首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work presents analytical models which are able to predict contours of concentrations and isotope ratios of organic pollutants in homogeneous aquifers. Four analytical solutions of the advective–dispersive transport equation for reactive transport from the literature differing in assumptions regarding biodegradation kinetics were used. Stable isotope ratios are computed after modelling the individual reactive transport of isotopic species in the aquifer, which respond differently to fractionation by biodegradation or sorption. The main finding of this study is that the isotope ratios in the plumes are very sensitive to the assumptions underlying the biodegradation kinetics in the models. When biodegradation occurs throughout the core of the plume as first-order reaction, the transversal gradients in isotope ratios are smooth. When biodegradation occurs in a bi-molecular reaction with an electron acceptor (modelled by double-Monod kinetics), steep transversal isotope gradients are predicted. When the reaction rates approach instantaneous reaction along the plume fringes, isotope shifts in the core of the plume disappear. A model incorporating plume and fringe degradation produces the most plausible predictions of isotope ratios in this study. It is shown furthermore that isotope fractionation by sorption causes an even different pattern of isotope ratios, with positive shifts restricted to near the forerunning front of an expanding plume. The models developed in this work can serve for the validation of numerical models and may be incorporated in natural attenuation support systems such as e.g. BIOSCREEN.  相似文献   

2.
BIOSCREEN-AT: BIOSCREEN with an exact analytical solution   总被引:1,自引:0,他引:1  
BIOSCREEN is used extensively for screening-level evaluation of the transport of dissolved contaminants in ground water. The code has an effective graphical user interface that makes it ideal for use in both professional practice and as a teaching aid. BIOSCREEN implements the approximate transport solution of Domenico (1987). This note describes an enhanced version of the program, BIOSCREEN-AT, which supplements the Domenico solution with an exact analytical solution. The exact analytical solution has been integrated seamlessly within the BIOSCREEN interface and provides a simple and direct way to calculate an exact solution to the transport equation and, if desired, to assess the significance of the errors introduced by the Domenico (1987) solution for site-specific applications. The modified version of BIOSCREEN is designated BIOSCREEN-AT and can be downloaded free of charge from http://www.sspa.com/./software/BIOSCREEN.htm.  相似文献   

3.
A modified version of the MODFLOW/MT3DMS‐based reactive transport model PHT3D was developed to extend current reactive transport capabilities to the variably‐saturated component of the subsurface system and incorporate diffusive reactive transport of gaseous species. Referred to as PHT3D‐UZF, this code incorporates flux terms calculated by MODFLOW's unsaturated‐zone flow (UZF1) package. A volume‐averaged approach similar to the method used in UZF‐MT3DMS was adopted. The PHREEQC‐based computation of chemical processes within PHT3D‐UZF in combination with the analytical solution method of UZF1 allows for comprehensive reactive transport investigations (i.e., biogeochemical transformations) that jointly involve saturated and unsaturated zone processes. Intended for regional‐scale applications, UZF1 simulates downward‐only flux within the unsaturated zone. The model was tested by comparing simulation results with those of existing numerical models. The comparison was performed for several benchmark problems that cover a range of important hydrological and reactive transport processes. A 2D simulation scenario was defined to illustrate the geochemical evolution following dewatering in a sandy acid sulfate soil environment. Other potential applications include the simulation of biogeochemical processes in variably‐saturated systems that track the transport and fate of agricultural pollutants, nutrients, natural and xenobiotic organic compounds and micropollutants such as pharmaceuticals, as well as the evolution of isotope patterns.  相似文献   

