首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used ex situ atomic force microscopy (AFM), scanning tunneling microscopy and spectroscopy (STM/STS) and X-ray photoelectron spectroscopy (XPS) to study the surfaces of natural arsenopyrite samples that were electrochemically polarized in 1 M HCl, or leached in acidic solutions containing ferric iron salts, and then reacted with aqueous gold (III) chloride at ambient temperatures. For arsenopyrite oxidized on a positive-going potential sweep, progressively increasing amounts of surface Fe(III)-O and As-O species, and of S/Fe and S/As ratios in a non-stoichiometric sulfidic layer were found. The products formed in the sweep to a potential of 0.6 V (Ag/AgCl) of the passivity region are shaped in about 100 nm protrusions of two sorts, which are arranged in micrometer-size separate areas, while they are largely mixed at higher, “transpassive” potentials. The quantities of surface alteration substances notably decrease after leaching in ferric chloride and ferric sulfate acidic solutions. Passivation of arsenopyrite was suggested to associate with the disordered, metal-deficient surface layer having moderate excess of sulfur rather than with the products of arsenopyrite oxidation. Exposure of arsenopyrite to 10−5-10−3 M (pH 2) solutions results in the deposition of 8-50 nm gold particles; only a small fraction of the gold is present as Au(I)-S species. The electrochemical oxidation at 0.6 V or ageing of arsenopyrite in air promotes the subsequent gold deposition; in contrast, the amount of Au deposited on arsenopyrite that was treated by leaching in ferric chloride and sulfate solutions was about 10 times smaller than with polished arsenopyrite samples. It has been concluded that reducing agents formed as intermediates of arsenopyrite decomposition facilitate the Au0 cementation although other factors related to the surface state of the arsenopyrite play a role as well. A decrease in the tunneling current magnitudes with decreasing the Au0 particle size has been revealed using STS. This effect along with the increase by 0.2-0.5 eV in the XPS Au 4f binding energies were tentatively ascribed to retarding the electron transitions by emerging electrostatic charge on gold nanoparticles (Coulomb blockade). Possible mechanisms for the effects, and their potential role in the deposition and hydrometallurgy of “invisible” gold are discussed.  相似文献   

2.
Pyrite plays the central role in the environmental issue of acid rock drainage. Natural weathering of pyrite results in the release of sulphuric acid which can lead to further leaching of heavy and toxic metals from other associated minerals. Understanding how pyrite reacts in aqueous solution is critical to understanding the natural weathering processes undergone by this mineral. To this end an investigation of the effect of solution redox potential (Eh) and various anions on the rate of pyrite leaching under carefully controlled conditions has been undertaken.Leaching of pyrite has been shown to proceed significantly faster at solution Eh of 900 mV (SHE) than at 700 mV, at pH 1, for the leach media of HCl, H2SO4 and HClO4. The predominant effect of Eh suggests electrochemical control of pyrite leaching with similar mechanism(s) at Eh of 700 and 900 mV albeit with different kinetics. Leach rates at 700 mV were found to decrease according to HClO4 > HCl > H2SO4 while at 900 mV the leach rate order was HCl > HClO4 > H2SO4. Solution Fe3+ activity is found to continually increase during all leaches; however, this is not accompanied by an increase in leach rate.Synchrotron based photoemission electron microscopy (PEEM) measurements showed a localised distribution of adsorbed and oxidised surface species highlighting that pyrite oxidation and leaching is a highly site specific process mediated by adsorption of oxidants onto specific surface sites. It appears that rates may be controlled, in part, by the propensity of acidic anions to bind to the surface, which varies according to , thus reducing the reactive or effective surface area. However, anions may also be involved in specific reactions with surface leach products. Stoichiometric dissolution data (Fe/S ratio), XPS and XRD data indicate that the highest leach rates (in HCl media at 900 mV Eh) correlate with relatively lower surface S abundance. Furthermore, there are indications that solution Cl assists oxidation especially at higher Eh through the prevention of surface S0 buildup at reactive surface sites.  相似文献   

3.
Fractionation of sulfur isotopes and selenium was measured between coexisting pyrite and chalcopyrite and between coexisting pyrrhotite and chalcopyrite from the Besshi deposit of Kieslager-type, Central Shikoku, Japan. In all the pyrite-chalcopyrite pairs studied, 34S is enriched in pyrite relative to chalcopyrite, while selenium is enriched conversely in chalcopyrite relative to pyrite. The mean 34Spy-cp value is +0.53±0.36 per mil, and the mean value of the distribution coefficient of selenium, Dcp-py, is 2.58±0.64. In all the pyrrhotite-chalcopyrite pairs studied, the two minerals are very close to each other both in sulfur isotope and Se/S ratios. The mean 34Spo-cp value is –0.08±0.16 per mil and the mean Dcp-po value is 0.99±0.05. The results have been discussed in comparison with similar data obtained for the Hitachi deposits of Kieslager-type, Japan (Yamamoto et al. 1983).  相似文献   

