首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The method for estimating an ionospheric index of solar-activity (IISA) based on the processing of spacecraft radio signals is suggested. The IISA values have been obtained by comparison between the measured and calculated variations of radio-signal characteristics. To calculate the variations of radio-signal characteristics, the straight rays approximation and the solar-activity index (Wolf numbers W and/or values of F10.7 solar flux) as a control parameter of the ionospheric model have been used. The suggested method was tested using spacecraft radio signals from the radio-navigation system “CIKADA”. The reduced differences of phases (ΔΦ) for frequencies 150 and 400 MHz were measured and the same characteristics were calculated by integration along the ray of radio-wave propagation between the receiver and the satellite. The IRI-95 has been used as a background ionospheric model. The satellite co-ordinates were determined using the orbit parameters recorded in the navigation messages. Minimization of the difference measured and calculated ΔΦ using arbitrary time steps, or during whole time intervals of observation, gives the IISA corresponding the satellite pass. Daily IISA values were obtained by averaging over all communication contacts during a day (20–30 passes). Testing this approach based on the measurements during March/April 1997, 1998, shows that on magnetically quiet days differences between IISA and the primary solar activity indices are about 5%.  相似文献   

2.
颜蕊  胡哲  王兰炜  关燚炳  刘超 《地震学报》2017,39(2):239-247
朗缪尔探针是目前国际上广泛应用的一种空间等离子体环境就位探测技术.中国电磁监测试验卫星上搭载的朗缪尔探针,是我国首次将探针技术应用于星载平台.本文基于电磁监测试验卫星朗缪尔探针的观测原理及Irving Langmuir等提出的近似理论公式,针对朗缪尔探针的仪器特点,提出了等离子环境下朗缪尔探针观测数据的简化反演方法,并依据朗缪尔探针鉴定件的等离子体罐试验数据对该方法进行了比较验证.结果表明,该数据反演方法的效果较好,可以作为电磁监测试验卫星朗缪尔探针观测数据反演的基本方法,并为后续数据处理提供技术基础.   相似文献   

3.
赵倩  苏小宁 《地震》2016,36(3):152-160
从满足重力卫星编队的轨道根数条件出发, 通过全过程动力法仿真实验, 计算得出了满足串联编队(GRACE-type)、 钟摆编队(Pendulum-type)和车轮编队(Cartwheel-type)这三种卫星编队模式稳定在轨的轨道参数, 并验证了其稳定性。 同时, 深入分析了各种卫星编队模式对于重力卫星任务的适用性, 结果表明, 同时包含两个方向观测量的Pendulum-type编队和Cartwheel-type编队, 能够在一定程度上克服GRACE-type编队中存在的由单一星间观测量的强相关性导致的重力场各向异性敏感度问题, 是理论上更适合重力探测任务的卫星编队模式。  相似文献   

4.
The numerical global self-consistent model of the Earth’s thermosphere, ionosphere and protonosphere (GSM TIP), which makes it possible to calculate all the main parameters of the near-Earth plasma, is used to calculate the total electron content (TEC). Calculations have been performed along the radiosignal propagation trajectory between a surface receiving point and a GPS satellite. The TEC value calculated from the satellite data have been compared with such a “true model” TEC value for magnetically quiet conditions of the spring equinox and moderate solar activity. The relative errors in determining the satellite data-based TEC for two European (Troms have been calculated. It has been indicated that an increase in the number of satellites not always results in an increase in accuracy of the TEC value measured on satellites.  相似文献   