4.
This study presents a multiphase flow and multispecies reactive transport model for the simultaneous simulation of NAPL and groundwater flow, dissolution, and reactive transport with isotope fractionation, which can be used for better interpretation of NAPL-involved Compound Specific Isotope Analysis in 3D heterogeneous hydrogeologic systems. The model was verified for NAPL-aqueous phase equilibrium partitioning, aqueous phase multi-chain and multi-component reactive transport, and aqueous phase multi-component transport with isotope fractionation. Several illustrative examples are presented to investigate the effect of DNAPL spill rates, degradation rate constants, and enrichment factors on the temporal and spatial distribution of the isotope signatures of chlorinated aliphatic hydrocarbon groundwater plumes. The results clearly indicate that isotope signatures can be significantly different when considering multiphase flow within the source zone. A series of simulations indicate that degradation and isotope enrichment compete with dissolution to determine the isotope signatures in the source zone: isotope ratios remain the same as those of the source if dissolution dominates the reaction, while heavy isotopes are enriched in reactants along groundwater plume flow paths when degradation becomes dominant. It is also shown that NAPL composition can change from that of the injected source due to the partitioning of components between the aqueous and NAPL phases even when degradation is not allowed in NAPL phase. The three-dimensional simulation is presented to mechanistically illustrate the complexities in determining and interpreting the isotopic signatures with evolving DNAPL source architecture.  相似文献   

5.
Models simulating stream flow and conservative tracers can provide a representation of flow paths, storage distributions and mixing processes that is advantageous for many predictive purposes. Compared with models that only simulate stream flow, tracer data can be used to investigate the internal consistency of model behaviour and to gain insight into model performance. Here, we examine the strengths and weaknesses of a data‐driven, spatially distributed tracer‐aided rainfall‐runoff model. The model structure allowed us to assess the influence of landscape characteristics on the routing and mixing of water and tracers. The model was applied to a site in the Scottish Highlands with a unique tracer data set; ~4 years of daily isotope ratios in stream water and precipitation were available, as well as 2 years of weekly soil and ground water isotopes. The model structure was based on an empirically based, lumped tracer‐aided model previously developed for the catchment. The best model runs were selected from Monte Carlo simulations based on dual calibration criteria using objective functions for both stream isotopes and discharge at the outlet. Model performance for these criteria was reasonable (Nash–Sutcliffe efficiencies for discharge and isotope ratios were ~0.4–0.6). The model could generally reproduce the variable isotope signals in the soils of the steeper hill slopes where storage was low, and damped isotope responses in valley bottom cells with high storage. The model also allowed us to estimate the age distributions of internal stores, water fluxes and stream flow. Average stream water age was ~1.6 years, integrating older groundwater in the valley bottom and dynamic younger soil waters. By tracking water ages and simulating isotopes, the model captured the changes in connectivity driven by distributed storage dynamics. This has substantially improved the representation of spatio‐temporal process dynamics and gives a more robust framework for projecting environmental change impacts. Copyright © 2016 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   

6.
A numerical model was developed that is capable of simulating multispecies reactive solute transport in variably saturated porous media. This model consists of a modified version of the reactive transport model RT3D (Reactive Transport in 3 Dimensions) that is linked to the Unsaturated‐Zone Flow (UZF1) package and MODFLOW. Referred to as UZF‐RT3D, the model is tested against published analytical benchmarks as well as other published contaminant transport models, including HYDRUS‐1D, VS2DT, and SUTRA, and the coupled flow and transport modeling system of CATHY and TRAN3D. Comparisons in one‐dimensional, two‐dimensional, and three‐dimensional variably saturated systems are explored. While several test cases are included to verify the correct implementation of variably saturated transport in UZF‐RT3D, other cases are included to demonstrate the usefulness of the code in terms of model run‐time and handling the reaction kinetics of multiple interacting species in variably saturated subsurface systems. As UZF1 relies on a kinematic‐wave approximation for unsaturated flow that neglects the diffusive terms in Richards equation, UZF‐RT3D can be used for large‐scale aquifer systems for which the UZF1 formulation is reasonable, that is, capillary‐pressure gradients can be neglected and soil parameters can be treated as homogeneous. Decreased model run‐time and the ability to include site‐specific chemical species and chemical reactions make UZF‐RT3D an attractive model for efficient simulation of multispecies reactive transport in variably saturated large‐scale subsurface systems.  相似文献   

