首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The article presents semi‐analytical mathematical models to asses (1) enhancements of seepage from a canal and (2) induced flow from a partially penetrating river in an unconfined aquifer consequent to groundwater withdrawal in a well field in the vicinity of the river and canal. The nonlinear exponential relation between seepage from a canal reach and hydraulic head in the aquifer beneath the canal reach is used for quantifying seepage from the canal reach. Hantush's (1967) basic solution for water table rise due to recharge from a rectangular spreading basin in absence of pumping well is used for generating unit pulse response function coefficients for water table rise in the aquifer. Duhamel's convolution theory and method of superposition are applied to obtain water table position due to pumping and recharge from different canal reaches. Hunt's (1999) basic solution for river depletion due to constant pumping from a well in the vicinity of a partially penetrating river is used to generate unit pulse response function coefficients. Applying convolution technique and superposition, treating the recharge from canal reaches as recharge through conceptual injection wells, river depletion consequent to variable pumping and recharge is quantified. The integrated model is applied to a case study in Haridwar (India). The well field consists of 22 pumping wells located in the vicinity of a perennial river and a canal network. The river bank filtrate portion consequent to pumping is quantified.  相似文献   

2.
Groundwater recharge and mounding of water‐table is a complex phenomenon involving time‐ and space‐dependent hydrologic processes. The effect of long‐term groundwater mounding in the aquifer depends on soil, aquifer geometry and the area contributing to recharge. In this paper, a GIS‐based spatio‐temporal algorithm has been developed for the groundwater mound dynamics to estimate the potential rise in the water‐table and groundwater volume balance residual in an unconfined aquifer. The recharge and mound dynamics as predicted using the methodology recommended here were compared with those using the Hantush equation, and the differences were quite significant. The significance of the study is to assess the effectiveness of the basin in terms of its hydrologic and hydraulic properties for sustainable management of groundwater recharge. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Aquifers show troubling signs of irreversible depletion as climate change, population growth, and urbanization lead to reduced natural recharge rates and overuse. One strategy to sustain the groundwater supply is to recharge aquifers artificially with reclaimed water or stormwater via managed aquifer recharge and recovery (MAR) systems. Unfortunately, MAR systems remain wrought with operational challenges related to the quality and quantity of recharged and recovered water stemming from a lack of data‐driven, real‐time control. This paper presents a laboratory scale proof‐of‐concept study that demonstrates the capability of a real‐time, simulation‐based control optimization algorithm to ease the operational challenges of MAR systems. Central to the algorithm is a model that simulates water flow and transport of dissolved chemical constituents in the aquifer. The algorithm compensates for model parameter uncertainty by continually collecting data from a network of sensors embedded within the aquifer. At regular intervals the sensor data is fed into an inversion algorithm, which calibrates the uncertain parameters and generates the initial conditions required to model the system behavior. The calibrated model is then incorporated into a genetic algorithm that executes simulations and determines the best management action, for example, the optimal pumping policy for current aquifer management goals. Experiments to calibrate and validate the simulation‐optimization algorithm were conducted in a small two‐dimensional synthetic aquifer under both homogeneous and heterogeneous packing configurations. Results from initial experiments validated the feasibility of the approach and suggested that our system could improve the operation of full‐scale MAR facilities.  相似文献   

4.
