首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Monitored natural attenuation is widely applied as a remediation strategy at hydrocarbon spill sites. Natural attenuation relies on biodegradation of hydrocarbons coupled with reduction of electron acceptors, including solid phase ferric iron (Fe(III)). Because arsenic (As) adsorbs to Fe‐hydroxides, a potential secondary effect of natural attenuation of hydrocarbons coupled with Fe(III) reduction is a release of naturally occurring As to groundwater. At a crude‐oil‐contaminated aquifer near Bemidji, Minnesota, anaerobic biodegradation of hydrocarbons coupled to Fe(III) reduction has been well documented. We collected groundwater samples at the site annually from 2009 to 2013 to examine if As is released to groundwater and, if so, to document relationships between As and Fe inside and outside of the dissolved hydrocarbon plume. Arsenic concentrations in groundwater in the plume reached 230 µg/L, whereas groundwater outside the plume contained less than 5 µg/L As. Combined with previous data from the Bemidji site, our results suggest that (1) naturally occurring As is associated with Fe‐hydroxides present in the glacially derived aquifer sediments; (2) introduction of hydrocarbons results in reduction of Fe‐hydroxides, releasing As and Fe to groundwater; (3) at the leading edge of the plume, As and Fe are removed from groundwater and retained on sediments; and (4) downgradient from the plume, patterns of As and Fe in groundwater are similar to background. We develop a conceptual model of secondary As release due to natural attenuation of hydrocarbons that can be applied to other sites where an influx of biodegradable organic carbon promotes Fe(III) reduction.  相似文献   

2.
The artificial sweetener acesulfame (ACE) is a potentially useful tracer of waste water contamination in groundwater. In this study, ACE concentrations were measured in waste water and impacted groundwater at 12 septic system sites in Ontario, Canada. All samples of septic tank effluent (n = 37) had ACE >6 µg/L, all samples of groundwater from the proximal plume zones (n = 93) had ACE >1 µg/L and, almost all samples from the distal plume zones had ACE >2 µg/L. Mean mass ratios of total inorganic nitrogen/ACE at the 12 sites ranged from 680 to 3500 for the tank and proximal plume samples. At five sites, decreasing ratio values in the distal zones indicated nitrogen attenuation. These ratios were applied to three aquifers in Canada that are nitrate‐stressed and an urban stream where septic systems are present nearby to estimate the amount of waste water nitrate contamination. At the three aquifer locations that are agricultural, low ACE values (<0.02‐0.15 µg/L) indicated that waste water contributed <15% of the nitrate in most samples. In groundwater discharging to the urban stream, much higher ACE values (0.2‐11 µg/L) indicated that waste water was the likely source of >50% of the nitrate in most samples. This study confirms that ACE is a powerful tracer and demonstrates its use as a diagnostic tool for establishing whether waste water is a significant contributor to groundwater contamination or not.  相似文献   

3.
This paper deals with kinetics and equilibrium studies on the adsorption of arsenic species from simulated groundwater containing arsenic (As(III)/As(V), 1:1), Fe, and Mn in concentrations of 0.188, 2.8, and 0.6 mg/L, respectively, by Ca2+ impregnated granular activated charcoal (GAC‐Ca). Effects of agitation period and initial arsenic concentration on the removal of arsenic species have also been described. Although, most of the arsenic species are adsorbed within 10 h of agitation, equilibrium reaches after ~24 h. Amongst various kinetic models investigated, the pseudo second order model is more adequate to explain the adsorption kinetics and film diffusion is found to be the rate controlling step for the adsorption of arsenic species on GAC‐Ca. Freundlich isotherm is adequate to explain the adsorption equilibrium. However, empirical polynomial isotherm gives more accurate prediction on equilibrium specific uptakes of arsenic species. Maximum specific uptake (qmax) for the adsorption of As(T) as obtained from Langmuir isotherm is 135 µg/g.  相似文献   

4.
The influence of large‐scale mining operations on groundwater quality was investigated in this study. Trace element concentrations in groundwater samples from the North Mara mining area of northern Tanzania were analyzed. Statistical analyses for relationships between elemental concentrations in the samples and distance of a sampling site from the mine tailings dam were also conducted. Eleven trace elements (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) were determined, and averages of Fe and Al concentrations were higher than levels accepted by the Tanzanian drinking water guideline. Levels of Pb in three samples were higher than the World Health Organization (WHO) and United States Environmental Protection Agency (USEPA) drinking water guidelines of 10 and 15 µg/L, respectively. One sample contained a higher As level than the WHO and USEPA guideline of 10 µg/L. The correlation between element concentrations and distance from the mine tailings dam was examined using the hierarchical agglomeration cluster analysis method. A significant difference in the elemental concentration existed depending on the distance from the mine tailings dam. Mann–Whitney U‐test post hoc analysis confirmed a relationship between element concentration and distance of a sampling site from the mine tailings dam. This relationship raises concerns about the increased risks of trace elements to people and ecosystem health. A metal pollution index also suggested a relationship between elemental concentrations in the groundwater and the sampling sites’ proximity from the mine tailings dam.  相似文献   