5.
This paper focuses mainly on the investigation of water reserve changes in Salt Lake, Turkey, using remote‐sensing data. The study is performed in two stages: (1) correlation analysis for real‐time ground and satellite data and (2) assessment of water reserve changes using multi‐temporal Landsat imagery. First, correlation analysis is conducted to investigate the relationship between digital data from Landsat‐5 TM and spectral (in situ) measurements collected using a field spectroradiometer on the same day and time. A radiometric correction procedure, including conversions from digital numbers to radiance and from radiance to at‐satellite reflectance, is executed to make satellite data comparable to in situ measurements. This procedure show that simultaneous ground and satellite remote‐sensing data are highly correlated (0·84 > R2 > 97) and the near‐infrared region (for this study TM4‐Landsat‐5 TM, band 4) is the best spectral range to distinguish salt and water on the satellite data for the multi‐temporal analysis of the water reserve in Salt Lake. It also shows that the use of shortwave infrared band(s) will result in confusion for the determination of the water reserve in this water‐covered study area. In a second and last phase, the water reserve change in the lake is examined using multi‐temporal Landsat imagery collected in 1990, 2001 and 2005. The remotely sensed, sampled and treated data show that the water reserve in the lake has decreased markedly between 1990 and 2005 due to drought and uncontrolled water usage. It is suggested that the use of water supplies around Salt Lake should be controlled and that the lake should regularly be monitored by up‐to‐date remote‐sensing data (at least annually) for better management of water resources. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
7.
This paper used the thermal infrared data of the satellite NOAA-AAVHRR of the north part of North China (113°~119° E, 38°~42° N), and processed the remote sensing data through radiation adjustment, geometric adjustment and so on by the software "The Monitoring and Fast Process System of Earthquake Precursor Thermal Infrared Anomaly", inversed the earth surface temperature. Some disturbances effect had been excluded, and thermal infrared temperature anomaly had been extracted by the picture difference method. The Zhangbei MS=6.2 earthquake is used as the example in the paper, so that in the paper thermal infrared characteristics on time-space before earthquake and the relationship between the anomaly and the earthquake prediction have been summarized.Within more than ten days before the Zhangbei earthquake, the thermal infrared anomaly had emerged widely along Zhangjiakou-Bohai seismic belt, and the anomalous region seemed like a belt and it is also consistent with the tectonic background there; the anomaly expanded from the outside toward the earthquake focus, but the focus lay at the edge of the thermal infrared region. So it is possible to explore a new anomaly observation method for earthquake prediction by observing and studying the satellite thermal infrared anomaly before big earthquakes happen.  相似文献   

8.
首先总结了国内外利用法国DEMETER卫星观测数据识别和提取地震电离层中主要参量扰动异常的常规研究方法,介绍了图像信息方法(pattern informatics method, 简称PI方法)研究地震活动性异常及其应用于中长期地震危险性预测的研究进展和成果. 然后主要介绍了改进型图像信息方法(modified pattern informatics method,简称MPI方法)在提取电磁卫星数据资料中的进展应用.该方法的震例研究结果显示,地震电离层中电子浓度(Ne)、电子温度(Te)异常出现的时间一般在震前一个月左右,相对于其它方法提取到的异常在震前几小时至数天内,这一突出特点将使得MPI方法在短临地震预报中更具有可操作性.然而,该方法能否作为提取地震电离层异常扰动的实用数据处理方法并应用于地震短临预测中,尚需要进一步深入研究.最后本文提出了将MPI方法应用于提取地震电离层异常信息需要进一步解决的几个问题.   相似文献   