7.
Arsenic is a well‐known groundwater contaminant that causes toxicological and carcinogenic effects in humans. Predicting the transport of arsenic in the subsurface is often problematic because of its complex sorption characteristics. Numerous researchers have reported that arsenic sorption on soil material is initially fast and then subsequently slow. A dual‐site numerical sorption model was previously developed to describe arsenic desorption from arsenic‐contaminated soils in batch experiments in terms of two different release mechanisms. Experiments involving synthetic acid rain leaching of four arsenic‐contaminated soil columns were performed to verify the dual‐site numerical sorption model in the context of one‐dimensional vertical transport. The fitted models successfully simulated the signature long tailings and the two‐stage arsenic leaching patterns for all four soil columns. The dual‐site sorption model was incorporated within the general solute transport simulation code Modular Three‐Dimensional Multispecies (MT3DMS), version 5.10. The resulting version was named MT3DDS and is available for public access. This experimental study has shown that MT3DDS is capable of simulating phase redistribution during transport, and thus provides a new numerical tool for simulating arsenic transport in the subsurface.  相似文献   

8.
A generalized, efficient, and practical approach based on the travel‐time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel‐time distribution from the injection point to the observation point. For advection‐dominant reactive transport with well‐mixed reactive species and a constant travel‐time distribution, the reactive BTC is obtained by integrating the solutions to advective‐reactive transport over the entire travel‐time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero‐, first‐, nth‐order, and Michaelis‐Menten reactions. The proposed approach is validated by a reactive transport case in a two‐dimensional synthetic heterogeneous aquifer and a field‐scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)‐bioremediation is better approximated by zero‐order reaction kinetics than first‐order reaction kinetics.  相似文献   

9.
The remediation industry has witnessed multiple innovations arising from a greater understanding of the physical, chemical, and biological processes that control the fate and transport of chemicals in the subsurface environment. In addition, increasing emphasis is being placed on remediation solutions that are greener, simpler, and more resource efficient. The positive impacts that can be derived from this emphasis include reduced energy consumption, reduced waste emissions, and lower costs. Temperature‐activated auto‐decomposition reactions represent a potentially underutilized option for the in situ remediation of certain organic contaminants, and an option that can be both highly effective and greener than other available technologies.  相似文献   

10.
Many studies indicate that small‐scale heterogeneity and/or mobile–immobile mass exchange produce transient non‐Fickian plume behavior that is not well captured by the use of the standard, deterministic advection‐dispersion equation (ADE). An extended ADE modeling framework is presented here that is based on continuous time random walk theory. It can be used to characterize non‐Fickian transport coupled with simultaneous sequential first‐order reactions (e.g., biodegradation or radioactive decay) for multiple degrading contaminants such as chlorinated solvents, royal demolition explosive, pesticides, and radionuclides. To demonstrate this modeling framework, new transient analytical solutions are derived and are inverted in Laplace space. Closed‐form, steady‐state, multi‐species analytical solutions are also derived for non‐Fickian transport in highly heterogeneous aquifers with linear sorption–desorption and matrix diffusion for use in spreadsheets. The solutions are general enough to allow different degradation rates for the mobile and immobile zones. The transient solutions for multi‐species transport are applied to examine the effects of source remediation on the natural attenuation of downgradient plumes of both parent and degradation products in highly heterogeneous aquifers. Results for representative settings show that the use of the standard, deterministic ADE can over‐estimate cleanup rates and under‐predict the cleanup timeframe in comparison to the extended ADE analytical model. The modeling framework and calculations introduced here are also applied for a 30 year groundwater cleanup program at a site in Palm Bay, Florida. The simulated plume concentrations using the extended ADE exhibited agreement with observed long concentration tails of trichloroethene, cis 1,2 DCE, and VC that remained above cleanup goals.  相似文献   

