet elusive climate parameter in paleoclimatological reconstructions. This parameter can be inferred qualitatively from pollen and other paleoecological methods, but is difficult to assess quantitatively. Here, we have assessed seasonality of precipitation and summer surface wetness using compound specific hydrogen and carbon isotope ratios of vascular plant leaf waxes and Sphagnum biomarkers extracted from the sediments of an ombrotrophic peatland, Bøstad Bog, Nordland, Norway. Our reconstructed precipitation seasonality and surface wetness are consistent with regional vegetation reconstructions. During the early Holocene, 11.5–7.5 ka, Fennoscandia experienced a cool, moist climate. The middle Holocene, 7.5–5.5 ka, was warm and dry, transitioning towards cooler and wetter conditions from the mid-Holocene to the present. Changes in seasonality of precipitation during the Holocene show significant coherence with changes in sea surface temperature in the Norwegian Sea, with higher SST corresponding to greater percentage of winter precipitation. Both high SST in the Norwegian Sea and increased moisture delivery to northern Europe during winter are correlated with a strong gradient between the subpolar low and subtropical high over the North Atlantic (positive North Atlantic Oscillation).  相似文献   

9.
Timpanogos Cave, located near the Wasatch fault, is about 357 m above the American Fork River. Fluvial cave sediments and an interbedded carbonate flowstone yield a paleomagnetic and U–Th depositional age of 350 to 780 ka. Fault vertical slip rates, inferred from calculated river downcutting rates, range between 1.02 and 0.46 mm yr− 1. These slip rates are in the range of the 0–12 Ma Wasatch Range exhumation rate ( 0.5–0.7 mm yr− 1), suggesting that the long-term vertical slip rate remained stable through mid-Pleistocene time. However, the late Pleistocene (0–250 ka) decelerated slip rate ( 0.2–0.3 mm yr− 1) and the accelerated Holocene slip rate ( 1.2 mm yr− 1) are consistent with episodic fault activity. Assuming that the late Pleistocene vertical slip rate represents an episodic slowing of fault movement and the long-term (0–12 Ma) average vertical slip rate, including the late Pleistocene and Holocene, should be  0.6 mm yr− 1, there is a net late Pleistocene vertical slip deficit of  50–75 m. The Holocene and late Pleistocene slip rates may be typical for episodes of accelerated and slowed fault movement, respectively. The calculated late Pleistocene slip deficit may mean that the current accelerated Wasatch fault slip rate will extend well into the future.  相似文献   

10.
We present the longest-duration directly dated terrestrial palaeoclimate record from the western Mediterranean region: a flowstone speleothem from Gitana Cave, southeast Spain. The main phase of growth was 274 to 58 ka, dated by multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) U-series methods. Effective precipitation, which we consider primarily responsible for flowstone calcite δ13C variations, measured at 300 μm resolution, was higher during interglacials associated with marine oxygen isotope stages (MIS) 7 and 5, and lower during glacial MIS 6. There is a close correspondence between speleothem δ13C and sea surface temperature (SST) estimates from adjacent Atlantic Ocean cores during MIS 6, which implies that oceanic conditions are critical in controlling the western Mediterranean terrestrial moisture balance during glacial periods. Other features of our record, such as the sequence of termination II warming/moistening between approximately 133 and 127 ka, including a “pause” around 130–128 ka, and the lagged termination of MIS 5 warm intervals (5e, 5c and 5a) are similar to other terrestrial records within the Mediterranean basin, indicating climate synchroneity along the northern Mediterranean coast. The Gitana cave region also may have been a refugium for temperate species during short-lived cold/arid periods during MIS 5.  相似文献   