Little attention has been given to the role of groundwater in the hydrological cycle of lowland watersheds. Our objective in this study was to estimate total recharge to groundwater by analysing water table response to storm events and the rate at which water was transferred into the shallow aquifer. This was conducted at three sites in a rural watershed in the lower Atlantic coastal plain near Charleston, South Carolina, USA. A novel version of the water table fluctuation method was used to estimate total recharge to the shallow aquifer by comparing hourly data of water table position following storm events and measuring water table recession behavior, rather than subjective graphical analysis methods. Also, shallow aquifer recharge rates (vertical fluxes) were estimated using Darcy's Law by comparing static water levels in a water table well and in a shallow piezometer during dry periods. The total annual recharge estimated ranged from 107 ± 39 mm·yr–1 (5–10% of annual precipitation) at a poorly drained topographic low area to 1140 ± 230 mm·yr–1 (62–94% of annual precipitation) for a moderately well‐drained upland site. The average aquifer recharge rate was 114 ± 60 mm·yr–1, which is similar to previous estimations of base flow for the ephemeral third‐order streams in this watershed. The difference in the two methods may have been caused by processes not accounted for in the Darcy flux method, soil moisture deficits, and average evapotranspiration demand, which is about 1100 mm·yr–1 for this region. Although other factors also can affect partitioning of recharge, an integrated approach to inspecting easily gathered groundwater data can provide information on an often neglected aspect of water budget estimation. We also discuss the effects of land use change on recharge reduction, given a typical development scenario for the region. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
An interactive program written for an APPLE II+ 48K computer is presented which solves Glover's (1960) analytical solution for recharge from a rectangular basin. The program is capable of graphically displaying the rise and decline of the recharge mound for either an infinite homogeneous medium or for a stream aquifer system.  相似文献   

6.
《水文科学杂志》2013,58(1):174-188
Abstract

Decay or rise of the water table from a disturbed (mound or trough) position to a quiescent flat state is studied by a linear potential theory that does not rely on the Dupuit-Forchheimer vertical averaging but is a solution to the full Laplace equation. We consider an unconfined aquifer of high (infinite) thickness disturbed by a linear or point hydrodynamic dipole and assemblies of dipoles, which generate two- and three-dimensional seepage. Hydrologically, the dipoles mimic a channel (or circular-recharge basin), which generates the mound. The dipole ascends (descends) and the corresponding free surface, on which the isobaricity and kinematic conditions hold, slumps. A solvability condition, which stipulates no singularities in the seepage domain, is explicitly presented. The mound signal is defined as the time peak of the water table at any piezometer located away from the original recharge area. The flow net and isotachs prove the Bouwer caveat that the Dupuit-Forchheimer theory is specious if applied to high-thickness aquifers accommodating mounds originating from short infiltration events. The analytical value of the water table peak and the time of its arrival are compared with piezometric observations in recharge experiments conducted in a coastal aquifer of the United Arab Emirates, where the hydraulic conductivity is assessed from hydrographs. The inversely determined hydraulic conductivity fits well with those found from infiltration double-ring experiments and MODFLOW simulation.  相似文献   

7.
Infiltration rate is the key parameter that describes how water moves from the surface into a groundwater aquifer during managed aquifer recharge (MAR). Characterization of infiltration rate heterogeneity in space and time is valuable information for MAR system operation. In this study, we utilized fiber optic distributed temperature sensing (FO‐DTS) observations and the phase shift of the diurnal temperature signal between two vertically co‐located fiber optic cables to characterize infiltration rate spatially and temporally in a MAR basin. The FO‐DTS measurements revealed spatial heterogeneity of infiltration rate: approximately 78% of the recharge water infiltrated through 50% of the pond bottom on average. We also introduced a metric for quantifying how the infiltration rate in a recharge pond changes over time, which enables FO‐DTS to be used as a method for monitoring MAR and informing maintenance decisions. By monitoring this metric, we found high‐spatial variability in how rapidly infiltration rate changed during the test period. We attributed this variability to biological pore clogging and found a relationship between high initial infiltration rate and the most rapid pore clogging. We found a strong relationship (R2 = 0.8) between observed maximum infiltration rates and electrical resistivity measurements from electrical resistivity tomography data taken in the same basin when dry. This result shows that the combined acquisition of DTS and ERT data can improve the design and operation of a MAR pond significantly by providing the critical information needed about spatial variability in parameters controlling infiltration rates.  相似文献   

8.
