首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
The experimental distribution coefficient for Ni/ Fe exchange between olivine and monosulfide (KD3) is 35.6±1.1 at 1385° C, \(f_{{\text{O}}_{\text{2}} } = 10^{ - 8.87} ,f_{{\text{S}}_{\text{2}} } = 10^{ - 1.02} \) , and olivine of composition Fo96 to Fo92. These are the physicochemical conditions appropriate to hypothesized sulfur-saturated komatiite magma. The present experiments equilibrated natural olivine grains with sulfide-oxide liquid in the presence of a (Mg, Fe)-alumino-silicate melt. By a variety of different experimental procedures, K D3 is shown to be essentially constant at about 30 to 35 in the temperature range 900 to 1400° C, for olivine of composition Fo97 to FoO, monosulfide composition with up to 70 mol. % NiS, and a wide range of \(f_{{\text{O}}_{\text{2}} } \) and \(f_{{\text{S}}_{\text{2}} } \) .  相似文献   

2.
The Gibbs free energy and volume changes attendant upon hydration of cordierites in the system magnesian cordierite-water have been extracted from the published high pressure experimental data at \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) =P total, assuming an ideal one site model for H2O in cordierite. Incorporating the dependence of ΔG and ΔV on temperature, which was found to be linear within the experimental conditions of 500°–1,000°C and 1–10,000 bars, the relation between the water content of cordierite and P, T and \(f_{{\text{H}}_{\text{2}} {\text{O}}} \) has been formulated as $$\begin{gathered} X_{{\text{H}}_{\text{2}} {\text{O}}}^{{\text{crd}}} = \hfill \\ \frac{{f_{{\text{H}}_{\text{2}} {\text{O}}}^{{\text{P, T}}} }}{{\left[ {{\text{exp}}\frac{1}{{RT}}\left\{ {64,775 - 32.26T + G_{{\text{H}}_{\text{2}} {\text{O}}}^{{\text{1, }}T} - P\left( {9 \times 10^{ - 4} T - 0.5142} \right)} \right\}} \right] + f_{{\text{H}}_{\text{2}} {\text{O}}}^{{\text{P, T}}} }} \hfill \\ \end{gathered} $$ The equation can be used to compute H2O in cordierites at \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) <1. Our results at different P, T and partial pressure of water, assuming ideal mixing of H2O and CO2 in the vapour phase, are in very good agreement with the experimental data of Johannes and Schreyer (1977, 1981). Applying the formulation to determine \(X_{{\text{H}}_{\text{2}} {\text{O}}}^{{\text{crd}}} \) in the garnet-cordierite-sillimanite-plagioclase-quartz granulites of Finnish Lapland as a test case, good agreement with the gravimetrically determined water contents of cordierite was obtained. Pressure estimates, from a thermodynamic modelling of the Fe-cordierite — almandine — sillimanite — quartz equilibrium at \(P_{{\text{H}}_{\text{2}} {\text{O}}} = 0\) and \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) =Ptotal, for assemblages from South India, Scottish Caledonides, Daly Bay and Hara Lake areas are compatible with those derived from the garnetplagioclase-sillimanite-quartz geobarometer.  相似文献   

3.
Creep experiments have been performed on samples from a single crystal of vanadium-doped forsterite under controlled \(p_{{\text{O}}_2 } \) conditions to investigate the effects of the addition of substitutional defects in the tetrahedral lattice sites. The addition of vanadium causes marked changes in the flow behavior of the forsterite, with a net increase in the creep rate at high \(p_{{\text{O}}_2 } \) and a new \(p_{{\text{O}}_2 } \) -dependent flow regime at low \(p_{{\text{O}}_2 } \) conditions. These observations can be interpreted as resulting from changes in the majority defect species that maintain the charge neutrality within the crystal. A climb-controlled dislocation creep model for the high-temperature deformation of vanadium-doped forsterite is proposed in which either (i) movement of uncharged jogs is rate-limited by the diffusion of silicon via a vacancy mechanism or (ii) movement of positively charged jogs is rate-limited by diffusion of oxygen via a vacancy mechanism.  相似文献   