11.
Integration of on-land and offshore geomorphological and structural investigations coupled to extensive radiometric dating of co-seismically uplifted Holocene beaches allows characterization of the geometry, kinematics and seismotectonics of the Scilla Fault, which borders the eastern side of the Messina Strait in Calabria, Southern Italy. This region has been struck by destructive historical earthquakes, but knowledge of geologically-based source parameters for active faults is relatively poor, particularly for those running mostly offshore, as the Scilla Fault does. The  30 km-long normal fault may be divided into three segments of  10 km individual length, with the central and southern segments split in at least two strands. The central and northern segments are submerged, and in this area marine geophysical data indicate a youthful morphology and locally evidence for active faulting. The on-land strand of the western segment displaces marine terraces of the last interglacial (124 to 83 ka), but seismic reflection profiles suggest a full Quaternary activity. Structural data collected on bedrock faults exposed along the on-land segment provide evidence for normal slip and  NW-SE extension, which is consistent with focal mechanisms of large earthquakes and GPS velocity fields in the region. Detailed mapping of raised Holocene marine deposits exposed at the coastline straddling of the northern and central segments supplies evidence for two co-seismic displacements at  1.9 and  3.5 ka, and a possible previous event at  5 ka. Co-seismic displacements show a consistent site value and pattern of along-strike variation, suggestive of characteristic-type behaviour for the fault. The  1.5–2.0 m average co-seismic slips during these events document Me  6.9–7.0 earthquakes with  1.6–1.7 ka recurrence time. Because hanging-wall subsidence cannot be included into slip magnitude computation, these slips reflect footwall uplift, and represent minimum average estimates. The palaeoseismological record based on the palaeo-shorelines suggests that the last rupture on the Scilla Fault during the February 6, 1783 Mw = 5.9–6.3 earthquake was at the expected time but it may have not entirely released the loaded stress since the last great event at  1.9 ka. Comparison of the estimated co-seismic extension rate based on the Holocene shoreline record with available GPS velocities indicates that the Scilla Fault accounts for at least  15–20% of the contemporary geodetic extension across the Messina Strait.  相似文献   

12.
A 61-m-long sediment core (HB-1) and 690 km of high-resolution seismic profiles from offshore of the Yellow River delta, Bohai Sea, were analyzed to document the stratigraphy and sea-level changes during the Late Pleistocene and Holocene. Accelerator mass spectrometry 14C dating and analyses of benthic foraminifera, ostracods, the mineral composition, and sedimentary characteristics were performed for core HB-1, and seven depositional units (DU 1–DU 7 in descending order) were identified. The seismic reflection data were interpreted in light of the sedimentological data of the core and correlated with other well-studied cores obtained previously in the Bohai Sea area. Seven seismic units (SU 1 to SU 7 in descending order) were distinguished and interpreted as follows: SU 7 corresponds to marine facies in Marine Isotopic Stage (MIS) 5; SU 6, to terrestrial facies in MIS 4; SU 5 and SU 4, to alternating terrestrial and marine facies (DU 7–DU 5) in MIS 3; SU 3, to terrestrial facies (DU 4) in MIS 2; SU 2, to Holocene marine facies (DU 3 and DU 2); and SU 1, to modern Yellow River delta sediments deposited since 1855 (DU 1).The sedimentary facies from DU 7 to DU 5 reflect sea-level fluctuations during MIS 3, and the boundary between DU 5 and DU 6, which coincides with that between SU 4 and SU 5, is a distinctive, laterally continuous, undulating erosion surface, with up to 20 m of relief. This surface reflects subaerial exposure between transgressions during MIS 3. Estimated sea levels during MIS 3 ranged from −35 ± 5 to −60 ± 5 m or lower, with short-term fluctuations of 20 m. Sedimentary environments in the Bohai Sea area were governed mainly by eustatic sea-level changes and the Bohai Strait topography, which controls the entry of sea water into the Bohai Sea area.The mineral composition of the sediment core suggests that the Yellow River did not discharge into the Bohai Sea, or at least did not influence the study area significantly, during parts of MIS 3 and MIS 2 to the early Holocene (11–8.5 cal kyr BP).  相似文献   