New Zealand's gravel‐bed rivers have deposited coarse, highly conductive gravel aquifers that are predominantly fed by river water. Managing their groundwater resources is challenging because the recharge mechanisms in these rivers are poorly understood and recharge rates are difficult to predict, particularly under a more variable future climate. To understand the river‐groundwater exchange processes in gravel‐bed rivers, we investigate the Wairau Plain Aquifer using a three‐dimensional groundwater flow model which was calibrated using targeted field observations, “soft” information from experts of the local water authority, parameter regularization techniques, and the model‐independent parameter estimation software PEST. The uncertainty of simulated river‐aquifer exchange flows, groundwater heads, spring flows, and mean transit times were evaluated using Null‐space Monte‐Carlo methods. Our analysis suggests that the river is hydraulically perched (losing) above the regional water table in its upper reaches and is gaining downstream where marine sediments overlay unconfined gravels. River recharge rates are on average 7.3 m3/s, but are highly dynamic in time and variable in space. Although the river discharge regularly hits 1000 m3/s, the net exchange flow rarely exceeds 12 m3/s and seems to be limited by the physical constraints of unit‐gradient flux under disconnected rivers. An important finding for the management of the aquifer is that changes in aquifer storage are mainly affected by the frequency and duration of low‐flow periods in the river. We hypothesize that the new insights into the river‐groundwater exchange mechanisms of the presented case study are transferable to other rivers with similar characteristics.  相似文献   

9.
In this study, we attempted to analyse a drawdown pattern around a pumping well in an unconfined sandy gravelly aquifer constructed in a laboratory tank by means of both experimental and numerical modelling of groundwater flow. The physical model consisted of recharge, aquifer and discharge zones. Permeability and specific yield of the aquifer material were determined by Dupuit approximation under steady‐state flow and stepwise gravitational drainage of groundwater, respectively. The drawdown of water table in pumping and neighbouring observation wells was monitored to investigate the effect of no‐flow boundary on the drawdown pattern during pumping for three different boundary conditions: (i) no recharge and no discharge with four no‐flow boundaries (Case 1); (ii) no recharge and reservoir with three no‐flow boundaries (Case 2); (iii) recharge and discharge with two no‐flow boundaries (Case 3). Based on the aquifer parameters, numerical modelling was also performed to compare the simulated drawdown with that observed. Results showed that a large difference existed between the simulated drawdown and that observed in wells for all cases. The reason for the difference could be explained by the formation of a curvilinear type water table between wells rather than a linear one due to a delayed response of water table in the capillary fringe. This phenomenon was also investigated from a mass balance study on the pumping volume. The curvilinear type of water table was further evidenced by measurement of water contents at several positions in the aquifer between wells using time domain reflectometry (TDR). This indicates that the existing groundwater flow model applicable to an unconfined aquifer lacks the capacity to describe a slow response of water table in the aquifer and care should be taken in the interpretation of water table formation in the aquifer during pumping. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
Farmed catchments in the Mediterranean area often exhibit dense networks of ditches which are also preferential zones of water table recharge, and thereby of groundwater contamination. This study presents an experimental analysis of seepage losses and related groundwater recharge patterns during a typical Mediterranean runoff event at the scale of a ditch located above a shallow water table. The objectives were (i) to evaluate the patterns of water table recharge by seepage in a ditch, (ii) to study the main flow processes occurring during recharge, and (iii) to estimate solute propagation in case of contaminated flow in the ditch. The field observation indicated three major points. Firstly, they showed that seepage losses during a runoff event in a ditch can rapidly lead to a significant recharge of a shallow water table. Secondly, the recharge induces a groundwater mound much larger than the event plume. The infiltrated water and the accompanying solutes remained in the vicinity of the ditch. The patterns of groundwater recharge and contamination appeared very different. Lastly, both unsaturated and saturated‐piston flow processes were observed which suggests that a variably‐saturated flow modelling approach ought to be used to simulate the ditch‐water shallow table interaction. Finally, the study indicates that the patterns of water table recharge and contamination in Mediterranean catchments with dense ditches network vary largely in space and time, and will require dense monitoring networks to estimate the evolution of the average contamination levels. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
