首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
邱崇践  张述文 《气象学报》2002,60(5):538-543
利用浅水方程模式和变分四维同化方法对由大尺度观测提取中尺度信息的可能性进行了模拟试验研究。试验的初始场是在平直气流上叠加一个半径为 5倍格距的圆形涡旋。分别设定观测点的间距是 5 ,7和 9倍格距 ,观测的时间间隔分别是 1,2和 3h ,同化时间为 6h或 12h ,考察同化产生的初始场。试验结果是 :观测点的间距是 5倍格距时 ,由观测给出的分析场不能反映涡旋的基本特征 ,而在同化产生的初始场中 ,涡旋的基本结构清楚 ,但强度有所削弱。增加观测次数或者延长同化时间 ,可以改善同化的结果。对于移动较快的系统 ,同化的结果较好。当观测点的间距是 9倍格距时 ,同化的结果与分析场相比已无明显改进。  相似文献   

2.
在现代全球海洋数值模式的开发研究中,需要在空间尺度为海盆尺度上,时间尺度在几十年、几百年甚至涡流翻转数百次的时间内保持水团属性不变,而湍流混合又是维持层结和海洋环流循环所需要的.在海洋数值模型的开发中,需要将方程组在全球网格上进行离散处理,这势必会产生截断误差,从而产生虚假越中性层混合.因此将目前国内外学者和研究人员对虚假混合的来源、诊断方法、控制方法整理做出简要综述,以供读者参考学习.  相似文献   

3.
Diagnostic methods are defined in order to compare two numerical simulations of ocean dynamics in a region of freshwater influence. The first one is a river plume simulation based on a high resolution numerical configuration of the POM coastal ocean model in which mixing parametrizations have been previously defined. The second one is a simulation based on the NEMO Global Ocean Model used for climate simulations in its half-a-degree configuration in which a river inflow is represented as precipitation on two coastal grid cells. Both simulations are forced with the same freshwater inflows and wind stresses. The divergence of volumetric fluxes above and below the halocline are compared. Results show that when an upwelling wind blows, the two models display similar behavior although the impact of lack of precision can be observed in the NEMO configuration. When a downwelling wind blows, the NEMO Global Ocean configuration can not reproduce the coastally trapped baroclinic dynamics because its grid resolution is too coarse. To find a parametrization to help represent these dynamics in ocean general circulation models, a method based on energy conservation is investigated. This method shows that it is possible to link the energy fluxes provided by river inflows to the divergence of energy fluxes integrated over the grid cells of ocean general circulation models. A parametrization of the dynamics created by freshwater inflows is deduced from this method. This enabled creation of a box model that proved to have the same behavior as the fluxes previously computed from the high resolution configuration.  相似文献   

4.
资料同化中二维特征长度随模式分辨率变化的分析研究   总被引:3,自引:0,他引:3  
龚建东 《大气科学》2007,31(3):459-467
特征长度是资料同化中的重要参量,决定了观测信息在空间的传递特征,而特征长度随模式水平分辨率增减而变化的特点与背景误差湍流功率谱分布特点密切相关。通过对不同来源实际资料计算获得的特征长度数据分析和对理想数据数值试验分析,结果表明随着模式分辨率的提高,特征长度会按照二次根的规律递减。特征长度的这种变化由背景误差湍流功率谱,特别是与次天气尺度(20~60波)到中尺度波(大于60波)的湍流功率谱斜率特征决定。当湍流功率谱斜率从-5/3变化到-4时,特征长度随模式分辨率变化的敏感性降低。作者估计出的温度场的实际背景误差湍流功率谱斜率在次天气尺度到中尺度大约在-2.8左右。对特征长度的估计除传统方法外,可以根据背景误差的湍流功率谱斜率特征来更方便地给出,该方法可作为传统方法的补充来匹配应用。  相似文献   