4.
This paper presents the point-defect thermodynamics for fayalite and olivine solid solutions (Fe x Mg1?x )2SiO4. By means of thermogravimetry, the metal-to-oxygen ratio of these silicates has been determined as a function of oxygen potential, compositionx and temperature. Experiments were performed in the range of 1,000° C≦T≦1,280° C and 0.2≦x≦1.0. It is found that V Me , Fe Me · and the associate {Fe′ Si Fe Me · } are the majority defects. With this knowledge it is possible to calculate the nonstoichiometry at given temperature as a function of \(p_{O_2 } \) and \(a_{SiO_2 } \) . The cation vacancy concentration shows a \(p_{O_2 }^{1/5} \) -dependence (forx≧0.2) and increases at givenT and \(p_{O_2 } \) almost exponentially with compositionx. In the composition range studied here, the silicates show an oxygen excess, and FeO is more soluble in the olivine than SiO2.  相似文献   

5.
The oxygen fugacity condition of equilibration has been carefully determined from a spinel lherzolite from Mongolia, olivine xenocrysts from chrome pyrope-bearing peridotite nodules from kimberlites of Yakutia, and basaltic samples from ocean floor, iron arcs and the continental areas. These indicate that the spinel lherzolites occurring within alkali basalts from Mongolia, equilibrated under an \(f_{O_2 } \) condition similar to that of WM buffer. The diamond and chrome pyrope-bearing peridotites from the kimberlite pipes equilibrated between IW and WM buffers. Some of the ilmenite-bearing peridotite crystallized under \(f_{O_2 } \) conditions similar to that between WM and QFM buffers and chondrites equilibrated below the QFI buffer. It is concluded that during geochemical processes in the upper mantle the \(f_{O_2 } \) conditions vary broadly, and are similar to that between FMQ and IW buffers. There is a dramatic change in the composition of the kimberlitic fluid, which is CH4-bearing at an early stage, but is in equilibrium with H2O and CO2 at a later stage. This is related to mass transfer of fluids from the lower part of the mantle with a low oxidation state to the upper part having a higher \(f_{O_2 } \) condition.  相似文献   

6.
The equilibrium curve for the reaction 3 dolomite + 1 K-feldspar + 1 H2O=1 phlogopite + 3 calcite + 3 CO2 was determined experimentally at a total gas pressure of 2000 bars using two different methods.
  1. In the first case water alone was added to the reactants. The CO2 component of the gas phase was producted solely by the reaction under favourable P-T conditions. This manner of carrying out the reaction is called the “water method”. With this method sufficient time must be allowed for the gas phase to attain a constant composition (see Fig. 1). Reverse reactions were carried out using reaction products of the forward reaction.
  2. In the second case silver oxalate + water were added to the reactants. Breakdown of the silver oxalate leads to formation of a CO2-H2O gasphase of definite composition. At constant temperature and gas pressure the \(X_{{\text{CO}}_{\text{2}} } \) determines whether the reaction products will be phlogopite + calcite or dolomite + K-feldspar. In this case it is not necessary to wait for equilibrium to be attained. This method is abbreviated the “oxalate method”. Reactants for reverse reactions are not identical with the products of the forward reaction.
At high temperatures the results of the two different methods agree well (see Tables 1 and 2). Equilibrium was attained in one case at 490° C and \(X_{{\text{CO}}_{\text{2}} } \) of approximately 0.77, and in the other case at 520° C and \(X_{{\text{CO}}_{\text{2}} } \) of 0.90. At lower temperatures there are considerable differences in the results. With the water method an \(X_{{\text{CO}}_{\text{2}} } \) of about 0.25 was reached at 450° C. With the oxalate method dolomite K-feldspar and water still react with each other at even higher \(X_{{\text{CO}}_{\text{2}} } \) values. Phlogopite, calcite and CO2 are formed together with metastable talc. There are no criteria to indicate which of the methods is the correct one at lower temperatures and in Fig. 2, therefore, both equilibrium curves are plotted.  相似文献   