9.
Historically, observing snow depth over large areas has been difficult. When snow depth observations are sparse, regression models can be used to infer the snow depth over a given area. Data sparsity has also left many important questions about such inference unexamined. Improved inference, or estimation, of snow depth and its spatial distribution from a given set of observations can benefit a wide range of applications from water resource management, to ecological studies, to validation of satellite estimates of snow pack. The development of Light Detection and Ranging (LiDAR) technology has provided non‐sparse snow depth measurements, which we use in this study, to address fundamental questions about snow depth inference using both sparse and non‐sparse observations. For example, when are more data needed and when are data redundant? Results apply to both traditional and manual snow depth measurements and to LiDAR observations. Through sampling experiments on high‐resolution LiDAR snow depth observations at six separate 1.17‐km2 sites in the Colorado Rocky Mountains, we provide novel perspectives on a variety of issues affecting the regression estimation of snow depth from sparse observations. We measure the effects of observation count, random selection of observations, quality of predictor variables, and cross‐validation procedures using three skill metrics: percent error in total snow volume, root mean squared error (RMSE), and R2. Extremes of predictor quality are used to understand the range of its effect; how do predictors downloaded from internet perform against more accurate predictors measured by LiDAR? Whereas cross validation remains the only option for validating inference from sparse observations, in our experiments, the full set of LiDAR‐measured snow depths can be considered the ‘true’ spatial distribution and used to understand cross‐validation bias at the spatial scale of inference. We model at the 30‐m resolution of readily available predictors, which is a popular spatial resolution in the literature. Three regression models are also compared, and we briefly examine how sampling design affects model skill. Results quantify the primary dependence of each skill metric on observation count that ranges over three orders of magnitude, doubling at each step from 25 up to 3200. Whereas uncertainty (resulting from random selection of observations) in percent error of true total snow volume is typically well constrained by 100–200 observations, there is considerable uncertainty in the inferred spatial distribution (R2) even at medium observation counts (200–800). We show that percent error in total snow volume is not sensitive to predictor quality, although RMSE and R2 (measures of spatial distribution) often depend critically on it. Inaccuracies of downloaded predictors (most often the vegetation predictors) can easily require a quadrupling of observation count to match RMSE and R2 scores obtained by LiDAR‐measured predictors. Under cross validation, the RMSE and R2 skill measures are consistently biased towards poorer results than their true validations. This is primarily a result of greater variance at the spatial scales of point observations used for cross validation than at the 30‐m resolution of the model. The magnitude of this bias depends on individual site characteristics, observation count (for our experimental design), and sampling design. Sampling designs that maximize independent information maximize cross‐validation bias but also maximize true R2. The bagging tree model is found to generally outperform the other regression models in the study on several criteria. Finally, we discuss and recommend use of LiDAR in conjunction with regression modelling to advance understanding of snow depth spatial distribution at spatial scales of thousands of square kilometres. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Maps of the magnitude of the full vector and the vertical component of an anomalous lithospheric magnetic field over the Voronezh anticline (VA) for the three high-altitude observation levels were compiled based on geomagnetic measurements from the CHAMP satellite. The isometric positive anomaly centered at about 50° N and 37° E stands out. Its amplitude decreases with increasing observation altitude without changing the form. Comparison of the parameters of the detected anomaly with data obtained for this site by other methods confirms that it really exists and that its spatial position is accurately determined, which indicates the reliability of the values of the selected field of lithospheric anomalies. The change in the parameters of the magnetic anomaly with respect to the observation level over the Earth’s surface is consistent with the concepts of geological structural features of the lithosphere in the region. The anomaly offset to the south on the satellite altitudes apparently indicates an uplift of crystalline basement rocks and a more southern position of VA deep roots relative to that accepted in the global magnetization model. The use of satellite data obtained at different altitudes opens up additional possibilities for the application of gradient methods in the interpretation of the magnetic fields of lithospheric anomalies.  相似文献   

11.
A method to obtain underwater topography for coastal areas using state-of-the-art remote sensing data and techniques worldwide is presented. The data from the new Synthetic Aperture Radar (SAR) satellite TerraSAR-X with high resolution up to 1 m are used to render the ocean waves. As bathymetry is reflected by long swell wave refraction governed by underwater structures in shallow areas, it can be derived using the dispersion relation from observed swell properties. To complete the bathymetric maps, optical satellite data of the QuickBird satellite are fused to map extreme shallow waters, e.g., in near-coast areas. The algorithms for bathymetry estimation from optical and SAR data are combined and integrated in order to cover different depth domains. Both techniques make use of different physical phenomena and mathematical treatment. The optical methods based on sunlight reflection analysis provide depths in shallow water up to 20 m in preferably calm weather conditions. The depth estimation from SAR is based on the observation of long waves and covers the areas between about 70- and 10-m water depths depending on sea state and acquisition quality. The depths in the range of 20 m up to 10 m represent the domain where the synergy of data from both sources arises. Thus, the results derived from SAR and optical sensors complement each other. In this study, a bathymetry map near Rottnest Island, Australia, is derived. QuickBird satellite optical data and radar data from TerraSAR-X have been used. The depths estimated are aligned on two different grids. The first one is a uniform rectangular mesh with a horizontal resolution of 150 m, which corresponds to an average swell wavelength observed in the 10 × 10-km SAR image acquired. The second mesh has a resolution of 150 m for depths up to 20 m (deeper domain covered by SAR-based technique) and 2.4 m resolution for the shallow domain imaged by an optical sensor. This new technique provides a platform for mapping of coastal bathymetry over a broad area on a scale that is relevant to marine planners, managers, and offshore industry.  相似文献   