5.
Summary A fine mesh analysis scheme (grid distance approximately 47 km) has been developed which takes care of mountain ridges of different height, to be able to study cyclogenesis induced by the Alps from the standpoint of observational quantitative vorticity dynamics.The method represents a 2-D univariate statistical interpolation scheme with isotropic correlation function over flat terrain but anisotropic across major mountain ridges like the Alps and Pyrrences.The checked and corrected ALPEX-IIb data set-which is the best data set for the Alpine region concerning time and space resolution as well as quality up to now-is used to produce analyses of basic and derived atmospheric variables. It is shown that structures in the upper meso-scale are resolved with pronounced gradients across mountains.With 9 Figures  相似文献   

6.
自适应网格在大气海洋问题中的初步应用   总被引:15,自引:4,他引:15  
刘卓  曾庆存 《大气科学》1994,18(6):641-648
自适应网格法是80年代兴起的通过求解椭圆型方程的边值问题来数值生成网格的一种新方法。它是在任意形状的区域上求偏微分方程的数值解的一种非常有效的工具。该方法抛弃了等距均匀的差分网格,代之以能够自动地适应所研究问题中解的特征的疏密程度不均的曲线网格。如在边界上计算网格与实际边界相重合,在区域内部可任意调节网格点的疏密程度等。本文扼要地介绍了自适应网格的原理及其构造方法。并将其应用于生成南海区域的计算网格以及数值预报台风路径的自适应网格。  相似文献   

7.
A stochastic model of SST for climate simulation experiments   总被引:1,自引:0,他引:1  
 This study describes the implementation of a statistical method to simulate a multi-century sequence of global sea surface temperature (SST) fields. A multi-variable auto-regressive (AR) model is trained on the observed time series of SST from the data set compiled at the Hadley Centre (GISST 2.0). To reduce the dimensionality of the model, the stochastic process is in practice fitted to empirical orthogonal function (EOF) time coefficients of the SST series, retaining the first 14 EOFs. Selected lag cross-covariances among the EOF time series are retained, based on the structure of the cross-correlation matrix and lags up to 64 months are included. Though the resulting system is quite large (a 14-dimensional AR process, with 400 parameters to be determined) the calculation is possible and a stable process is obtained. The process can then be used to investigate some statistical properties of the SST data set and to generate synthetic SST data that could be used in very long numerical experiments with atmospheric or ocean models in which only the main features of the observed statistics of the SST must be retained. Results indicate that the synthetic SST data set seems to be of usable quality as boundary condition for the atmosphere or the ocean in climate experiments. Analysis of extreme events and extreme decades in the synthetic SST data confirms the exceptional character of the 1980s, but also provides circumstantial evidence that the 1980s were indeed within the limits of the statistics of the previously observed record. Received: 6 August 1996 / Accepted: 29 September 1997  相似文献   

8.
基于动态自适应网格的开源软件Gerris受到越来越多海洋和水文研究者的关注.概述了Gerris开发背景、研究现状和特点,详细阐述了Gerris数值方案,包括动态自适应网格、动态负载平衡技术原理、广义正交曲线坐标系、内嵌复杂固体边界和地形数据的处理方法,并探讨了Gerris在海洋数值模拟中的初步应用.结果表明,Gerris动态自适应网格在多尺度问题模拟中的优势独特,在海洋数值模拟应用中可通过自适应网格提高地理特征的精度,通过GTS(或KDT)格式的数据来处理地形和网格,达到同时兼顾精确性和易用性的目的,使得Gerris与其他海洋模式进行有机结合成为重要发展方向.  相似文献   

9.
JFNK方法概述及其在大气全隐式非静力模式中的应用方案   总被引:3,自引:3,他引:0  
首先介绍了近年来新发展的非线性方程全隐式数值求解的JFNK方法,及其在地球流体力学方面应用计算实例.可看到,无论在计算精度还是计算效率方面,全隐式数值求解远远超过常规的半隐式计算格式.其次,还讨论了JFNK方法在气象非静力模式中应用方案,并提出了用静力假定和半隐式差分格式来构造预条件处理器,变三维求解为二维求解,简化了方程组求解难度.该方案不仅可用于差分模式,也为用譜方法求解非静力模式提供可能.  相似文献   