7.
In a regional metamorphic terrain where six isograds have been mapped based on mineral reactions that are observed in metacarbonate rocks, the P-T conditions and fugacities of CO2 and H2O during metamorphism were quantified by calculations involving actual mineral compositions and experimental data. Pressure during metamorphism was near 3,500 bars. Metamorphic temperatures ranged from 380° C (biotite-chlorite isograd) to 520° C (diopside isograd). \(f_{{\text{CO}}_{\text{2}} }\) and \(f_{{\text{CO}}_{\text{2}} }\) / \(f_{{\text{H}}_{\text{2}} {\text{O}}}\) in general is higher in metacarbonate rocks below the zoisite isograd than in those above the zoisite isograd. Calculated \(f_{{\text{CO}}_{\text{2}} }\) and \(f_{{\text{H}}_{\text{2}} {\text{O}}}\) are consistent with carbonate rocks above the zoisite isograd having equilibrated during metamorphism with a bulk supercritical fluid in which \(P_{{\text{CO}}_{\text{2}} }\) + \(P_{{\text{H}}_{\text{2}} {\text{O}}}\) = P total. Calculations indicate that below the zoisite isograd, however, \(P_{{\text{CO}}_{\text{2}} }\) + \(P_{{\text{H}}_{\text{2}} {\text{O}}}\) was less than Ptotal, and that this condition is not due to the presence of significant amounts of species other than CO2 and H2O in the system C-O-H-S. Calculated \(P_{{\text{CO}}_{\text{2}} }\) /( \(P_{{\text{CO}}_{\text{2}} }\) + \(P_{{\text{H}}_{\text{2}} {\text{O}}}\) ) is low (0.06–0.32) above the zoisite isograd. The differences in conditions above and below the zoisite isograd may indicate that the formation of zoisite records the introduction of a bulk supercritical H2O-rich fluid into the metacarbonates. The results of the study indicate that \(f_{{\text{CO}}_{\text{2}} }\) and \(f_{{\text{H}}_{\text{2}} {\text{O}}}\) are constant on a thin section scale, but that gradients in \(f_{{\text{CO}}_{\text{2}} }\) and \(f_{{\text{H}}_{\text{2}} {\text{O}}}\) existed during metamorphism on both outcrop and regional scales.  相似文献   

8.
Coherency stress and coherency strain energy generated by Na+?K+ ion exchange in alkali feldspars are calculated using an isotropic model, and deformation of single crystals of alkali feldspars exposed to molten alkali chlorides at \(P_{H_2 O} \) < 1 bar is described. Coherency stress in alkali feldspars can reach 10–20 kb. When it is large, partial relaxation by fracture and/or plastic deformation takes place under anhydrous conditions, but temporary build-up of stress is unavoidable even under hydrothermal conditions. Because of coherency strain energy, a thin layer of an end-member alkali feldspar produced by cation exchange on a grain of the other end-member alkali feldspar would be unstable with respect to dissolution. Therefore, under hydrothermal conditions one end-member alkali feldspar replaces the other by dissolution and precipitation. The mechanism of the reaction $$Na_x K_{1 - x} AlSi_3 O_{8_{(feld.)} } + yK^ + \rightleftharpoons Na_{x - y} K_{1 + y - x} AlSi_3 O_{8_{(feld.)} } + yNa^ + $$ is primarily controlled by \(P_{H_2 O} \) and by ΔK/(Na + K), the difference between the equilibrium value and the initial value of the atomic K/(Na + K) ratio of the feldspar. When ¦ΔK/(Na + K)¦ is small, the reaction proceeds by cation exchange. When ¦ΔK/(Na + K)¦ is large, cation exchange still occurs if \(P_{H_2 O} \) is very low, but under hydrothermal conditions replacement by dissolution and precipitation occurs.  相似文献   

9.
In the system Na2O-CaO-Al2O3-SiO2 (NCAS), the equilibrium compositions of pyroxene coexisting with grossular and corundum were experimentally determined at 40 different P-T conditions (1,100–1,400° C and 20.5–38 kbar). Mixing properties of the Ca-Tschermak — Jadeite pyroxene inferred from the data are (J, K): $$\begin{gathered} G_{Px}^{xs} = X_{{\text{CaTs}}} X_{{\text{Jd}}} [14,810 - 7.15T - 5,070(X_{{\text{CaTs}}} - X_{{\text{Jd}}} ) \hfill \\ {\text{ }} - 3,350(X_{{\text{CaTs}}} - X_{{\text{Jd}}} )^2 ] \hfill \\ \end{gathered} $$ The excess entropy is consistent with a complete disorder of cations in the M2 and the T site. Compositions of coexisting pyroxene and plagioclase were obtained in 11 experiments at 1,190–1,300° C/25 kbar. The data were used to infer an entropy difference between low and high anorthite at 1,200° C, corresponding to the enthalpy difference of 9.6 kJ/mol associated with the C \(\bar 1\) =I \(\bar 1\) transition in anorthite as given by Carpenter and McConnell (1984). The resulting entropy difference of 5.0 J/ mol · K places the transition at 1,647° C. Plagioclase is modeled as ideal solutions, C \(\bar 1\) and I \(\bar 1\) , with a non-first order transition between them approximated by an empirical expression (J, bar, K): $$\Delta G_T = \Delta G_{1,473} \left[ {1 - 3X_{Ab} \tfrac{{T^4 - 1,473^4 }}{{\left( {1,920 - 0.004P} \right)^4 - 1,473^4 }}} \right],$$ where $$\Delta G_{1,473} = 9,600 - 5.0T - 0.02P$$ The derived mixing properties of the pyroxene and plagioclase solutions, combined with the thermodynamic properties of other phases, were used to calculate phase relations in the NCAS system. Equilibria involving pyroxene+plagioclase +grossular+corundum and pyroxene+plagioclase +grossular+kyani te are suitable for thermobarometry. Albite is the most stable plagioclase.  相似文献   