12.
地震监测预警和预测预报是当前地球科学及相关学科所面临的最艰巨的问题之一,是关系到人类社会安全与国计民生的亟待攻克的科学难题.为进一步提高地震预测科学研究水平,推进地震监测预测能力建设,我国于世纪之交提出了建立地震立体观测体系的战略发展思路,并希望突破三维地球物理场获取能力瓶颈,发展地球多圈层耦合模型,通过卫星观测获取全...  相似文献   

13.
Satellite‐based soil moisture data accuracies are of important concerns by hydrologists because they could significantly influence hydrological modelling uncertainty. Without proper quantification of their uncertainties, it is difficult to optimize the hydrological modelling system and make robust decisions. Currently, the satellite soil moisture data uncertainty has been limited to summary statistics with the validations mainly from the in situ measurements. This study attempts to build the first error distribution model with additional higher‐order uncertainty modelling for satellite soil moisture observations. The methodology is demonstrated by a case study using the Soil Moisture and Ocean Salinity satellite soil moisture observations. The validation is based on soil moisture estimates from hydrological modelling, which is more relevant to the intended data use than the in situ measurements. Four probability distributions have been explored to find suitable error distribution curves using the statistical tests and bootstrapping resampling technique. General extreme value is identified as the most suitable one among all the curves. The error distribution model is still in its infant stage, which ignores spatial and temporal correlations, and nonstationarity. Further improvements should be carried out by the hydrological community by expanding the methodology to a wide range of satellite soil moisture data using different hydrological models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
We investigate the magnetospheric domain responsible for the generation of ionospheric travelling convection vortices (TCV) by comparing the location of the TCV to the locations of the low-altitude particle-precipitation boundaries deduced from the DMSP satellite measurements. For three very well documented TCV events we are able to identify suitable satellite passes, in the sense that for each event we can identify two to three passes occurring close to the TCV observation in both time and space. In all three cases the comparisons place the TCV centres at or equatorward of the central plasma sheet/boundary plasma sheet precipitation boundary. Thus our results indicate that the field-aligned currents related to the TCV originate in the plasma sheet rather than at the magnetopause or in the low-latitude boundary layer, as previous studies suggest.Permanent address: Polar Geophysical Institute, Apatity, Murmansk region, 184200, Russia  相似文献   

15.
卫星遥感热红外辐射与川滇强震探讨   总被引:10,自引:0,他引:10  
刘放  程万正  张永久  但尚铭 《地震》2001,21(2):65-69
为了使卫星空间监测技术在地震监测预报的应用研究由理论性、实验性阶段进入实用性阶段,进行了探索和尝试。按照地震前兆资料常规处理的格式和要求,对收集的部分卫星遥感热红外辐射观测资料进行了处理。处理过程中使用了包含数据格式转换、数据预处理、异常挑选等内容的计算机工作软件。在此基础上,根据卫星遥感数据资料所具有的二维均匀分布的特性,应用平面和立体的数据图像处理软件,对卫星遥感热红外辐射观测资料的异常场信息进行了研究。同时,开发出了使用卫星遥感热红外辐射观测资料的数据接口软件。卫星空间监测技术的应用将给地震监测预报带来全新的思维方式及更加快捷实用的数据采集、传送、处理和分析方法。  相似文献   