10.
This paper shows demonstrable improvement in the global seasonal climate predictability of boreal summer (at zero lead) and fall (at one season lead) seasonal mean precipitation and surface temperature from a two-tiered seasonal hindcast forced with forecasted SST relative to two other contemporary operational coupled ocean–atmosphere climate models. The results from an extensive set of seasonal hindcasts are analyzed to come to this conclusion. This improvement is attributed to: (1) The multi-model bias corrected SST used to force the atmospheric model. (2) The global atmospheric model which is run at a relatively high resolution of 50 km grid resolution compared to the two other coupled ocean–atmosphere models. (3) The physics of the atmospheric model, especially that related to the convective parameterization scheme. The results of the seasonal hindcast are analyzed for both deterministic and probabilistic skill. The probabilistic skill analysis shows that significant forecast skill can be harvested from these seasonal hindcasts relative to the deterministic skill analysis. The paper concludes that the coupled ocean–atmosphere seasonal hindcasts have reached a reasonable fidelity to exploit their SST anomaly forecasts to force such relatively higher resolution two tier prediction experiments to glean further boreal summer and fall seasonal prediction skill.  相似文献   

11.
The process of combining models of the ocean circulation with large data sets is known in meteorology as model initialization and data assimilation. This process is new to oceanographers, who only now are on the verge of having available world-wide synoptic maps of dynamic variables. In this paper we carry out a series of idealized initialization/assimilation experiments with a primitive equation (PE) model, which constitute a first step in developing a realistic process model and data assimilation techniques for the Gulf Stream system. The PE model is used in a spin-down mode and initialized with an analytic jet profile with geostrophically balanced fields.Two major questions are addressed in the present study. The first concerns the initialization process of a PE model during which internal/inertial gravity wave noise is produced. We ask: are the initialization shocks equally crucial for ocean models as they have been for their atmospheric counterparts? The results of an extensive series of balanced versus unbalanced initializations indicate that, for a PE model with a rigid lid, a brutally unbalanced initialization is required to produce strong internal gravity wave shocks. A geostrophically balanced initialization is sufficient to ensure smooth jet evolutions, with no apparent gravity waves, over long time durations in the spin-down mode. No sophisticated initialization procedures seem, therefore, to be required.The second question addressed is: which component of the flow is the most important in data assimilation to drive the model response towards a baseline reference ocean? We specifically compare the knowledge of the depth-integrated flow only, corresponding to measurements of the total transport, with the knowledge of the density field only, or equivalently the velocity shear. The knowledge of the interior density field is much more effective in decreasing the root-mean-square (r.m.s.) errors relative to the reference ocean. If the baroclinic structure is known, coarse horizontal resolutions of data insertion can be reached before significantly worsening the model estimates. If only the depth-averaged flow is known, a decrease in the horizontal resolution of data assimilation has an immediate effect: the r.m.s. errors sharply increase and the assimilation run diverges from the reference ocean. In the assimilation of the barotropic flow alone, even with dense resolution, the errors in the deep layers always show an increasing trend. The relative effectiveness of baroclinic versus barotropic data insertion can be rationalized in the context of geostrophic adjustment theory.  相似文献   

12.
Numerical experiments are performed to test one reasonably economical method of producing regional forecasts. Starting with initial conditions interpolated from a 20 hour coarse grid Northern Hemisphere forecast, a fine mesh model is integrated for a further period of 4 hours over a limited area. The fine mesh is located over the north‐eastern part of North America and its resolution is sufficient to re‐produce topographic features such as the St. Lawrence and Richelieu Valleys. The resulting forecast at hour 24 is then compared with the coarse mesh prediction for the same time. The comparison reveals how the horizontal and vertical components of the wind are affected by the small scale topography. In particular, the channelling effect of the main valleys is demonstrated.  相似文献   