10.
An empirically derived Redlich-Kwong type of equation of state (ERK) is proposed for H2O, expressing a, the term related to the attraction between the molecules, as a pressure-independent function of temperature, and b, the covolume, as a temperature-independent function of pressure. The coefficients of a(T) and b(P) were derived by least squares non-linear regression, using P-V-T data given by Burnham et al. (1969b) and Rice and Walsh (1957) in conjunction with more precise recent data obtained by Tanishita et al. (1976), Hilbert (1979) and Schmidt (1979): $$a(T) = 1.616 x 10^8 - 4.989 x 10^4 T - 7.358 x 10^9 T^{ - 1} $$ and $$ = \frac{{1 + 3.4505x 10^{--- 4} P + 3.8980x 10^{--- 9} P^2 - 2.7756x 10^{--- 15} P^3 }}{{6.3944x 10^{--- 2} + 2.3776x 10^{--- 5} + 4.5717x 10^{--- 10} P^2 }}$$ , where T is expressed in Kelvin and P in bars. The ERK works very well at upper mantle conditions, at least up to 200 kbar and 1,000 °C. At subcritical conditions and those somewhat above the critical point, it still reproduces the molar Gibbs energy, \(\tilde G_{{\text{H}}_{\text{2}} {\text{O}}} \) , with a maximum deviation of 400 joules. Thus, for the purpose of calculation of geologically interesting heterogeneous equilibria, it predicts the thermodynamic properties of H2O well enough. The values of molar volume, \(\tilde V_{{\text{H}}_{\text{2}} {\text{O}}} \) , and \(\tilde G_{{\text{H}}_{\text{2}} {\text{O}}} \) are tabulated in the appendix over a considerable P-T range. A FORTRAN program generating these functions as well as a FORTRAN subroutine for calculating the fugacity values, \(f_{{\text{H}}_{\text{2}} {\text{O}}} \) for incorporation into existing programs, are available upon request.  相似文献   

11.
P, T, \(X_{{\text{CO}}_{\text{2}} }\) relations of gehlenite, anorthite, grossularite, wollastonite, corundum and calcite have been determined experimentally at P f =1 and 4 kb. Using synthetic starting minerals the following reactions have been demonstrated reversibly
  1. 2 anorthite+3 calcite=gehlenite+grossularite+3 CO2.
  2. anorthite+corundum+3 calcite=2 gehlenite+3 CO2.
  3. 3anorthite+3 calcite=2 grossularite+corundum+3CO2.
  4. grossularite+2 corundum+3 calcite=3 gehlenite+3 CO2.
  5. anorthite+2 calcite=gehlenite+wollastonite+2CO2.
  6. anorthite+wollastonite+calcite=grossularite+CO2.
  7. grossularite+calcite=gehlenite+2 wollastonite+CO2.
In the T, \(X_{{\text{CO}}_{\text{2}} }\) diagram at P f =1 kb two isobaric invariant points have been located at 770±10°C, \(X_{{\text{CO}}_{\text{2}} }\) =0.27 and at 840±10°C, \(X_{{\text{CO}}_{\text{2}} }\) =0.55. Formation of gehlenite from low temperature assemblages according to (4) and (2) takes place at 1 kb and 715–855° C, \(X_{{\text{CO}}_{\text{2}} }\) =0.1–1.0. In agreement with experimental results the formation of gehlenite in natural metamorphic rocks is restricted to shallow, high temperature contact aureoles.  相似文献   