13.
14.
A detailed study of uplifted Middle–Late Pleistocene marine terraces on the eastern side of northern Calabria, southern Italy, provides insights into the temporal and spatial scale variability of vertical displacement rates over a time span of 400 ka. Calabria is located in the frontal orogen of southern Italy above the westerly-plunging Ionian slab, and a combination of lithospheric, crustal, and surface processes concurred to rapid Late Quaternary uplift. Eleven terrace orders and a raised Holocene beach were mapped up to 480 m a.s.l., and were correlated between the coastal slopes of Pollino and Sila mountain ranges across the Sibari Plain, facing the Ionian Sea side of northeastern Calabria. Precise corrections were applied to the measured shoreline angles in order to account for uncertainty in measurement, erosion of marine deposits, recent debris shedding, and bathymetric range of markers. Radiometric (ESR and 14C) dating of shells provides a crono-stratigraphic scheme, although many samples were found to be resedimented in younger terraces. Terrace T4, whose inner margin stands at elevations of 94–130 m, is assigned to MIS 5.5 (124 ka), based on new ESR dating and previous amino acid racemization estimations. The underlying terraces T3, T2 and T1 are attributed to MIS 5.3 (100 ka), 5.1 (80 ka) and 3 (60 ka), as inferred from their relative position supplemented by ESR and 14C age determinations. The age of higher terraces is poorly constrained, but conceivably is tracked back to MIS 11 (400 ka). The reconstructed depositional sequence of terraces attributed to MIS 5.5 and 7 reveals two regressive marine cycles separated by an alluvial fanglomerate, which, given the steady uplift regime, points to minor sub-orbital sea-level changes during interstadial highstands. Based on the terrace chronology, uplift in the last 400 ka occurred at an average rate of 1 mm/a, but was characterized by the alternation of more rapid (up to 3.5 mm/a) and slower (down to 0.5 mm/a) periods of displacement. Spatial variability in uplift rates is recorded by the deformation profile of terraces parallel to the coast, which document the growth of local fold structures.  相似文献   

15.
The emergence of low-frequency, high-amplitude, quasi-periodic (100-kyr) glacial variability during the middle Pleistocene in the absence of any significant change in orbital forcing indicates a fundamental change internal to the climate system. This middle Pleistocene transition (MPT) began 1250 ka and was complete by 700 ka. Its onset was accompanied by decreases in sea surface temperatures (SSTs) in the North Atlantic and tropical-ocean upwelling regions and by an increase in African and Asian aridity and monsoonal intensity. During the MPT, long-term average ice volume gradually increased by 50 m sea-level equivalent, whereas low-frequency ice-volume variability experienced a 100-kyr lull centered on 1000 ka followed by its reappearance 900 ka, although as a broad band of power rather than a narrow, persistent 100-kyr cycle. Additional changes at 900 ka indicate this to be an important time during the MPT, beginning with an 80-kyr event of extreme SST cooling followed by the partial recovery and subsequent stabilization of long-term North Atlantic and tropical ocean SSTs, increasing Southern Ocean SST variability primarily associated with warmer interglacials, the loss of permanent subpolar sea-ice cover, and the emergence of low-frequency variability in Pacific SSTs and global deep-ocean circulation. Since 900 ka, ice sheets have been the only component of the climate system to exhibit consistent low-frequency variability. With the exception of a near-universal organization of low-frequency power associated with marine isotope stages 11 and 12, all other components show an inconsistent distribution of power in frequency-time space, suggesting a highly nonlinear system response to orbital and ice-sheet forcing.Most hypotheses for the origin of the MPT invoke a response to a long-term cooling, possibly induced by decreasing atmospheric pCO2. None of these hypotheses, however, accounts for the geological constraint that the earliest Northern Hemisphere ice sheets covered a similar or larger area than those that followed the MPT. Given that the MPT was associated with an increase in ice volume, this constraint requires that post-MPT ice sheets were substantially thicker than pre-MPT ice sheets, indicating a change in subglacial conditions that influence ice dynamics. We review evidence in support of the hypothesis that such an increase in ice thickness occurred as crystalline Precambrian Shield bedrock became exposed by glacial erosion of a thick mantle of regolith. This exposure of a high-friction substrate caused thicker ice sheets, with an attendant change in their response to the orbital forcing. Marine carbon isotope data indicate a rapid transfer of organic carbon to inorganic carbon in the ocean system during the MPT. If this carbon came from terrigenous sources, an increase in atmospheric pCO2 would be likely, which is inconsistent with evidence for widespread cooling, Apparently rapid carbon transfer from terrestrial sources is difficult to reconcile with gradual erosion of regolith. A more likely source of organic carbon and nutrients (which would mitigate pCO2 rise) is from shelf and upper slope marine sediments, which were fully exposed for the first time in millions of years in response to thickening ice sheets and falling sealevels during the MPT. Modeling indicates that regolith erosion and resulting exposure of crystalline bedrock would cause an increase in long-term silicate weathering rates, in good agreement with marine Sr and Os isotopic records. We use a carbon cycle model to show that a post-MPT increase in silicate weathering rates would lower atmospheric pCO2 by 7–12 ppm, suggesting that the attendant cooling may have been an important feedback in causing the MPT.  相似文献   