4.
In galvanic cell arrangements gold is electrochemically deposited on semiconducting sulfide minerals (pyrite, arsenopyrite, chalcopyrite) from aerated as well as H2S-saturated, gold-bearing 1 M KCl solutions. Observed cell potential differences of about 0.4–0.6 V in setups with one sulfide in aerated (cathode) and the other in H2S-saturated (anode) solutions are comparable with known self-potentials of natural sulfide ore bodies. Gold preferentially accumulates on the cathode, i.e. under oxidizing conditions. Linked sulfides of variable composition in the same environment, either oxidizing or reducing, yield potential differences up to 20 mV. Such assemblages simulate conditions typically occurring at surfaces of chemically inhomogeneous single crystals (e.g. zonation). Depending on chemical composition, sulfide minerals show either n- or p-type conductivity. Visible gold is preferentially accumulated on individual domains of sulfide surfaces that act as cathodes, i.e. p-type conductors in n-p junctions. The experimental results are discussed in view of electrochemical accumulation of visible gold on sulfides in nature. Arsenic is the most important element in establishing p-type conductivity of pyrite and arsenopyrite. This feature may explain why As is such a powerful pathfinder in gold exploration.  相似文献   

5.
We examined the solubility, mineralogy and geochemical transformations of sedimentary Fe in waterways associated with coastal lowland acid sulfate soils (CLASS). The waterways contained acidic (pH 3.26-3.54), FeIII-rich (27-138 μM) surface water with low molar Cl:SO4 ratios (0.086-5.73). The surficial benthic sediments had high concentrations of oxalate-extractable Fe(III) due to schwertmannite precipitation (kinetically favoured by 28-30% of aqueous surface water Fe being present as the FeIII species). Subsurface sediments contained abundant pore-water HCO3 (6-20 mM) and were reducing (Eh < −100 mV) with pH 6.0-6.5. The development of reducing conditions caused reductive dissolution of buried schwertmannite and goethite (formed via in situ transformation of schwertmannite). As a consequence, pore-water FeII concentrations were high (>2 mM) and were constrained by precipitation-dissolution of siderite. The near-neutral, reducing conditions also promoted SO4-reduction and the formation of acid-volatile sulfide (AVS). The results show, for the first time for CLASS-associated waterways, that sedimentary AVS consisted mainly of disordered mackinawite. In the presence of abundant pore-water FeII, precipitation-dissolution of disordered mackinawite maintained very low (i.e. <0.1 μM) S−II concentrations. Such low concentrations of S−II caused slow rates for conversion of disordered mackinawite to pyrite, thereby resulting in relatively low concentrations of pyrite (<300 μmol g−1 as Fe) compared to disordered mackinawite (up to 590 μmol g−1 as Fe). This study shows that interactions between schwertmannite, goethite, siderite, disordered mackinawite and pyrite control the geochemical behaviour of sedimentary Fe in CLASS-associated waterways.  相似文献   

6.
Geology and mineralogy of the Ulakhan Au-Ag epithermal deposit (northeastern Russia, Magadan Region) are considered. A four-stage scheme of mineral formation sequence is proposed. Concentrations of Au and Ag in minerals of early and late parageneses were determined. It has been established that uytenbogaardtite is associated with native gold and hypergenesis stage minerals — goethite, hydrogoethite, or limonite replacing pyrite. The compositions of uytenbogaardtite (Ag3AuS2), acanthite (Ag2S), and native gold were studied. The composition of the Ulakhan uytenbogaardtite is compared with those of Au and Ag sulfides from other deposits. Thermodynamic calculations in the system H2O–Fe–Au–Ag–S–C–Na–Cl were carried out, which simulate the interaction of native gold and silver with O2- and CO2-saturated surface waters (carbonaceous, sulfide-carbonaceous, and chloride-sodium-carbonaceous) in the presence and absence of acanthite and pyrite at 25 °C and 1 bar. In closed pyrite-including systems, native silver and kustelite are replaced by acanthite; electrum, by uytenbogaardtite, acanthite, and pure gold; and native gold with a fineness of 700–900‰, by pure gold and uytenbogaardtite. Under the interaction with surface waters in the presence of Ag2S and pyrite, Au-Ag alloys form equilibrium assemblages with petrovskaite or uytenbogaardtite and pure gold. The calculation results confirmed that Au and Ag sulfides can form after native gold in systems involving sulfide-carbon dioxide solutions (H2Saq > 10–4 m). The modeling results support the possible formation of uytenbogaardtite and petrovskaite with the participation of native gold in the hypergenesis zone of epithermal Au-Ag deposits during the oxidation of Au(Ag)-containing pyrite, acanthite, or other sulfides.  相似文献   