12.
The biotite zone assemblage: calcite-quartz-plagioclase (An25)-phengite-paragonite-chlorite-graphite, is developed at the contact between a carbonate and a pelite from British Columbia. Thermochemical data for the equilibrium paragonite+calcite+2 quartz=albite+ anorthite+CO2+H2O yields: $$\log f{\text{H}}_{\text{2}} {\text{O}} + \log f{\text{CO}}_{\text{2}} = 5.76 + 0.117 \times 10^{ - 3} (P - 1)$$ for a temperature of 700°K and a plagioclase composition of An25. By combining this equation with equations describing equilibria between graphite and gas species in the system C-H-O, the following partial pressures: \(P{\text{H}}_2 {\text{O}} = 2572{\text{b, }}P{\text{CO}}_2 = 3162{\text{b, }}P{\text{H}}_2 = 2.5{\text{b, }}P{\text{CH}}_4 = 52.5{\text{b, }}P{\text{CO}} = 11.0{\text{b}}\) are obtained for \(f{\text{O}}_2 = 10^{ - 26}\) . If total pressure equals fluid pressure, then the total pressure during metamorphism was approximately 6 kb. The total fluid pressure calculated is extremely sensitive to the value of \(f{\text{O}}_2\) chosen.  相似文献   

13.
Approximately 125 hydrothermal annealing experiments have been carried out in an attempt to bracket the stability fields of different ordered structures within the plagioclase feldspar solid solution. Natural crystals were used for the experiments and were subjected to temperatures of ~650°C to ~1,000°C for times of up to 370 days at \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) =600 bars, or \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) =1,200 bars. The structural states of both parent and product materials were characterised by electron diffraction, with special attention being paid to the nature of type e and type b reflections (at h+k=(2n+1), l=(2n+1) positions). Structural changes of the type C \(\bar 1\) I \(\bar 1\) , C \(\bar 1\) → “e” structure, I \(\bar 1\) → “e” and “e” structure → I \(\bar 1\) have been followed. There are marked differences between the ordering behaviour of crystals with compositions on either side of the C \(\bar 1\) ? I \(\bar 1\) transition line. In the composition range ~ An50 to ~ An70 the e structure appears to have a true field of stability relative to I \(\bar 1\) ordering, and a transformation of the type I \(\bar 1\) ? e has been reversed. It is suggested that the e structure is the more stable ordered state at temperatures of ~ 800°C and below. For compositions more albite-rich than ~ An50 the upper temperature limit for long range e ordering is lower than ~ 750°C, and there is no evidence for any I \(\bar 1\) ordering. The evidence for a true stability field for “e” plagioclase, which is also consistent with calorimetric data, necessitates reanalysis both of the ordering behaviour of plagioclase crystals in nature and of the equilibrium phase diagram for the albite-anorthite system. Igneous crystals with compositions of ~ An65, for example, probably follow a sequence of structural states C \(\bar 1\) I \(\bar 1\) e during cooling. The peristerite, Bøggild and Huttenlocher miscibility gaps are clearly associated with breaks in the albite, e and I \(\bar 1\) ordering behaviour but their exact topologies will depend on the thermodynamic character of the order/disorder transformations.  相似文献   

14.
Two crystals of natural chalcopyrite, CuFeS2, experimentally deformed at 200° C have been studied by means of transmission electron microscopy (TEM). The activated glide planes are (001) and {112}. The dislocations in (001) have the Burgers vector [110] and a predominating edge character. They are split into two colinear partials b=1/2[110] and can cross split into {112}. The dislocations in {112} consist of straight segments along low index lattice lines. They are often arranged in dipoles generating trails of loops. Few dislocations with b=1/2[ \(\overline {11} \) 1] and [1 \(\bar 1\) 0] are present and dislocations with b=[0 \(\bar 2\) 1] occur in low angle subgrain boundaries. From weak beam contrasts it is presumed that most of the dislocations gliding in {112} have b=1/2〈3 \(\overline {11} \) 〉. They are dissociated into up to four partials. Microtwins and different types of stacking faults in {112} also occur. Models of the dissociation of dislocations are discussed.  相似文献   