11.
Stream–subsurface exchange plays a significant role in the fate and transport of contaminants in streams. It has been modelled explicitly by considering fundamental processes such as hydraulic exchange, colloid filtration, and contaminant interactions with streambed sediments and colloids. The models have been successfully applied to simulate the transport of inorganic metals and nutrients. In this study, laboratory experiments were conducted in a recirculating flume to investigate the exchange of a hydrophobic organic contaminant, p,p′‐dichloro‐diphenyl‐dichloroethane (DDE), between a stream and a quartz sand bed. A previously developed process‐based multiphase exchange model was modified by accounting for the p,p′‐DDE kinetic adsorption to and desorption from the bed sediments/colloids and was applied to interpret the experimental results. Model input parameters were obtained by conducting independent small‐scale batch experiments. Results indicate that the immobilization of p,p′‐DDE in the quartz sand bed can occur under representative natural stream conditions. The observed p,p′‐DDE exchange was successfully simulated by the process‐based model. The model sensitivity analysis results show that the exchange of p,p′‐DDE can be sensitive to either the sediment sorption/desorption parameters or colloidal parameters depending on the experimental conditions tested. For the experimental conditions employed here, the effect of colloids on contaminant transport is expected to be minimal, and the stream–subsurface exchange of p,p′‐DDE is dominated by the interaction of p,p′‐DDE with bed sediment. The work presented here contributes to a better mechanistic understanding of the complex transport process that hydrophobic organic contaminants undergo in natural streams and to the development of reliable, predictive models for the assessment of impacted streams. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Stable water isotope ratios are measured as a tracer of environmental processes in materials such as leaves, soils, and lakes. Water in these archives may experience evaporation, which increases the abundance of heavy isotopologues proportionally to the gradients in humidity and isotope ratio between the evaporating water and the surrounding atmosphere. The isotope ratio of the atmosphere has been difficult to measure until recently, and measurements remain scarce. As a result, several assumptions have been adopted to estimate isotope ratios of atmospheric water vapour. Perhaps the most commonly employed assumption in terrestrial environments is that water vapour is in isotopic equilibrium with precipitation. We evaluate this assumption using an eight‐member ensemble of general circulation model (GCM) simulations that include explicit calculation of isotope ratios in precipitation and vapour. We find that across the model ensemble, water vapour is typically less depleted in heavy isotopologues than expected if it were in equilibrium with annual precipitation. Atmospheric vapour likely possesses higher‐than‐expected isotope ratios because precipitation isotope ratios are determined by atmospheric conditions that favour condensation, which do not reflect atmospheric mixing and advection processes outside of precipitation events. The effect of this deviation on theoretical estimates of isotope ratios of evaporating waters scales with relative humidity. As a result, the equilibrium assumption gives relatively accurate estimates of the isotope ratios of evaporating waters in low latitudes but performs increasingly poorly at increasing latitudes. Future studies of evaporative water pools should include measurements of atmospheric isotope ratios or constrain potential bias with isotope‐enabled GCM simulations.  相似文献   