13.
Annual mean ocean surface heat fluxes have been studied as a function of horizontal resolution in the ECMWF model (cycle 33) and compared with Oberhuber's COADS (1959–1979) based empirical estimates. The model has been run at resolutions of T21, T42, T63 and T106 for 15 months with prescribed monthly varying climatological SST and sea ice. The T42 simulation was extended to 2 years, which enabled us to determine that many differences between the resolution runs were significant and could not be explained by the fact that individual realizations of an ensemble of years can be expected to give different estimates of the annual mean climate state. In addition to systematic differences between the modeled and the observed fluxes, the simulated fields of surface shortwave and longwave radiation showed much more spatial variability than the observed estimates. In the case of the longwave radiation this may be attributable more to deficiencies in the observations than to errors in the model. The modeled latent and sensible heat fields were in better agreement with observations. The primary conclusion concerning the dependence of ocean surface fluxes on resolution is that the T21 simulation differed significantly from the higher resolution runs, especially in the tropics. Although the differences among the three higher resolution simulations were generally small over most of the world ocean, there were local areas with large differences. It appears, therefore, that in relation to ocean surface heat fluxes, a resolution greater than T42 may not be justified for climate model simulations, although the locally large differences found between the higher resolution runs suggest that convergence has not been achieved everywhere even at T106.  相似文献   

14.
陈玉春  张华 《高原气象》1996,15(1):11-20
对复杂地形条件下嵌套细网和数据模式进行了改进和发展,使之成为水平格距为50km,垂直分层为11层的高分辨率模式。同时对其物理过程如积云对流参数化、边界层物理等也进行了改进,并将该模式程序优化为能在计算机工作站和微机上进行业务运行的数值预报系统。  相似文献   

15.
Principles for incorporating the upstream effects of deep sills into numerical ocean circulation models using nonlinear analytical hydraulic models are discussed within the context of reduced gravity flow. A method is developed allowing the upstream influence of a numerically unresolvable deep sill or width contraction to be reproduced. The method consists of placing an artificial boundary in the numerical model's overflowing layer at some distance upstream of the actual sill or width contraction of the deep strait. Given the model state at time t, the dependent flow variables are then predicted at the artificial boundary at time t + Δt by using the method of characteristics in combination with quasi-steady hydraulic laws. The calculation requires the use of Riemann invariants and examples are given for a simple nonrotating flow and for rotating channel flow with uniform potential vorticity. The computation is considerably simplified by linearizing the relevant equations in the vicinity of the artificial boundary, resulting in a linear wave reflection problem. The reflection coefficients for the two cases are calculated and these can be used directly to numerically satisfy the boundary condition in a straightforward way.  相似文献   

16.
Summary The sensitivity of the circulation and water mass properties in a global ocean circulation model (OGCM) to the stability dependent vertical mixing parameterisations of Pacanowski and Philander (1981) and Henderson-Sellers (1985) is investigated. The work extends a previous study which examined upper ocean charateristics and mixed layer evolution resulting from these schemes incorporated in the OGCM and made a recommendation as to the appropriateness of the latter scheme for global models. Under the assumption of constant vertical eddy coefficients (the control case), the model climatology displays acceptable values of North Atlantic Deep Water formation, Antarctic Circumpolar Current strength, and Indonesian throughflow but an excessively deep and diffuse pycnocline structure with weak stratification in the deep ocean. It is found that these circulation and water mass properties are sensitive to the choice of parametrisation of vertical mixing and that the two stability dependent schemes are unable to perform satisfactorily over the global domain, instead being better suited to the tropics. Under conditions optimal for representing the tropical current and temperature structure, these schemes result in significant weakening of major currents (particularly, the ACC) and reductions in the rates of deep water formation and poleward heat transports. These deficiencies can only be remedied at the expense of the improvements to the simulation in the tropical part of the domain. The results presented indicate that the suggestions made in the previous study do not extend to situations where the deep ocean, and particularly, the global thermohaline circulation is important.With 8 Figures  相似文献   