This paper aims to contribute to understanding the importance of four factors on the determination of sustainable yields: (i) aquifer properties; (ii) temporal distribution of recharge; (iii) temporal distribution of groundwater pumping; and (iv) spatial distribution of pumping wells. It is important to comprehend how the present‐day and future vulnerability of groundwater systems to pumping activities depend on these critical factors and what the risks are of considering sustainable yield as a fixed percentage of mean annual recharge (MAR). A numerical model of the Querença–Silves aquifer in Portugal is used to develop hypothetical scenarios with which these factors are studied. Results demonstrate the aquifer properties, particularly the storage coefficient, have an important role in determining the resilience of an aquifer and therefore to which degree it is dependent on the spatial and temporal distribution of abstraction and recharge, as well as the occurrence of extreme events. Sustainable yields are determined for the developed scenarios based on specific criteria rather than a fraction of MAR. Under simplified current recharge and abstraction conditions, the sustainable yield was determined at approximately 73% of MAR or 76 million m3. When considering a concentration of rainfall in time, as predicted by climate scenarios for the region, sustainable yield could drop to ca 70% of MAR. However, a more even distribution of pumping volumes throughout the year could increase this value. The location of the pumping wells is seen to affect the distribution of hydraulic heads in the aquifer, albeit without significant changes in sustainable yield. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
This study is aimed at quantifying the difference in aquifer's response to recharge between some different locations in a fan aquifer and a delta aquifer for a preliminary study of revealing mechanisms of water transport in alluvial aquifer. The aquifer's response to recharge is statistically quantified with the two viewpoints: (1) timing and volume of recharge and (2) time length of aquifer's holding water. For the first point, a statistical model that links precipitation and groundwater level is introduced, and its parameters are identified using correlation analysis. Our results show that the recharge rate at the toe is higher than that at the apex and at the delta. For the second point, the concept of ‘memory effect’ of aquifer is adopted and quantified using the autocorrelation and spectral analyses. Our results show that the memory effect is longer at the toe of fan than at the apex, and thus, a temporary increase of water level has about five times as long‐term influence on subsequent water levels at the toe of the fan as at the apex. This study demonstrates that the statistical analyses and modeling of hydrological data are useful for characterizing aquifer's hydrodynamics. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The Mw = 6·3 L'Aquila earthquake on 6 April 2009 produced a mainshock that caused significant changes in the hydrogeology of the Gran Sasso carbonate fractured aquifer: (i) the sudden disappearance at the time of the mainshock of some springs located exactly along the surface trace of the Paganica normal fault (PF); (ii) an immediate increase in the discharge of the Gran Sasso highway tunnel drainages and of other springs and (iii) a progressive increase of the water table elevation at the boundary of the Gran Sasso aquifer during the following months. Using the data collected since the 1990s that include aftershock monitoring as well as data regarding spring discharge, water table elevations, turbidity and rainfall events, a conceptual model of the earthquake's consequences on the Gran Sasso aquifer is proposed herein. In this model that excludes the contribution of seasonal recharge, the short‐term hydrologic effects registered immediately after the mainshock are determined to have been caused by a pore pressure increase related to aquifer deformation. Mid‐term effects observed in the months following the mainshock suggest that there was a change in groundwater hydrodynamics. Supplementary groundwater that flows towards aquifer boundaries and springs in discharge areas reflects a possible increase in hydraulic conductivity in the recharge area, nearby the earthquake fault zone. This increase can be attributed to fracture clearing and/or dilatancy. Simulations by numerical modelling, related to pore pressure and permeability changes with time, show results in accordance with observed field data, supporting the conceptual model and confirming the processes that influenced the answer of the Gran Sasso aquifer to the L'Aquila earthquake. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Detailed monitoring of the groundwater table can provide important data about both short‐ and long‐term aquifer processes, including information useful for estimating recharge and facilitating groundwater modeling and remediation efforts. In this paper, we presents results of 4 years (2002 to 2005) of monitoring groundwater water levels in the Rio Claro Aquifer using observation wells drilled at the Rio Claro campus of São Paulo State University in Brazil. The data were used to follow natural periodic fluctuations in the water table, specifically those resulting from earth tides and seasonal recharge cycles. Statistical analyses included methods of time‐series analysis using Fourier analysis, cross‐correlation, and R/S analysis. Relationships could be established between rainfall and well recovery, as well as the persistence and degree of autocorrelation of the water table variations. We further used numerical solutions of the Richards equation to obtain estimates of the recharge rate and seasonable groundwater fluctuations. Seasonable soil moisture transit times through the vadose zone obtained with the numerical solution were very close to those obtained with the cross‐correlation analysis. We also employed a little‐used deep drainage boundary condition to obtain estimates of seasonable water table fluctuations, which were found to be consistent with observed transient groundwater levels during the period of study.  相似文献   

15.