16.
Holocene paleoclimates of India   总被引:4,自引:0,他引:4  
We present a comprehensive summary of the available palaeoclimate records from India and compare the results from different proxies. The results indicate (i) fluctuating lake levels during the early Holocene. The period of relatively higher lake levels from increased precipitation efficiency was reached only 7.2–6.0 cal kyr BP, possibly due to increased contribution from winter rainfall; (ii) the onset of aridity in NW India could have begun as early as 5.3 cal kyr BP. Subsequently, there were multiple wet events but of shorter duration and smaller magnitude than during the mid Holocene; (iii) there is evidence of several short term climate events in the proxy record. However, in the absence of a rigorous chronological framework a detailed regional correlation is not possible at this stage. Finally, a comparison between marine and terrestrial records indicates that episodes of strongest and weakest monsoon winds were not always associated with wettest and driest episodes respectively in the NW Indian lakes.  相似文献   

17.
Because of the deep glacial incision, the Lower Tagus Valley hosts a sedimentary record since 20 000 cal BP, making this a unique site along the European Atlantic margin with respect to palaeogeographic and sea level changes. Based on nine cross-sections and 55 radiocarbon dates together with a newly created relative sea level curve, we constructed five palaeogeographic maps of the infill of the Lower Tagus Valley since 20 000 cal BP. We illustrate that relative sea level rise and fluvial sediment supply were the prime forcing factors determining the depositional history and palaeogeographic changes. Around 20 000 cal BP a deeply incised braided river existed, which was directly connected to the ocean across the narrow continental shelf. After that (12 000 cal BP) the gradually moister and warmer climate caused a change to a single-channel river. During the following period (12 000–7000 cal BP) relative sea level rise resulted in a transgression in the Lower Tagus Valley and the establishment of extensive tidal environments. After relative sea level rise had ended (7000 cal BP) the valley was progressively filled by a fluvial wedge and tidally influenced bayhead delta. Since 1000 cal BP the valley-fill history was dominated by increased sediment input due to human-induced degradation of catchment slopes. Generally, climate was of subordinate importance during the entire studied period, merely causing a single-channel river resulting from the change from the cold Heinrich event 1 to the temperate Bölling–Allerød interstadial. Despite the tectonic activity in the region, neotectonic uplift or subsidence was limited, as supported by the horizontal relative sea level curve since 7000 cal BP. Neotectonics played a minor role due to the large distance from the Fennoscandian ice sheet and the narrow continental shelf, which prohibited strong glacio- and hydro-isostatic movements.  相似文献   