13.
A three‐dimensional model for predicting redox controlled, multi‐species reactive transport processes in groundwater systems is presented. The model equations were fully integrated within a MODFLOW‐family reactive transport code, RT3D. The model can simulate organic compound biodegradation coupled to different terminal electron acceptor processes. A computational approach, which uses the spatial and temporal distribution of the rates of different redox reactions, is proposed to map redox zones. The method allows one to quantify and visualize the biological degradation reactions occurring in three distinct patterns involving fringe, pseudo‐core and core processes. The capabilities of the numerical model are demonstrated using two hypothetical examples: a batch problem and a simplified two‐dimensional reactive transport problem. The model is then applied to an unconfined aquifer underlying a leaking landfill located near the city of Turin, in Piedmont (Italy). At this site, high organic load from the landfill leachate activates different biogeochemical processes, including aerobic degradation, denitrification, manganese reduction, iron reduction, sulfate reduction and methanogenesis. The model was able to describe and quantify these complex biogeochemical processes. The proposed model offers a rational framework for simulating coupled reactive transport processes occurring beneath a landfill site. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
W. T. Sloan  J. Ewen 《水文研究》1999,13(6):823-846
A method has been developed to simulate the long‐term migration of radionuclides in the near‐surface of a river catchment, following their release from a deep underground repository for radioactive waste. Previous (30‐year) simulations, conducted using the SHETRAN physically based modelling system, showed that long‐term (many decades) simulations are required to allow the system to reach steady state. Physically based, distributed models, such as SHETRAN, tend to be too computationally expensive for this task. Traditional lumped catchment‐scale models, on the other hand, do not give sufficiently detailed spatially distributed results. An intermediate approach to modelling has therefore been developed which allows flow and transport processes to be simulated with the spatial resolution normally associated with distributed models, whilst being computationally efficient.The approach involves constructing a lumped model in which the catchment is represented by a number of conceptual water storage compartments. The flow rates to and from these compartments are prescribed by functions that summarize the results from physically based distributed models run for a range of characteristic flow regimes. The physically based models used were, SHETRAN for the subsurface compartments, a particle tracking model for overland flow and an analytical model for channel routing. One important advantage of the method used in constructing the lumped model is that it makes down scaling possible, in the sense that fine‐scale information on the distributed hydrological regime, as simulated by the physically based distributed models, can be inferred from the variables in the lumped model that describe the hydrology at the catchment scale. A 250‐year flow simulation has been run and the down scaling process used to infer a 250‐year time‐series of three‐dimensional velocity fields for the subsurface of the catchment. This series was then used to drive a particle tracking simulation of contaminant migration. The concentration and spatial distribution of contaminants simulated by this model for the first 30 years were in close agreement with SHETRAN results. The remaining 220 years highlighted the fact that some of the most important transport pathways to the surface carry contaminants only very slowly so both the magnitude and spatial distribution of concentration in surface soils are not apparent over the shorter SHETRAN simulations. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
A new in‐situ remediation concept termed a Horizontal Reactive Media Treatment Well (HRX Well®) is presented that utilizes horizontal wells filled with reactive media to passively treat contaminated groundwater in‐situ. The approach involves the use of large‐diameter directionally drilled horizontal wells filled with granular reactive media generally installed parallel to the direction of groundwater flow. The design leverages natural “flow‐focusing” behavior induced by the high in‐well hydraulic conductivity of the reactive media relative to the aquifer hydraulic conductivity to passively capture and treat proportionally large volumes of groundwater within the well. Clean groundwater then exits the horizontal well along its downgradient sections. Many different types of solid granular reactive media are already available (e.g., zero valent iron, activated carbon, ion exchange resins, zeolite, apatite, chitin); therefore, this concept could be used to address a wide range of contaminants. Three‐dimensional flow and transport simulations were completed to assess the general hydraulic performance, capture zones, residence times, effects of aquifer heterogeneity, and treatment effectiveness of the concept. The results demonstrate that capture and treatment widths of up to tens of feet can be achieved for many aquifer settings, and that reductions in downgradient concentrations and contaminant mass flux are nearly immediate. For a representative example, the predicted treatment zone width for the HRX Well is approximately 27 to 44 feet, and contaminant concentrations immediately downgradient of the HRX Well decreased an order of magnitude within 10 days. A series of laboratory‐scale physical tests (i.e., tank tests) were completed that further demonstrate the concept and confirm model prediction performance. For example, the breakthrough time, peak concentration and total mass recovery of methylene blue (reactive tracer) was about 2, 35, and 20 times (respectively) less than chloride (conservative tracer) at the outlet of the tank‐scale HRX Well.  相似文献   

16.
A new tracer experiment (referred to as MADE‐5) was conducted at the well‐known Macrodispersion Experiment (MADE) site to investigate the influence of small‐scale mass‐transfer and dispersion processes on well‐to‐well transport. The test was performed under dipole forced‐gradient flow conditions and concentrations were monitored in an extraction well and in two multilevel sampler (MLS) wells located at 6, 1.5, and 3.75 m from the source, respectively. The shape of the breakthrough curve (BTC) measured at the extraction well is strongly asymmetric showing a rapidly arriving peak and an extensive late‐time tail. The BTCs measured at seven different depths in the two MLSs are radically different from one another in terms of shape, arrival times, and magnitude of the concentration peaks. All of these characteristics indicate the presence of a complex network of preferential flow pathways controlling solute transport at the test site. Field‐experimental data were also used to evaluate two transport models: a stochastic advection‐dispersion model (ADM) based on conditional multivariate Gaussian realizations of the hydraulic conductivity field and a dual‐domain single‐rate (DDSR) mass‐transfer model based on a deterministic reconstruction of the aquifer heterogeneity. Unlike the stochastic ADM realizations, the DDSR accurately predicted the magnitude of the concentration peak and its arrival time (within a 1.5% error). For the multilevel BTCs between the injection and extraction wells, neither model reproduced the observed values, indicating that a high‐resolution characterization of the aquifer heterogeneity at the subdecimeter scale would be needed to fully capture 3D transport details.  相似文献   