17.
The Big Brother Experiment methodology of Denis et al. (Clim Dyn 18:627-646, 2002) is applied to test the downscaling ability of a one-way nested regional climate model. This methodology consists of first obtaining a reference climate by performing a large domain, high resolution regional climate model simulation—the Big Brother. The small scales are then filtered out from the Big Brother’s output to produce a data set whose effective resolution is comparable to those of the data sets typically used to drive regional climate models. This filtered data set is then used to drive the same nested regional climate model, integrated over a smaller domain, but at the same high resolution as the Big Brother - the Little Brother. Any differences can only be attributed either to errors associated with the nesting strategy and downscaling technique, or to inherent unpredictability of the system, but not to model errors. This methodology was applied to the National Center for Environmental Prediction Regional Spectral Model over a tropical domain for a 1-month simulation period. The Little Brother reproduced most fields of the Big Brother quite well, with the important exception of the small-scale component of the precipitation field, which was poorly reproduced. Sensitivity experiments indicated that the poor agreement of the precipitation at these scales in a tropical domain was due primarily to the behavior of convective processes, and is specific to the Big Brother Experiment on the tropical domain. Much better agreement for the small-scale precipitation component was obtained in an extratropical winter case, suggesting that one factor explaining the tropical result is the importance of convective processes in controlling precipitation, versus the greater importance of large-scale dynamics in the winter extratropics. In the tropical case, results from two ensembles of five 3-month seasonal simulations forced by GCM output suggest a considerably greater predictability for the small-scale stationary component of tropical precipitation than did the Big Brother Experiment.  相似文献   

18.
A two-layer theory is used to investigate (1) the steering of upper ocean current pathways by topographically constrained abyssal currents that do not impinge on the bottom topography and (2) its application to upper ocean – topographic coupling via flow instabilities where topographically constrained eddy-driven deep mean flows in turn steer the mean pathways of upper ocean currents and associated fronts. In earlier studies the two-layer theory was applied to ocean models with low vertical resolution (2–6 layers). Here we investigate its relevance to complex ocean general circulation models (OGCMs) with high vertical resolution that are designed to simulate a wide range of ocean processes. The theory can be easily applied to models ranging from idealized to complex OGCMs, provided it is valid for the application. It can also be used in understanding some persistent features seen in observed ocean frontal pathways (over deep water) derived from satellite imagery and other data. To facilitate its application, a more thorough explanation of the theory is presented that emphasizes its range of validity. Three regions of the world ocean are used to investigate its application to eddy-resolving ocean models with high vertical resolution, including one where an assumption of the two-layer theory is violated. Results from the OGCMs with high vertical resolution are compared to those from models with low vertical resolution and to observations. In the Kuroshio region upper ocean – topographic coupling via flow instabilities and a modest seamount complex are used to explain the observed northward mean meander east of Japan where the Kuroshio separates from the coast. The Japan/East Sea (JES) is used to demonstrate the impact of upper ocean – topographic coupling in a relatively weak flow regime. East of South Island, New Zealand, the Southland Current is an observed western boundary current that flows in a direction counter to the demands of Sverdrup flow and counter to the direction simulated in nonlinear global flat bottom and reduced gravity models. A model with high vertical resolution (and topography extending through any number of layers) and a model with low vertical resolution (and vertically compressed but otherwise realistic topography confined to the lowest layer) both simulate a Southland Current in the observed direction with dynamics depending on the configuration of the regional seafloor. However, the dynamics of these simulations are very different because the Campbell Plateau and Chatham Rise east and southeast of New Zealand are rare features of the world ocean where the topography intrudes into the stratified water column over a relatively broad area but lies deeper than the nominal 200 m depth of the continental shelf break, violating a limitation of the two-layer theory. Observations confirm the results from the high vertical resolution model. Overall, the model simulations show increasingly widespread upper ocean – topographic coupling via flow instabilities as the horizontal resolution of the ocean models is increased, but fine resolution of mesoscale variability and the associated flow instabilities are required to obtain sufficient coupling. As a result, this type of coupling is critical in distinguishing between eddy-resolving and eddy-permitting ocean models in regions where it occurs.  相似文献   