7.
胶东地区-1000 m以下深部找矿的重大突破,使得探明储量已达5000多t,成为探讨深部金的赋存状态及成矿作用的天然实验室。招贤金矿为焦家成矿带近年深部找矿重大突破之一,矿体主要产于-1260 m以深的晚侏罗世二长花岗岩中,受控于焦家断裂。金属矿物主要为黄铁矿、黄铜矿和银金矿等,脉石矿物包括石英、绢云母、方解石、钾长石等。围岩蚀变以钾长石化、硅化、黄铁绢英岩化、碳酸盐化为主。金矿物以自然金和银金矿为主,呈裂隙金或包体金分布于黄铁矿中,少数不可见金呈晶隙金分布于黄铁矿等矿物中。其中,黄铁矿w(S)=52.227%~54.915%、w(Fe)=44.749%~47.134%,原子个数比S/Fe=1.99~2.11,化学式FeS1.99~FeS2.11;黄铜矿w(S)=34.282%~35.140%、w(Fe)=29.263%~30.268%,w(Cu)=33.130%~34.114%,化学式Cu0.96FeS2.01~Cu1.01FeS2.10,平均化学式为C...  相似文献   

8.
利用电子探针研究甘肃陇南赵家庄金矿载金矿物特征   总被引:1,自引:1,他引:0  
应用偏光显微镜与电子探针相结合的手段是研究载金矿物的主要方法。本文采用镜下鉴定和电子探针分析技术,对赵家庄金矿中载金矿物含量、形态特征及其与其他矿物的空间关系开展研究,并对载金矿物进行定性和定量分析,探寻具有找矿意义的载金矿物和总结标志矿物特征。结果表明:研究区金矿石中主要载金矿物为黄铁矿,少量为黄铜矿、闪锌矿,这些载金矿物中Au含量依次为:细晶黄铁矿粗晶黄铁矿草莓状黄铁矿黄铜矿。不同时期的黄铁矿(粗晶黄铁矿、细晶黄铁矿、草莓状黄铁矿)中Au的分布均匀,但存在差异性,主要表现为细晶黄铁矿和草莓状黄铁矿中的Au含量较高(平均含量0. 14%~0. 18%),这种现象表明此类矿物为构造热液期形成,金易富集。Au以两种形式存在,一种是"可见金"包裹于脉石矿物中,或以裂隙金的形式嵌布在矿物晶隙及裂隙中;另一种是"不可见金"以纳米级颗粒金的形式存在于载金矿物中,也是Au的主要存在形式。本研究为后期矿床的成因、成矿过程和成矿机理研究提供了佐证,同时易于根据含金矿物的特征选择合适的选冶方法。  相似文献   

9.
Five Cu–Au epidote skarns are associated with the Mt. Shea intrusive complex, located in the 2.7–2.6 Ga Eastern Goldfields Province of the Archean Yilgarn craton, in greenstones bounded by the Boulder Lefroy and Golden Mile strike-slip faults, which control the Golden Mile (1,435 t Au) at Kalgoorlie and smaller “orogenic” gold deposits at Kambalda. The Cu–Au deposits studied are oxidized endoskarns replacing faulted and fractured quartz monzodiorite–granodiorite. The orebodies are up to 140 m long and 40 m thick. Typical grades are 0.5% Cu and 0.3 g/t Au although parts are richer in gold (1.5–4.5 g/t). At the Hannan South mine, the skarns consist of epidote, calcite, chlorite, magnetite (5–15%), and minor quartz, muscovite, and microcline. Gangue and magnetite are in equilibrium contact with pyrite and chalcopyrite. The As–Co–Ni-bearing pyrite contains inclusions of hematite, gold, and electrum and is intergrown with cobaltite and Cu–Pb–Bi sulfides. At the Shea prospect, massive, net-textured, and breccia skarns are composed of multistage epidote, actinolite, albite, magnetite (5%), and minor biotite, calcite, and quartz. Gangue and magnetite are in equilibrium with Co–Ni pyrite and chalcopyrite. Mineral-pair thermometry, mass-balance calculations, and stable-isotope data (pyrite δ34SCDT = 2.5‰, calcite δ13CPDB = −5.3‰, and δ18OSMOW = 12.9‰) indicate that the Cu–Au skarns formed at 500 ± 50°C by intense Ca–Fe–CO2–S metasomatism from fluids marked by an igneous isotope signature. The Mt. Shea stock–dike–sill complex postdates the regional D1 folding and metamorphism and the main phase of D2 strike-slip faulting. The suite is calc-akaline and comprises hornblende–plagioclase monzodiorite, quartz monzodiorite, granodiorite, and quartz–plagioclase tonalite porphyry. The intrusions display a wide range in silica content (53–73 wt% SiO2), in ratio (0.37–0.89), and in ratio (0.02–0.31). Chromium (62–345 ppm), Ni (23–158), Sr (311–1361 ppm), and Ba (250–2,581 ppm) contents are high, Sr/Y ratios are high (24–278, mostly >50), and the rare earth element patterns are fractionated . These features and a negative niobium anomaly relative to the normal mid-ocean ridge basalt indicate that the suite formed by hornblende fractionation from a subduction-related monzodiorite magma sourced from metasomatized peridotite in the upper mantle. The magnesian composition of many intrusions was enhanced due to hornblende crystallization under oxidizing hydrous conditions and during the subsequent destruction of igneous magnetite by subsolidus actinolite–albite alteration. At the Shea prospect, main-stage Cu–Au epidote skarn is cut by biotite–albite–dolomite schist and by red biotite–albite replacement bands. Post-skarn alteration includes 20-m-thick zones of sericite–chlorite–ankerite schist confined to two D3 reverse faults. The schists are mineralized with magnetite + pyrite + chalcopyrite (up to 0.62% Cu, 1.6 g/t Au) and are linked to skarn formation by shared Ca–Fe–CO2 metasomatism. Red sericitic alteration, marked by magnetite + hematite + pyrite, occurs in fractured porphyry. The biotite/sericite alteration and oxidized ore assemblages at the Shea prospect are mineralogically identical to magnetite–hematite-bearing gold lodes at Kambalda and in the Golden Mile. Published fluid inclusion data suggest that a “high-pressure”, oxidized magmatic fluid (2–9 wt% NaCl equivalent, , 200–400 MPa) was responsible for gold mineralization in structural sites of the Boulder Lefroy and Golden Mile faults. The sericite–alkerite lodes in the Golden Mile share the assemblages pyrite + tennantite + chalcopyrite and bornite + pyrite, and accessory high-sulfidation enargite with late-stage sericitic alteration zones developed above porphyry copper deposits.  相似文献   