18.
Joint pollen and oxygen isotope data from Ocean Drilling Program Site 1234 in the southeast Pacific provide the first, continuous record of temperate South American vegetation and climate from the last 140 ka. Located at 36°S, 65 km offshore of Concepcion, Chile, Site 1234 monitors the climatic transition zone between northern semi-arid, summer dry-winter wet climate and southern year-round, rainy, cool temperate climate. Dominance of onshore winds suggests that pollen preserved here reflects transport to the ocean via rivers that drain the region and integrate conditions from the coastal mountains to the Andean foothills. Down-hole changes in diagnostic pollen assemblages from xeric lowland deciduous forest (characterized by grasses, herbs, ferns, and trees such as deciduous beech, Nothofagus obliqua), mesic Valdivian Evergreen Forest (including conifers such as the endangered Prumnopitys andina), and Subantarctic Evergreen Rainforest (comprised primarily of southern beech, N. dombeyi) reveal large rapid shifts that likely reflect latitudinal movements in atmospheric circulation and storm tracks associated with the southern westerly winds. During glacial intervals (MIS 2-4, and 6), rainforests and parkland dominated by Nothofagus moved northward into the region. At the MIS 6/5e transition, coeval with the rapid shift to lower isotopic values, rainforest vegetation was rapidly replaced by xeric plant communities associated with Mediterranean-type climate. An increased prominence of halophytic vegetation suggests that MIS 5e was more arid and possibly warmer than MIS 1. Although rainforest pollen rises again at the end of MIS 5e, lowland deciduous forest pollen persists through MIS 5d and 5c, into MIS 5b. Substantial millennial-scale variations occur in both interglacial and glacial regimes, attesting to the sensitivity of the southern westerly belt to climate change. Comparison of the cool, mesic N. dombeyi rainforest assemblage from Site 1234 with δ18O in the Byrd Ice core shows that on time scales longer than 10 ka, cool-moist conditions in central Chile were coherent with and occurred in phase with Antarctic cooling. This is also likely at millennial scales, although rainforest pollen lags Antarctic cooling with exponential response times of about 1000 years, which plausibly reflects the ecological response time to regional climate change.  相似文献   

19.
A high-resolution multi-proxy study including the elemental and isotopic composition of bulk organic matter, land plant-derived biomarkers, and alkenone-based sea-surface temperature (SST) from a marine sedimentary record obtained from the Jacaf Fjord in northern Chilean Patagonia (44°20′S) provided a detailed reconstruction of continental runoff, precipitation, and summer SST spanning the last 1750 yr. We observed two different regimes of climate variability in our record: a relatively dry/warm period before 900 cal yr BP (lower runoff and average SST 1°C warmer than present day) and a wet/cold period after 750 cal yr BP (higher runoff and average SST 1°C colder than present day). Relatively colder SSTs were found during 750–600 and 450–250 cal yr BP, where the latter period roughly corresponds to the interval defined for the Little Ice Age (LIA). Similar climatic swings have been observed previously in continental and marine archives of the last two millennia from central and southern Chile, suggesting a strong latitudinal sensitivity to changes in the Southern Westerly Winds, the main source of precipitation in southern Chile, and validating the regional nature of the LIA. Our results reveal the importance of the Chilean fjord system for recording climate changes of regional and global significance.  相似文献   

20.
A comprehensive record of lake level changes in the Dead Sea has been reconstructed using multiple, well dated sediment cores recovered from the Dead Sea shore. Interpreting the lake level changes as monitors of precipitation in the Dead Sea drainage area and the regional eastern Mediterranean palaeoclimate, we document the presence of two major wet phases ( 10–8.6 and  5.6–3.5 cal kyr BP) and multiple abrupt arid events during the Holocene. The arid events in the Holocene Dead Sea appear to coincide with major breaks in the Near East cultural evolution (at  8.6, 8.2, 4.2, 3.5 cal kyr BP). Wetter periods are marked by the enlargement of smaller settlements and growth of farming communities in desert regions, suggesting a parallelism between climate and Near East cultural development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号