15.
Stoichiometric mixtures of tremolite and dolomite were heated to 50° C above equilibrium temperatures to form forsterite and calcite. The pressure of the CO2-H2O fluid was 5 Kb and \(X_{{\text{CO}}_{\text{2}} }\) varied from 0.1 to 0.6. The extent of the conversion was determined by the amount of CO2 produced. The resulting mixtures of unreacted tremolite and dolomite and of newly-formed forsterite and calcite were examined with a scanning electron microscope. All tremolite and dolomite grains showed obvious signs of dissolution. At fluid compositions with \(X_{{\text{CO}}_{\text{2}} }\) less than about 0.4, the forsterite and calcite crystals are randomly distributed throughout the charges, indicating that surfaces of the reactants are not a controlling factor with respect to the sites of nucleation of the products. A change is observed when \(X_{{\text{CO}}_{\text{2}} }\) is greater than about 0.4; the forsterite and calcite crystals now nucleate and grow at the surface of the dolomite grains, thus indicating a change in mechanism at medium CO2 concentrations. As the reaction progresses, the dolomite grains become more and more surrounded by forsterite and calcite, finally forming armoured relics of dolomite. Under experimental conditions this characteristic texture can only be formed if the CO2-concentration is greater than about 40 mole %. These findings make it possible to estimate the CO2-concentration from the texture of the dolomite+tremolite+forsterite+calcite assemblage. The results suggest a dissolution-precipitation mechanism for the reaction investigated. In a simplified form it consists of the following 4 steps:
  1. Dissolution of the reactants tremolite and dolomite.
  2. Diffusion of the dissolved constituents in the fluid.
  3. Heterogeneous nucleation of the product minerals.
  4. Growth of forsterite and calcite from the fluid.
Two possible explanations are discussed for the development of the amoured texture at \(X_{{\text{CO}}_{\text{2}} }\) above 0.4. The first is based upon the assumption that dolomite has a lower rate of dissolution than tremolite at high \(X_{{\text{CO}}_{\text{2}} }\) values resulting in preferential calcite and forsterite nucleation and growth on the dolomite surface. An alternative explanation is the formation of a raised CO2 concentration around the dolomite grains at high \(X_{{\text{CO}}_{\text{2}} }\) values, leading to product precipitation on the dolomite crystals.  相似文献   

16.
Experiments reproducing the development of bimetasomatic zoning in the CaO-MgO-SiO2-H2O-CO2 system were conducted at elevated P-T parameters with the use of samples of naturally occurring quartzdolomite and calcite-serpentinite rocks. In order to maintain mass transfer exclusively via the diffusion-controlled mechanism, we used the method of the ensured compaction of the cylindrical sample surface with a thin-walled gold tube. In the course of the experiments, a single diopside zone ~2.5 × 10?5 m thick was obtained at the quartz-dolomite interface at T = 600°C, $P_{H_2 O + CO_2 } $ = 200 MPa, and $X_{CO_2 } $ = 0.5 for 25–40 days and a succession of metasomatic zones at T = 750°C, $P_{H_2 O + CO_2 } $ = 300 MPa, and $X_{CO_2 } $ = 0.4 for 48 days. The metasomatic zones were as follows (listed in order from quartz to dolomite): wollastonite ‖ diopside ‖ tremolite ‖ calcite + forsterite; with the average width of the diopside zone equal to ~1.3 × 10?5 m and the analogous part of the wollastonite zone equal to ~2.6 × 10?5 m. Two zones (listed in order from calcite to serpentine) diopside and diopside-forsterite (the average widths of these zones were ~6 × 10?4 and ~8 × 10?4 m, respectively) were determined to develop at contact between serpentine and calcite during experiments that lasted 124 days at T = 500°C, $P_{H_2 O + CO_2 } $ = 200 MPa, and $X_{CO_2 } $ = 0.2–0.4. In the former and latter situations, the growth rate of the zoning ranged between 3.1 × 10?12 and 1.2 × 10?11 m/s and between 5.6 × 10?11 and 7.5 × 10?11 m/s, respectively. The higher growth rate in the latter case can be explained by the higher water mole fraction in the fluid, with this water released during serpentinite decomposition in the experiments. The development of the only diopside zone in the experiments modeling the interaction of quartz and dolomite at T = 600–650°C and $P_{H_2 O + CO_2 } $ = 200 MPa is in conflict with theoretical considerations underlain by the Korzhinskii-Fisher-Joesten model. The interaction of quartz and dolomite in the CaO-MgO-SiO2-CO2-H2O system at the P-T- $X_{CO_2 } $ parameters specified above should be attended by the origin of a number of reaction zones consisting of various proportions of talc, forsterite, tremolite, diopside, and calcite. The saturation of the fluid with respect to these minerals was likely not reached, and this resulted in the degeneration of the respective stability fields in the succession of zones. Conceivably, this was related to the insufficient rates of quartz and dolomite dissolution and the relatively low diffusion rates of the dissolved species in the low-permeable medium. In the experiments with interacting calcite and serpentine, the zoning calcite ‖ diopside ‖ diopside + forsterite ‖ serpentine developed in its complete form, in agreement with the theory. Equilibrium was likely achieved in these experiments due to the higher diffusion coefficients.  相似文献   