10.
Arsenian pyrite in the Shuiyindong Carlin-type gold deposit in Guizhou, China, is the major host for gold with 300 to 4,000 ppm Au and 0.65 to 14.1 wt.% As. Electron miroprobe data show a negative correlation of As and S in arsenian pyrite, which is consistent with the substitution of As for S in the pyrite structure. The relatively homogeneous distribution of gold in arsenian pyrite and a positive correlation of As and Au, with Au/As ratios below the solubility limit of gold in arsenian pyrite, suggest that invisible gold is likely present as Au1+ in a structurally bound Au complex in arsenian pyrite. Geochemical modeling using the laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis of fluid inclusions for the major ore forming stage shows that the dominant Au species were Au(HS)2 (77%) and AuHS(aq)0 (23%). Gold-hydroxyl and Gold-chloride complexes were negligible. The ore fluid was undersaturated with respect to native Au, with a saturation index of −3.8. The predominant As species was H3AsO30 (aq). Pyrite in the Shuiyindong deposit shows chemical zonation with rims richer in As and Au than cores, reflecting the chemical evolution of the ore-bearing fluids. The early ore fluids had relatively high activities of As and Au, to deposit unzoned and zoned arsenian pyrite that host most gold in the deposit. The ore fluids then became depleted in Au and As and formed As-poor pyrite overgrowth rims on gold-bearing arsenian pyrite. Arsenopyrite overgrowth aggregates on arsenian pyrite indicate a late fluid with relatively high activity of As. The lack of evidence of boiling and the low iron content of fluid inclusions in quartz, suggest that iron in arsenian pyrite was most likely derived from dissolution of ferroan minerals in the host rocks, with sulfidation of the dissolved iron by H2S-rich ore fluids being the most important mechanism of gold deposition in the Shuiyindong Carlin-type deposit.  相似文献   

11.
Mineralogical, geochemical and microbial characterization of tailings solids from the Greens Creek Mine, Juneau, Alaska, was performed to evaluate mechanisms controlling aqueous geochemistry of near-neutral pH pore water and drainage. Core samples of the tailings were collected from five boreholes ranging from 7 to 26 m in depth. The majority of the 51 samples (77%) were collected from the vadose zone, which can extend >18 m below the tailings surface. Mineralogical investigation indicates that the occurrence of sulfide minerals follows the general order: pyrite [FeS2] >> sphalerite [(Zn,Fe)S] > galena [PbS], tetrahedrite [(Fe,Zn,Cu,Ag)12Sb4S13] > arsenopyrite [FeAsS] and chalcopyrite [CuFeS2]. Pyrite constitutes <20 to >35 wt.% of the tailings mineral assemblage, whereas dolomite [CaMg(CO3)2] and calcite [CaCO3] are present at ?30 and 3 wt.%, respectively. The solid-phase geochemistry generally reflects the mineral assemblage. The presence of additional trace elements, including Cd, Cr, Co, Mo, Ni, Se and Tl, is attributed to substitution into sulfide phases. Results of acid–base accounting (ABA) underestimated both acid-generating potential (AP) and neutralization potential (NP). Recalculation of AP and NP based on solid-phase geochemistry and quantitative mineralogy yielded more representative results. Neutrophilic S-oxidizing bacteria (nSOB) and SO4-reducing bacteria (SRB) are present with populations up to 107 and 105 cells g−1, respectively. Acidophilic S-oxidizing bacteria (aSOB) and iron-reducing bacteria (IRB) were generally less abundant. Primary influences on aqueous geochemistry are sulfide oxidation and carbonate dissolution at the tailings surface, gypsum precipitation–dissolution reactions, as well as Fe reduction below the zone of sulfide oxidation. Pore-water pH values generally ranged from 6.5 to 7.5 near the tailings surface, and from approximately 7–8 below the oxidation zone. Elevated concentrations of dissolved SO4, S2O3, Fe, Zn, As, Sb and Tl persisted under these conditions.  相似文献   