19.
A two-layer theory is used to investigate (1) the steering of upper ocean current pathways by topographically constrained abyssal currents that do not impinge on the bottom topography and (2) its application to upper ocean – topographic coupling via flow instabilities where topographically constrained eddy-driven deep mean flows in turn steer the mean pathways of upper ocean currents and associated fronts. In earlier studies the two-layer theory was applied to ocean models with low vertical resolution (2–6 layers). Here we investigate its relevance to complex ocean general circulation models (OGCMs) with high vertical resolution that are designed to simulate a wide range of ocean processes. The theory can be easily applied to models ranging from idealized to complex OGCMs, provided it is valid for the application. It can also be used in understanding some persistent features seen in observed ocean frontal pathways (over deep water) derived from satellite imagery and other data. To facilitate its application, a more thorough explanation of the theory is presented that emphasizes its range of validity. Three regions of the world ocean are used to investigate its application to eddy-resolving ocean models with high vertical resolution, including one where an assumption of the two-layer theory is violated. Results from the OGCMs with high vertical resolution are compared to those from models with low vertical resolution and to observations. In the Kuroshio region upper ocean – topographic coupling via flow instabilities and a modest seamount complex are used to explain the observed northward mean meander east of Japan where the Kuroshio separates from the coast. The Japan/East Sea (JES) is used to demonstrate the impact of upper ocean – topographic coupling in a relatively weak flow regime. East of South Island, New Zealand, the Southland Current is an observed western boundary current that flows in a direction counter to the demands of Sverdrup flow and counter to the direction simulated in nonlinear global flat bottom and reduced gravity models. A model with high vertical resolution (and topography extending through any number of layers) and a model with low vertical resolution (and vertically compressed but otherwise realistic topography confined to the lowest layer) both simulate a Southland Current in the observed direction with dynamics depending on the configuration of the regional seafloor. However, the dynamics of these simulations are very different because the Campbell Plateau and Chatham Rise east and southeast of New Zealand are rare features of the world ocean where the topography intrudes into the stratified water column over a relatively broad area but lies deeper than the nominal 200 m depth of the continental shelf break, violating a limitation of the two-layer theory. Observations confirm the results from the high vertical resolution model. Overall, the model simulations show increasingly widespread upper ocean – topographic coupling via flow instabilities as the horizontal resolution of the ocean models is increased, but fine resolution of mesoscale variability and the associated flow instabilities are required to obtain sufficient coupling. As a result, this type of coupling is critical in distinguishing between eddy-resolving and eddy-permitting ocean models in regions where it occurs.  相似文献   

20.
Impact of ocean model resolution on CCSM climate simulations   总被引:1,自引:1,他引:0  
The current literature provides compelling evidence suggesting that an eddy-resolving (as opposed to eddy-permitting or eddy-parameterized) ocean component model will significantly impact the simulation of the large-scale climate, although this has not been fully tested to date in multi-decadal global coupled climate simulations. The purpose of this paper is to examine how resolved ocean fronts and eddies impact the simulation of large-scale climate. The model used for this study is the NCAR Community Climate System Model version 3.5 (CCSM3.5)—the forerunner to CCSM4. Two experiments are reported here. The control experiment is a 155-year present-day climate simulation using a 0.5° atmosphere component (zonal resolution 0.625 meridional resolution 0.5°; land surface component at the same resolution) coupled to ocean and sea-ice components with zonal resolution of 1.2° and meridional resolution varying from 0.27° at the equator to 0.54° in the mid-latitudes. The second simulation uses the same atmospheric and land-surface models coupled to eddy-resolving 0.1° ocean and sea-ice component models. The simulations are compared in terms of how the representation of smaller scale features in the time mean ocean circulation and ocean eddies impact the mean and variable climate. In terms of the global mean surface temperature, the enhanced ocean resolution leads to a ubiquitous surface warming with a global mean surface temperature increase of about 0.2?°C relative to the control. The warming is largest in the Arctic and regions of strong ocean fronts and ocean eddy activity (i.e., Southern Ocean, western boundary currents). The Arctic warming is associated with significant losses of sea-ice in the high-resolution simulation. The sea surface temperature gradients in the North Atlantic, in particular, are better resolved in the high-resolution model leading to significantly sharper temperature gradients and associated large-scale shifts in the rainfall. In the extra-tropics, the interannual temperature variability is increased with the resolved eddies, and a notable increases in the amplitude of the El Ni?o and the Southern Oscillation is also detected. Changes in global temperature anomaly teleconnections and local air-sea feedbacks are also documented and show large changes in ocean–atmosphere coupling. In particular, local air-sea feedbacks are significantly modified by the increased ocean resolution. In the high-resolution simulation in the extra-tropics there is compelling evidence of stronger forcing of the atmosphere by SST variability arising from ocean dynamics. This coupling is very weak or absent in the low-resolution model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号