17.
Quartz crystals twinned according to Japan twin law were investigated by means of X-ray topography in order to understand the origin of characteristic morphology of twin crystals. It is demonstrated that the flattened and elongated morphology characteristic of quartz twins is due to preferential growth at twin junctions where dislocations with the Burgers vector direction 〈11 \(\overline {\text{2}} \) 1〉 concentrate, and that such preferential growth operates only when {10 \(\overline {\text{1}} \) 1} faces meet at the twin junction. Once {10 \(\overline {\text{1}} \) 0} faces appear at the twin junction due to the change of growth conditions, the effect diminishes sharply and the characteristic morphology becomes less pronounced. This leads to the conclusion that the characteristic morphology of quartz crystals twinned according to Japan twin law is formed at the earlier stage of growth and becomes less pronounced at the later stage of growth.  相似文献   

18.
The high-grade assemblage Cd-Ga-Si-Qz can be thermodynamically modelled from available calorimetric data on the metastable reaction: (I) $$3 MgCd \rightleftarrows 2 Py + 4 Si + 5 Qz$$ naturalK D Fe-Mg between garnet and cordierite and experimental results on cordierite hydration. In the system SiO2-Al2O3-MgO-H2O, reaction (I) becomes (II) $$3 MgCd \cdot nH_2 O \rightleftarrows 2 Py + 4 Si + 5 Qz + 3 nH_2 O$$ . However, hydrous cordierite is neither a hydrate nor a solid solution between water and anhydrous cordierite and when nH2O (number of moles of H2O in Cd) is plotted against \(P_{H_2 O} \) , the resulting isotherms are similar to adsorption isotherms characteristic of zeolitic minerals. Reaction (II) can thus be considered as a combination of reaction (I) with a physical equilibrium of the type nH2O (in Cd)?nH2O (in vapor phase). Starting from a point on equilibrium (I), introduction of H2O into anhydrous Mg-cordierite lowers the chemical potential of MgCd and hence stabilizes this mineral to higher pressure relative to the right-hand assemblage in reaction (I). The pressure increment of stabilization,ΔP, above the pressure limit of anhydrous cordierite stability at constantT, has been calculated using the standard thermodynamics of adsorption isotherms. Cordierite is regarded as a mixture of Mg2Al4Si5O18 and H2O. The activity of H2O in the cordierite is evaluated relative to an hypothetical standard state extrapolated from infinite H2O dilution, by using measured hydration data. The activity of Mg2Al4Si5O18 in the cordierite is then obtained by integration of the Gibbs-Duhem equation, and the pressure stabilization increment,ΔP, computed by means of the relation: $$\Delta V_s \Delta P \cong - RT\ln a_{MgCd}^{MgCd \cdot nH2O} \left( {\Delta V indepentdent of P and T} \right)$$ . Thus, one may contour theP-T plane in isopleths of nH2O=constant within the area of Mg-cordierite stability allowed by the hydration data for \(P_{H_2 O} = P_{total} \) . The present model indicates greater stabilization of cordierite by H2O than the model of Newton and Wood (1979) and the calculated curve for metastable breakdown of hydrous MgCd is consistent with experimental data on cordierite breakdown at \(P_{H_2 O} = P_{total} \) . Mg/(Mg+Fe) isopleths have been derived for cordierites of varying nH2O in the SiO2-Al2O3-MgO-FeO-H2O system using the additional assumptions that (Fe, Mg) cordierite and (Fe, Mg) garnet behave as ideal solutions, and that typical values of the distribution coefficient of Fe and Mg between coexisting garnet and cordierite observed in natural parageneses can be applied to the calculations. The calculated stable breakdown curve of Fe-cordierite under conditions of \(P_{H_2 O} = P_{total} \) to almandine, sillimanite, quartz and vapor has a positive slope (dP/dT) apparently in contrast to the experimental negative slope. This may be explained by hydration kinetics, which could have allowed systematic breakdown of cordierites of metastable hydration states in the experiments. The bivariant Cd-Ga fields calibrated from the present model are, potentially, good petrogenetic indicators, as, given the iron-magnesium ratio of garnet and cordierite and the hydration number of cordierite, the temperature, pressure and water fugacity are uniquely determined. As this geothermobarometer is in part based on the water content of cordierite, it can be used only if there is some assurance that the actual hydration is inherited from high-grade metamorphic conditions. Such conditions could be realised if the slope of unloading-cooling retrograde metamorphism is more or less parallel to a cordierite isohydron.  相似文献   