12.
The Ta Nang gold deposit is localized in Middle Jurassic black shales. The ore zone is a series of layer-by-layer crush zones and zones of hydrothermal rock alteration, < 10 m in thickness and > 2 km in length. It consists of quartz-sulfide veins, sulfidized black shales, and their hydrothermally altered varieties. Sulfide mineralization occurs as two assemblages: early pyrite-arsenopyrite and late chalcopyrite-sphalerite- galena. The pyrite-arsenopyrite assemblage is composed of different morphogenetic varieties. Coarse-crystalline arsenopyrite and pyrite aggregates and metacrystals of different orientations, 0.1 to 10 mm in size, are the most widespread. The chalcopyrite-sphalerite-galena assemblage is scarce. Along with the main ore minerals, it includes more rare minerals: pyrrhotite, lead sulfosalts (tsugaruite), and gold, which form a spatial assemblage with the main minerals or small inclusions in them. Gold occurs mainly as fine dissemination in cracks in pyrite, arsenopyrite, chalcopyrite, and quartz. Gold content in sulfidized carbonaceous shales is no more than tenths of ppm, averaging 0.38 ppm. This content in the quartz veins is considerably higher, averaging 3.92 ppm. Silver contents in the shales and quartz veins are similar and equal to 2.68 and 5.30 ppm, respectively. Also, the sulfidized rocks and veins have elevated contents of Fe, As, Pb, Zn, Cu, Cd, Ni, and Co; most of these elements (Fe, As, Pb, Zn, and Cu) make up their own sulfide minerals, and the others are trace elements. According to 39Ar/40Ar dating of sericite from the quartz-sulfide veins, their age is 129.3 ± 5.6 Ma, which is close to the age of the Cretaceous granite intrusions of the Deo Ca complex. These veins formed from moderately strong solutions (11.7-6.4 wt.% NaCl equiv) with the CH4 + N2 + CO2 gas phase at 340–130 °C. Judging from the S isotope composition (534S = 1.6-4.3%c), predominantly deep-seated endogenic sulfur participated in the formation of ore sulfide associations. Analysis of the distribution of gold shows that it was deposited together with sulfide minerals (galena, sphalerite, and chalcopyrite) at a later stage.  相似文献   

13.
Mineral assemblages, chemical compositions of ore minerals, wall rock alteration and fluid inclusions of the Gatsuurt gold deposit in the North Khentei gold belt of Mongolia were investigated to characterize the gold mineralization, and to clarify the genetic processes of the ore minerals. The gold mineralization of the deposit occurs in separate Central and Main zones, and is characterized by three ore types: (i) low‐grade disseminated and stockwork ores; (ii) moderate‐grade quartz vein ores; and (iii) high‐grade silicified ores, with average Au contents of approximately 1, 3 and 5 g t?1 Au, respectively. The Au‐rich quartz vein and silicified ore mineralization is surrounded by, or is included within, the disseminated and stockwork Au‐mineralization region. The main ore minerals are pyrite (pyrite‐I and pyrite‐II) and arsenopyrite (arsenopyrite‐I and arsenopyrite‐II). Moderate amounts of galena, tetrahedrite‐tennantite, sphalerite and chalcopyrite, and minor jamesonite, bournonite, boulangerite, geocronite, scheelite, geerite, native gold and zircon are associated. Abundances and grain sizes of the ore minerals are variable in ores with different host rocks. Small grains of native gold occur as fillings or at grain boundaries of pyrite, arsenopyrite, sphalerite, galena and tetrahedrite in the disseminated and stockwork ores and silicified ores, whereas visible native gold of variable size occurs in the quartz vein ores. The ore mineralization is associated with sericitic and siliceous alteration. The disseminated and stockwork mineralization is composed of four distinct stages characterized by crystallization of (i) pyrite‐I + arsenopyrite‐I, (ii) pyrite‐II + arsenopyrite‐II, (iii) galena + tetrahedrite + sphalerite + chalcopyrite + jamesonite + bournonite + scheelite, and iv) boulangerite + native gold, respectively. In the quartz vein ores, four crystallization stages are also recognized: (i) pyrite‐I, (ii) pyrite‐II + arsenopyrite + galena + Ag‐rich tetrahedrite‐tennantite + sphalerite + chalcopyrite + bournonite, (iii) geocronite + geerite + native gold, and (iv) native gold. Two mineralization stages in the silicified ores are characterized by (i) pyrite + arsenopyrite + tetrahedrite + chalcopyrite, and (ii) galena + sphalerite + native gold. Quartz in the disseminated and stockwork ores of the Main zone contains CO2‐rich, halite‐bearing aqueous fluid inclusions with homogenization temperatures ranging from 194 to 327°C, whereas quartz in the disseminated and stockwork ores of the Central zone contains CO2‐rich and aqueous fluid inclusions with homogenization temperatures ranging from 254 to 355°C. The textures of the ores, the mineral assemblages present, the mineralization sequences and the fluid inclusion data are consistent with orogenic classification for the Gatsuurt deposit.  相似文献   