Artificial recharge of groundwater is an increasingly important method for augmenting groundwater supply and can have a positive or negative influence on the quality of water resources. We instrumented a managed aquifer recharge (MAR) pond in central coastal California to assess how patterns of infiltration and recharge affect the load of nitrate delivered to the underlying aquifer. The concentration of nitrate in infiltrating water consistently decreased during passage through the first metre of subsurface soils. Enrichment of 18O and 15 N in the residual nitrate in infiltrating water proceeded in a ratio of 1:2, indicating that denitrification plays a significant role in the quantitative reduction of nutrients exported during infiltration through shallow soils. The extent and rate of nitrate removal was spatially and temporally variable across the bottom of the recharge pond, with 30% to 60% of the nitrate load being removed over the first 6 weeks of managed aquifer recharge operation. During the period of highest N loading to the system, when the average infiltration rate was > 1 m/day, the recharge pond achieved a load reduction efficiency of 7 kg NO3?‐N/day/ha, which compares favourably to nitrate load reductions achieved by treatment wetlands. Groundwater mounding and water composition below the recharge pond suggest that recharge and subsequent lateral transport occur heterogeneously in the underlying aquifer. Nitrate concentrations in the aquifer following infiltration were lowered primarily by dilution, with little evidence for additional denitrification occurring in the aquifer in comparison to high rates documented during shallow infiltration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
This study addresses the influence of landslide dams on surface water drainage and groundwater flow. In the study area of Scanno Lake and Sagittario River (Central Italy), a limestone rockslide‐avalanche formed a lake, which has an outlet that is occasionally active, showing infiltration into the rockslide dam. Several springs are present at the lake's base and are partly fed by seepage through the rockslide debris. Piezometric surveys, discharge measurements, pumping tests and chemical analyses are tools used to build a conceptual model of the groundwater flow and to evaluate the flow through the rockslide debris. Seasonal water isotopic signatures validate the assumed model, showing a mixing of infiltration recharge and groundwater seepage throughout the rockslide debris. Various recharge areas have been found for springs, pointing out those directly fed by the rockslide debris aquifer. Hypotheses about seasonal groundwater mixing between the regional carbonate aquifer and the rockslide debris aquifer are supported by isotope results. Seasonal changes in groundwater table level due to recharge and surface losses from seasonal outlet have been correlated with isotopic groundwater composition from the rockslide debris aquifer and the downstream springs; this relationship highlights the role of the rockslide dam body on the hydrodynamics of the studied area. Relationships between surface waters and groundwater in the area have been completely understood on the basis of water isotopic fingerprinting, finally obtaining a complete evaluation of groundwater renewable resources and its regimen. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Measurement of the stable isotopes oxygen‐18 and deuterium in water is an important tool to characterize aquifer recharge sources. In the driest areas of the Mediterranean, this application is of special interest due to the scarcity of water and the resulting common incidence of human influence on natural hydrological systems. The Motril‐Salobreña detrital aquifer (southern Spain) is a clear example of such an impact as inhabitants have designed irrigation systems and a dam was recently built across the course of the Guadalfeo River, which feeds the aquifer. The sampling of (river or ground) water has allowed the determination of stable isotope contents (oxygen‐18 and deuterium), both temporally and spatially, and the relative importance of the main recharge sources in certain sectors. In addition, we were able to infer seasonal trends and to improve existing knowledge of the main flow paths and the position of a seasonal groundwater divide. Data analysis shows evaporation plays a minor role (despite the high temperatures in the zone), scarce rainwater influence, and the overwhelming contribution of recharge from the Guadalfeo River and from the carbonate aquifer (Escalate aquifer) in contact with the Motril‐Salobreña aquifer. Irrigation return flow during the summer months comprises the main recharge due to the significant volumes of water that infiltrate. The construction of the dam will almost certainly entail great changes in the current dynamics of the hydrogeology of the Motril‐Salobreña aquifer; therefore, knowledge of its behaviour is crucial in order to carry out sustainable use of its groundwater resources. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The effects of surface water flow system changes caused by constructing water‐conservation areas and canals in southeast Florida on groundwater quality under the Atlantic Coastal Ridge was investigated with numerical modeling. Water quality data were used to delineate a zone of groundwater with low total dissolved solids (TDS) within the Biscayne aquifer under the ridge. The delineated zone has the following characteristics. Its location generally coincides with an area where the Biscayne aquifer has high transmissivities, corresponds to a high recharge area of the ridge, and underlies a part of the groundwater mound formed under the ridge prior to completion of the canals. This low TDS groundwater appears to be the result of pre‐development conditions rather than seepage from the canals constructed after the 1950s. Numerical simulation results indicate that the time for low TDS groundwater under the ridge to reach equilibrium with high TDS surface water in the water‐conservation areas and Everglades National Park are approximately 70 and 60 years, respectively. The high TDS groundwater would be restricted to the water‐conservation areas and the park due to its slow eastward movement caused by small hydraulic gradients in Rocky Glades and its mixing with the low TDS groundwater under the high‐recharge area of the ridge. The flow or physical boundary conditions such as high recharge rates or low hydraulic conductivity layers may affect how the spatial distribution of groundwater quality in an aquifer will change when a groundwater flow system reaches equilibrium with an associated surface water flow system.  相似文献   

19.
Soil and vadose zone profiles are used as an archive of changes in groundwater recharge and water quality following changes in land use in an area of the Loess Plateau of China. A typical rain‐fed loess‐terrace agriculture region in Hequan, Guyuan, is taken as an example, and multiple tracers (chloride mass balance, stable isotopes, tritium and water chemistry) are used to examine groundwater recharge mechanisms and to evaluate soil water chloride as an archive for recharge rate and water quality. Results show that groundwater recharge beneath natural uncultivated grassland, used as a baseline, is about 94–100 mm year?1 and that the time it takes for annual precipitation to reach water table through the thick unsaturated zone is from decades to hundreds of years (tritium free). This recharge rate is 2–3 orders of magnitude more than in the other semiarid areas with similar annual rainfall but with deep‐rooted vegetation and relatively high temperature. Most of the water that eventually becomes recharge originally infiltrated in the summer months. The conversion from native grassland to winter wheat has reduced groundwater recharge by 42–50% (50–55 mm year?1 for recharge), and the conversion from winter wheat to alfalfa resulted in a significant chloride accumulation in the upper soil zone, which terminated deep drainage. The paper also evaluates the time lag between potential recharge and actual recharge to aquifer and between increase in solute concentration in soil moisture and that in the aquifer following land‐use change due to the deep unsaturated zone. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
If the nature of groundwater sources and sinks can be determined or predicted, the data can be used to forecast natural aquifer discharge. We present a procedure to forecast the relative contribution of individual aquifer sources and sinks to natural aquifer discharge. Using these individual aquifer recharge components, along with observed aquifer heads for each January, we generate a 1‐year, monthly spring discharge forecast for the upcoming year with an existing numerical model and convolution. The results indicate that a forecast of natural aquifer discharge can be developed using only the dominant aquifer recharge sources combined with the effects of aquifer heads (initial conditions) at the time the forecast is generated. We also estimate how our forecast will perform in the future using a jackknife procedure, which indicates that the future performance of the forecast is good (Nash‐Sutcliffe efficiency of 0.81). We develop a forecast and demonstrate important features of the procedure by presenting an application to the Eastern Snake Plain Aquifer in southern Idaho.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号