19.
Variations in the equilibrium degree of Al/Si order in anorthite have been investigated experimentally over the temperature range 800-1535° C. Spontaneous strain measurements give the temperature dependence of the macroscopic order parameter, Q, defined with respect to the \(C\bar 1 \rightleftharpoons I\bar 1\) phase transition, while high temperature solution calorimetric data allow the relationship between Q and excess enthalpy, H, to be determined. The thermodynamic behaviour can be described by a Landau expansion in one order parameter if the transition is first order in character, with an equilibrium transition temperature, T tr, of ~2595 K and a jump in Q from 0 to ~0.65 at Ttr. The coefficients in this Landau expansion have been allowed to vary with composition, using Q=1 at 0 K for pure anorthite as a reference point for the order parameter. Published data for H and Q at different compositions allow the calibration of the additional parameters such that the free energy due to the \(C\bar 1 \rightleftharpoons I\bar 1\) transition in anorthite-rich plagioclase feldspars may be expressed (in cal. mole-1) as: \(\begin{gathered}G = \tfrac{1}{2} \cdot 9(T - 2283 + 2525X_{Ab} )Q^2 \\ {\text{ + }}\tfrac{1}{4}( - 26642 + 121100X_{Ab} )Q^4 \\ {\text{ + }}\tfrac{1}{6}(47395 - 98663X_{Ab} )Q^6 \\ \end{gathered}\) where X Ab is the mole fraction of albite component. The nature of the transition changes from first order in pure anorthite through tricritical at ~An78 to second order, with increasing albite content. The magnitude of the free energy of \()\) ordering reduces markedly as X Ab increases. At ~700° C incommensurate ordering in crystals with compositions ~An50–An70 needs to have an associated free energy reduction of only a few hundred calories to provide a more stable structure. These results, together with a simple mixing model for the disordered ( \()\) ) solid solution, an assumed tricritical model for the incommensurate ordering and published data for ordering in albite have been used to calculate a set of possible free energy relations for the plagioclase system. The incommensurate structure should appear on the equilibrium phase diagram, but its apparent stability with respect to the assemblage albite plus anorthite at low temperatures depends on the values assigned to the mixing parameters of the $$$$ solid solution.  相似文献   

20.
Ca-poor pyroxene ceases to crystallise towards the end of fractionation in tholeiitic intrusions and is usually replaced by Fe-rich olivine. Using the data of Nicholls et al. (1971), the \(a_{{\text{SiO}}_2 }\) at which olivine and pyroxene can coexist has been calculated at different temperatures and pressures. From these calculations it is clear that the Fe/Mg ratio of the last Ca-poor pyroxene to crystallise from a melt is increased by raising the temperature or pressure of crystallisation. The Ca-poor pyroxene-Fe-rich olivine relationship is also dependent on the \(a_{{\text{SiO}}_2 }\) of the melt. In magmas which crystallise Fe-rich olivine before quartz, inicreasing their \(a_{{\text{SiO}}_2 }\) will raise the Fe/Mg ratio of the last Ca-poor pyroxene to crystallise. If the \(a_{{\text{SiO}}_2 }\) of the magma is so high that SiO2 saturation is reached before the appearance of cumulus Fe-rich olivine, any further increase in the \(a_{{\text{SiO}}_2 }\) of the melt will not influence the stability field of Ca-poor pyroxene. The replacement of Ca-poor pyroxene by Fe-rich olivine requires the magma to reach a high level of a FeO late in its fractionation. If a magma fractionates with an FeO depletion trend, Ca-poor pyroxene is replaced by Ca-rich pyroxene. The reaction is initiated by the appearance of cumulus K-feldspar which results in a marked reduction in the amount of anorthite crystallising from the magma. This increases the a CaO of the melt so that Ca-poor pyroxene is replaced by Ca-rich pyroxene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号