14.
Julietta is a rich epithermal gold-silver deposit of the low-sulfidation, adularia-sericite type, located in the Cretaceous Okhotsk-Chukchi volcanic-plutonic belt 250 km northeast of Magadan. The deposit was discovered in 1989 by a regional soil geochemical survey in an area previously considered barren on the basis of a regional stream-sediment survey. The deposit has not been completely explored, but presently is in the feasibility stage; proven reserves are 26 metric tons of Au (grades averaging 23 g/t) and the Au/Ag ratio is about 1:10.

The deposit occurs on the periphery of a large volcanic-tectonic depression. Host andesite, andesite-basalt lava, corresponding subvolcanic bodies, and tuff are cut by Early Cretaceous quartz diorite stocks. Six vein zones occur in tensional and compression fissures. Ore shoots and smaller bonanzas comprising most of the gold reserves are located in flexures of the ore-host fissures. Ore mineralization was preceded by intense voluminous propylitization and linear sericitization (sericite + quartz + pyrite + ankerite). Orebodies occur within the low-temperature propylite (pyrite + calcite + quartz + chlorite + hydromica). Colloform-crustiform banded textures are commonly observed in the ore. Most of the ore minerals occur within thin, cyclically repeated, fine-grained bands of a hydromica-carbonate-adularia-quartz aggregate. Ore-bearing, fine-grained bands probably formed by periodic fracturing of the veins, whereas barren bands were deposited in relatively quiet conditions. “Micro-stalactites” and other gravitational textures demonstrate that minerals grew in open spaces. Ore-host structures gradually opened during mineralization.

Gangue minerals are primarily quartz, various carbonates (calcite, dolomite, Fe-dolomite [Mg:Fe>2:1], parankerite [Mg: Fe = 2:1], ankerite [Mg: Fe = 1:1], and mesitite [Mg: Fe = 1:1]), and minor hydromica and adularia. Major ore minerals include pyrite, sphalerite, chalcopyrite, galena, tetrahedrite, silver sulfosalts, native gold, and custelite (Au: Ag = 9: 1). Ore mineralization occurred in two stages-an early, post-volcanic stage and a late, post-granitoid stage. The early stage contains most of the precious metals and includes two substages-(1) gold-polymetallic (200 to 260° C) and (2) gold-silver-sulfosalt (90 to 200° C). The late stage also includes two substages-(1) carbonate-rhodonite-quartz (260 to 380° C) and (2) postore quartz-carbonate. Fluid-inclusion homogenization temperatures demonstrate complex temperature zoning. Fluid composition was mainly aqueous, with Cl?, HCO3?, Na+, K+, Ca2 +, and a salinity less than 4 to 9%. The isotopic age of the deposit is 136 ± 3 Ma by the Rb-Sr method on adularia. The 87Sr/86Sr ratio is about 0.7075 ± 0.0005, indicating a mixed crust-mantle source of the vein matter. Chloride complexes transported gold and silver. The gas composition of the fluid suggests a near-surface, “closed” paleohydrothermal system. A major ore-forming factor could have been high seismic activity related to intrusion of the subvolcanic bodies. Breccias and multiphase veinlets may be related to relatively large-magnitude earthquakes, whereas cyclically banded ores may reflect local pH variations caused by smaller earthquakes.  相似文献   