16.
太湖是我国典型的富营养化湖泊,水温是影响太湖藻类生长的重要环境因子之一,我国环境减灾卫星HJ-1B搭载的红外多光谱相机IRS对太湖水温动态遥感监测具有较大的性能优势.利用6景过境太湖的IRS热红外遥感影像,分别采用单通道普适性算法、辐射传输模型法和单窗算法反演太湖水温,并与实测水温和同期的TERRA/MODIS温度产品进行对比.结果表明,普适性单通道算法反演水温偏高,而辐射传输模型法和单窗算法则偏低;3种算法反演水温的均方根误差在1.001 K以内,单窗算法反演精度最高,其次是辐射传输模型法,再次为普适性单通道算法,而同期MODIS温度产品的均方根误差为1.507 K.3种算法从IRS热红外数据反演的水温直方图均呈正峰态、尖峰状态分布,反演结果能真实地反映太湖水温的空间分布特征.本研究对只有单个热红外通道的卫星传感器开展内陆水体水温遥感监测具有一定的参考意义.  相似文献   

17.
近年来水体富营养化呈扩张趋势,蓝藻水华不仅在太湖等大型湖泊频发,水面面积较小的天津于桥水库等也形势严峻,亟需加强卫星遥感监测.但是,以往在太湖等业务化使用非常成功的MODIS等卫星数据(约500 m),由于空间分辨率较低,难以满足小型水体的监测要求;而Landsat-8等空间分辨率较高的卫星数据(30 m),通常重返周期较长,无法满足水华高频监测需求.本文以天津市于桥水库(面积约80 km2)为研究区,针对常用的卫星数据,从空间、时间、光谱范围和数据可获取性共4个方面,评价不同卫星数据蓝藻水华监测能力和算法,同时对不同卫星监测结果一致性进行评估.结果表明:(1)筛选出国产HJ-1A\B CCD、GF-1 WFV和美国Landsat-8 OLI这3种卫星波段合适,空间分辨率较高,适用于桥水库蓝藻水华监测,但考虑到其重返周期较长,建议多星联合观测;(2)各个卫星监测结果与卫星影像目视解译结果基本一致,均方根误差和相对误差均分别控制在0.78 km2和4.9%以内;(3)不同卫星监测结果一致性良好,一致性精度达到99.5%;(4)根据历史影像结果,发现于桥水库2016年水质开始呈富营养化,藻华现象在夏、秋两季最为严重.研究表明,针对小型水面水体蓝藻水华监测,利用较高分辨率数据联合监测,是一种有效的替代策略,今后可在更多小型水域推广.  相似文献   

18.
随着国家电网建设规模的不断扩大,越来越多的高压直流输电工程陆续投入使用,对线路两侧的地磁观测资料造成了不可避免的影响。目前有5条高压直流输电线路对甘肃地磁台站的观测造成一定程度的干扰。通过单台及多台观测资料对比的方法,识别高压直流输电线对地磁观测资料的影响,研究干扰特征,对正确预处理观测资料有重要的意义。结果表明:①高压直流输电对地磁Z分量影响明显,D、H分量不明显;②对地磁观测影响产生的形态主要表现为方波型、缓变型、梯形型、复合型等。通过总结高压直流输电对地磁观测资料影响特征及形态,有助于正确预处理观测资料及为今后实现计算机自动化处理提供依据。  相似文献   

19.
Abstract

Abstract River discharge is traditionally acquired by measuring water stage and then converting the water stage to discharge by using a stage–discharge rating curve. The possibility of monitoring river discharge by satellite has not been adequately studied hitherto, because of the difficulty in making sufficiently precise measurements of the water surface. Since the successful launch of commercial satellites with very-high-resolution sensors, it has become possible to derive ground information from satellite data. To determine river discharge in a non-trapezoidal open channel, an efficient approach has been developed that uses mainly satellite data. The method, which focuses on the measurement of surface water width coupled with river width–stage and ?remote? stage–discharge rating curves, was applied to the Yangtze River (Changjiang) and an accurate estimate of river discharge was obtained. The method can be regarded as ancillary to traditional field measurement methods or other remote sensing methods.  相似文献   

20.
本文利用RBSP-A卫星在强磁暴和中等磁暴条件下测得的电子密度数据,对Goldstein等人在2019年构造的等离子体层顶位置动态解析模型进行了误差检验.发现在日侧区域,特别是羽状区的模型计算结果与观测数据存在较大误差,平均误差达到32.31%.为了改进模型的误差情况,我们利用LANL卫星数据对1998年到2006年间...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号