17.
Soil‐mix technology is effective for the construction of permeable reactive barriers (PRBs) for in situ groundwater treatment. The objective of this study was to perform initial experiments for the design of soil‐mix technology PRBs according to (i) sorption isotherm, (ii) reaction kinetics and (iii) mass balance of the contaminants. The four tested reactive systems were: (i) a granular zeolite (clinoptilolite–GZ), (ii) a granular organoclay (GO), (iii) a 1:1‐mixture GZ and model sandy clayey soil and (iv) a 1:1:1‐mixture of GZ, GO and model soil. The laboratory experiments consisted of batch tests (volume 900 mL and sorbent mass 18 g) with a multimetal solution of Pb, Cu, Zn, Cd and Ni. For the adsorption experiment, the initial concentrations ranged from 0.01 to 0.5 mM (2.5 to 30 mg/L). The maximum metal retention was measured in a batch test (300 mg/L for each metal, volume 900 mL, sorbent mass 90–4.5 g). The reactive material efficiency order was found to be GZ > GZ‐soil mix > GZ‐soil‐GO mix > GO. Langmuir isotherms modelled the adsorption, even in presence of a mixed cations solution. Adsorption was energetically favourable and spontaneous in all cases. Metals were removed according to the second order reaction kinetics; GZ and the 1:1‐mix were very similar. The maximum retention capacity was 0.1–0.2 mmol/g for Pb in the presence of clinoptilolite; for Cu, Zn, Cd and Ni, it was below 0.05 mmol/g for the four reactive systems. Mixing granular zeolite, organoclay and model soil increased the chemisorption. Providing that GZ is reactive enough for the specific conditions, GZ can be mixed to obtain the required sorption. Granular clinoptilolite addition to soil is recommended for PRBs for metal contaminated groundwater.  相似文献   

18.
19.
Recently, increased industrial and agriculture activities have resulted in toxic metal ions, which has increased public concern about the quality of surface and groundwater. Various types of physical, biological, and chemical approaches have been developed to remove surface and groundwater metal ions contaminants. Among these practices, zero‐valent iron (ZVI) is the most studied reactive material for environmental clean‐up over the last two decade and so. Although ZVI can remove the contaminants even more efficiently than any other reactive materials. However, low reactivity due to its intrinsic passive layer, narrow working pH, and the loss of hydraulic conductivity due to the precipitation of metal hydroxides and metal carbonates limits its wide‐scale application. The aim of this work is to document properties, synthesis, and reaction mechanism of ZVI for the treatment of metal ions from the surface and groundwater in recent 10 years (2008–2018). So far, different modified techniques such as conjugation with support, bimetal alloying, weak magnetic field, and ZVI/oxidant coupling system have been developed to facilitate the use of ZVI in various environmental remediation scenarios. However, some challenges still remain to be addressed. Therefore, development and research in this field are needed to overcome or mitigate these limitations.  相似文献   

20.
Phast4Windows is a Windows® program for developing and running groundwater‐flow and reactive‐transport models with the PHAST simulator. This graphical user interface allows definition of grid‐independent spatial distributions of model properties—the porous media properties, the initial head and chemistry conditions, boundary conditions, and locations of wells, rivers, drains, and accounting zones—and other parameters necessary for a simulation. Spatial data can be defined without reference to a grid by drawing, by point‐by‐point definitions, or by importing files, including ArcInfo® shape and raster files. All definitions can be inspected, edited, deleted, moved, copied, and switched from hidden to visible through the data tree of the interface. Model features are visualized in the main panel of the interface, so that it is possible to zoom, pan, and rotate features in three dimensions (3D). PHAST simulates single phase, constant density, saturated groundwater flow under confined or unconfined conditions. Reactions among multiple solutes include mineral equilibria, cation exchange, surface complexation, solid solutions, and general kinetic reactions. The interface can be used to develop and run simple or complex models, and is ideal for use in the classroom, for analysis of laboratory column experiments, and for development of field‐scale simulations of geochemical processes and contaminant transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号