15.
‘Invisible gold’ in bismuth chalcogenides   总被引:1,自引:0,他引:1  
Gold concentrations have been determined by LA-ICPMS in bismuth chalcogenides (tellurides and sulfosalts, minerals with modular structures; chalcogen X = Te, Se, and S) from 27 occurrences. Deposit types include epithermal, skarn, intrusion-related and orogenic gold. The samples comprised minerals of the tetradymite group, aleksite series, bismuth sulfosalts (cosalite, lillianite, hodrushite, bismuthinite, and aikinite), and accompanying altaite. Gold concentrations in phases of the tetradymite group range from <0.1 to 2527 ppm. Phases in which Bi > X tend to contain lower gold concentrations than Bi2X3 minerals (tellurobismuthite and tetradymite). Cosalite and lillianite contain Au concentrations ranging up to 574 and 3115 ppm, respectively. Bismuthinite derivatives have lower Au concentrations: <2 ppm in bismuthinite and up to 542 ppm in aikinite. In our samples, Au concentrations in altaite range from <0.2 to 1662 ppm.Smoother parts of the LA-ICPMS profiles suggest lattice-bound gold, whereas irregularities on the profiles are best explained by the presence of gold particles (?1 μm in diameter). Plotting Au vs. Ag for the entire dataset gives a wedge-shaped distribution, suggesting that Ag underpins Au uptake in both bismuth tellurides and sulfosalts. In the tellurides, correlation trends suggest statistical substitution of Ag(Au), together with Pb, into the octahedral site in the layers. In sulfosalts, Au follows coupled substitutions in which M1+ (Ag, Cu) enters the structure. In tellurides, the presence of van der Waals gaps at chalcogen-chalcogen contacts provides for p-type semi-conductive properties critical for gold scavenging from fluids. Such weak bonds may also act as sites for nucleation of Au (nano)particles. In sulfosalts, contacts between different species that replace one another are also highly predictable to act as traps for (nano)particulate gold.Invisible gold in Bi-chalcogenides is useful to (i) identify trends of orefield zonation, (ii) discriminate between ‘melt’ and ‘fluid-driven’ scavenging, and (iii) interpret replacement and remobilisation processes. Bismuth chalcogenides have the potential to be significant Au carriers in sulfide-poor Au systems, e.g., intrusion-related gold, with impact on the overall Au budget if mean Au concentrations are high enough and the minerals are sufficiently abundant.  相似文献   

16.
In addition to equilibrium isotopic fractionation factors experimentally derived, theoretical predictions are needed for interpreting isotopic compositions measured on natural samples because they allow exploring more easily a broader range of temperature and composition. For iron isotopes, only aqueous species were studied by first-principles methods and the combination of these data with those obtained by different methods for minerals leads to discrepancies between theoretical and experimental isotopic fractionation factors. In this paper, equilibrium iron isotope fractionation factors for the common minerals pyrite, hematite, and siderite were determined as a function of temperature, using first-principles methods based on the density functional theory (DFT). In these minerals belonging to the sulfide, oxide and carbonate class, iron is present under two different oxidation states and is involved in contrasted types of interatomic bonds. Equilibrium fractionation factors calculated between hematite and siderite compare well with the one estimated from experimental data (ln α57Fe/54Fe = 4.59 ± 0.30‰ and 5.46 ± 0.63‰ at 20 °C for theoretical and experimental data, respectively) while those for Fe(III)aq-hematite and Fe(II)aq-siderite are significantly higher that experimental values. This suggests that the absolute values of the reduced partition functions (β-factors) of aqueous species are not accurate enough to be combined with those calculated for minerals. When compared to previous predictions derived from Mössbauer or INRXS data [Polyakov V. B., Clayton R. N., Horita J. and Mineev S. D. (2007) Equilibrium iron isotope fractionation factors of minerals: reevaluation from the data of nuclear inelastic resonant X-ray scattering and Mössbauer spectroscopy. Geochim. Cosmochim. Acta71, 3833-3846], our iron β-factors are in good agreement for siderite and hematite while a discrepancy is observed for pyrite. However, the detailed investigation of the structural, electronic and vibrational properties of pyrite as well as the study of sulfur isotope fractionation between pyrite and two other sulfides (sphalerite and galena) indicate that DFT-derived β-factors of pyrite are as accurate as for hematite and siderite. We thus suggest that experimental vibrational density of states of pyrite should be re-examined.  相似文献   

17.
广东河台金矿金的迁移形式及沉淀机制的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

18.
This study describes the hydrogeochemistry and distributions of As in groundwater from a newly investigated area of Burkina Faso. Groundwaters have been sampled from hand-pumped boreholes and dug wells close to the town of Ouahigouya in northern Burkina Faso. Although most analysed groundwaters have As concentrations of less than 10 μg L−1, they have a large range from <0.5 to 1630 μg L−1. The highest concentrations are found in borehole waters; all dug wells analysed in this study have As concentrations of <10 μg L−1. Skin disorders (melanosis, keratosis and more rare skin tumour) have been identified among the populations in three villages in northern Burkina Faso, two within the study area. Although detailed epidemiological studies have not been carried out, similarities with documented symptoms in other parts of the world suggest that these are likely to be linked to high concentrations of As in drinking water. The high-As groundwaters observed derive from zones of Au mineralisation in Birimian (Lower Proterozoic) volcano-sedimentary rocks, the Au occurring in vein structures along with quartz and altered sulphide minerals (pyrite, chalcopyrite, arsenopyrite). However, the spatial variability in As concentrations in the mineralised zones is large and the degree of testing both laterally and with depth so far is limited. Hence, concentrations are difficult to predict on a local scale. From available data, the groundwater appears to be mainly oxic and the dissolved As occurs almost entirely as As(V) although concentrations are highest in groundwaters with dissolved-O2 concentrations <2 mg L−1. The source is likely to be the oxidised sulphide minerals and secondary Fe oxides in the mineralised zones. Positive correlations are observed between dissolved As and both Mo and W which are also believed to be derived from ore minerals and oxides in the mineralised zones. The discovery of high As concentrations in some groundwaters from the Birimian rocks of northern Burkina Faso reiterates the need for reconnaissance surveys in mineralised areas of crystalline basement.  相似文献   

19.
This report describes a new form of arsenian pyrite, called As3+-pyrite, in which As substitutes for Fe [(Fe,As)S2], in contrast to the more common form of arsenian pyrite, As1−-pyrite, in which As1− substitutes for S [Fe(As,S)2]. As3+-pyrite has been observed as colloformic overgrowths on As-free pyrite in a hydrothermal gold deposit at Yanacocha, Peru. XPS analyses of the As3+-pyrite confirm that As is present largely as As3+. EMPA analyses show that As3+-pyrite incorporates up to 3.05 at % of As and 0.53 at. %, 0.1 at. %, 0.27 at. %, 0.22 at. %, 0.08 at. % and 0.04 at. % of Pb, Au, Cu, Zn, Ni, and Co, respectively. Incorporation of As3+ in the pyrite could be written like: As3++yAu++1-y(□)⇔2Fe2+; where Au+ and vacancy (□) help to maintain the excess charge. HRTEM observations reveal a sharp boundary between As-free pyrite and the first overgrowth of As3+-pyrite (20-40 nm thick) and co-linear lattice fringes indicating epitaxial growth of As3+-pyrite on As-free pyrite. Overgrowths of As3+-pyrite onto As-free pyrite can be divided into three groups on the basis of crystal size, 8-20 nm, 100-300 nm and 400-900 nm, and the smaller the crystal size the higher the concentration of toxic arsenic and trace metals. The Yanacocha deposit, in which As3+-pyrite was found, formed under relatively oxidizing conditions in which the dominant form of dissolved As in the stability field of pyrite is As3+; in contrast, reducing conditions are typical of most environments that host As1−-pyrite. As3+-pyrite will likely be found in other oxidizing hydrothermal and diagenetic environments, including high-sulfidation epithermal deposits and shallow groundwater systems, where probably kinetically controlled formation of nanoscale crystals such as observed here would be a major control on incorporation and release of As3+ and toxic heavy metals in oxidizing natural systems.  相似文献   

20.
Mineral assemblages and chemical compositions of ore minerals from the Boroo gold deposit in the North Khentei gold belt of Mongolia were studied to characterize the gold mineralization, and to clarify crystallization processes of the ore minerals. The gold deposit consists of low‐grade disseminated and stockwork ores in granite, metasedimentary rocks and diorite dikes. Moderate to high‐grade auriferous quartz vein ores are present in the above lithological units. The ore grades of the former range from about 1 to 3 g/t, and those of the latter from 5 to 10 g/t, or more than 10 g/t Au. The main sulfide minerals in the ores are pyrite and arsenopyrite, both of which are divisible into two different stages (pyrite‐I and pyrite‐II; arsenopyrite‐I and arsenopyrite‐II). Sphalerite, galena, chalcopyrite, and tetrahedrite are minor associated minerals, with trace amounts of bournonite, boulangerite, geerite, alloclasite, native gold, and electrum. The ore minerals in the both types of ores are variable in distribution, abundance and grain size. Four modes of gold occurrence are recognized: (i) “invisible” gold in pyrite and arsenopyrite in the disseminated and stockwork ores, and in auriferous quartz vein ores; (ii) microscopic native gold, 3 to 100 µm in diameter, that occurs as fine grains or as an interstitial phase in sulfides in the disseminated and stockwork ores, and in auriferous quartz vein ores; (iii) visible native gold, up to 1 cm in diameter, in the auriferous quartz vein ores; and (iv) electrum in the auriferous quartz vein ores. The gold mineralization of the disseminated and stockwork ores consists of four stages characterized by the mineral assemblages of: (i) pyrite‐I + arsenopyrite‐I; (ii) pyrite‐II + arsenopyrite‐II; (iii) sphalerite + galena + chalcopyrite + tetrahedrite + bournonite + boulangerite + alloclasite + native gold; and (iv) native gold. In the auriferous quartz vein ores, five mineralization stages are defined by the following mineral assemblages: (i) pyrite‐I; (ii) pyrite‐II + arsenopyrite; (iii) sphalerite + galena + chalcopyrite; (iv) Ag‐rich tetrahedrite‐tennantite + bournonite + geerite + native gold; and (v) electrum. The As–Au relations in pyrite‐II and arsenopyrite suggest that gold detected as invisible gold is mostly attributed to Au+1 in those minerals. By applying the arsenopyrite geothermometer to arsenopyrite‐II in the disseminated and stockwork ores, crystallization temperature and logfs2 are estimated to be 365 to 300 °C and –7.5 to –10.1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号