5.
太湖磷转化细菌与水体磷形态关系   总被引:5,自引:1,他引:4  
冯胜  秦伯强  高光 《湖泊科学》2008,20(4):428-436
太湖水体中不同形态磷含量与磷转化细菌的关系研究结果显示:太湖水体中总磷和活性磷的含量分别为0.113mg,L和O.O11mg/L;无机磷和有机磷分解菌在底泥中达6.73x103cells/g,而在水体中仅为71cells/m1,且存在明显的时间和空间差异;根据菌落形态特征,分离筛选了3株有代表性的无机磷转化菌和7株占优势的有机磷分解菌.3tt无机磷转化菌经鉴定分别与巨大芽孢杆菌(Bacillus megaterium)、假单孢菌(Pseudomonas sp.)和类芽孢杆菌(Paenibacillus sp.)比较接近.而7株有机磷分解菌则分别与为苏云金芽孢杆菌(Bacillus thurigiensts)、短小芽孢杆菌(Bacillus pumilus)、芽孢杆菌(Bacillus SP.)、无芽孢杆菌(Bacterium sp.)、氧化微杆菌(Microbacterium oxydans)腊状芽孢杆菌(Bacillus cereus)、简单芽孢杆菌(Bacillus simples)接近;太湖水体中磷分解细菌主要归属于芽孢杆菌属(Bacillus)和假单孢菌属(Pseudomonas),对细菌降解性能进行研究的结果显示:无机磷分解细菌对太湖水体活性磷的贡献显著大于有机磷分解细菌的贡献率.  相似文献   

6.
This study explores linkages between the microbial composition and hydrochemical variables of pristine groundwater to identify active redox conditions and processes. Two confined aquifers underlying the city of Qianjiang in the Jianghan Plain in China were selected for this study, having different recharge sources and strong hydrochemical gradients. Typical methods for establishing redox processes according to threshold concentration criteria for geochemical parameters suggest iron or sulphate reduction processes. High‐throughput 16S rRNA sequencing was used to obtain diversity and taxonomic information on microbial communities. Instead of revealing iron‐ and sulphate‐reducing bacteria, salt‐ and alkali‐tolerant bacteria, such as the phylum Firmicutes and the class Gammaproteobacteria, and in particular, the family Bacillaceae, were dominant in the downstream groundwater of the first aquifer that had high ion concentrations caused by the dissolution of calcite and dolomite; meanwhile, the heterotrophic microaerophilic families Comamonadaceae and Rhodocyclaceae prevailed in the upstream groundwater of the first aquifer. Sulphate‐reducing bacteria were extremely abundant in the upstream groundwater of the second aquifer, as the SO42? concentration was especially high. Methanogens and methanotrophs were predominant in the downstream groundwater of the second aquifer even though the concentration of SO42? was much higher than 0.5 mg L?1. The microbial communities, together with the geochemical parameters, indicated that the upstream region of the first aquifer was suboxic, that Fe(III) and Mn(IV) reductions were not the main redox processes in the downstream groundwater of the first aquifer with high Fe and Mn concentrations, and that the redox processes in the upstream and downstream regions of the second confined aquifer were SO42? reduction and methanogenesis, respectively. This study expands understanding of the linkages between microbial communities and hydrogeochemistry in pristine groundwaters and provides more evidence for identifying active redox conditions and processes.  相似文献   

7.
The P-uptake by Acinetobacter calcoaceticus, Pseudomonas aeruginosa and Escherichia coli is determined in batch culture with peptone/glucose/sodium chloride or peptone/acetate/sodium chloride as substrate at 60 to 120 mg/1 orthophosphate for 20 h with cell densities of 2 · 107/ml (Acinetobacter) or 1.2 · 109. The measurements were carried out by means of an Na2HPO4 (32P) addition of 95 to 420 kBq. During the stationary phase the bacteria achieved the following P-contents in the biomass in fg/g bacterium: Acinetobacter 6 to 13, Pseudomonas 0.2 to 0.6, Escherichia 0.04 to 0.09; during the phase of growth Acinetobacter achieved 40 to 100 fg/bacterium. Acetate as the substrate did not result in any increase of the P-uptake. The maximum accumulation with Acinetobacter was 13 % P in the dry substance.  相似文献   

8.
In situ bioremediation is being considered to optimize an existing pump‐and‐treat remedy for treatment of explosives‐contaminated groundwater at the Umatilla Chemical Depot. Push‐pull tests were conducted using a phased approach to measure in situ hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine (RDX) and 2,4,6‐trinitrotoluene (TNT) degradation rates associated with various carbon substrates. Phase I included short‐duration transport tests conducted in each well to determine dilution rates and retardation factors for RDX and TNT. Phase II included aquifer “feedings” conducted by injecting 150 gallons of treated site groundwater amended with ethanol, corn syrup, lactose or emulsified oil (concentrations 10, 25 and 27 mM, respectively; 12% by volume for emulsified oil). Wells received up to 6 substrate “feedings” over the course of 3 months followed by monitoring dissolved oxygen, nitrate, Fe(II), and sulfate to gauge in situ redox conditions as indicators of anaerobic microbial activity. Phase III included push‐pull tests conducted by injecting 150 gallons of site groundwater amended with approximately 1000 µg/L RDX, 350 µg/L TNT, carbon substrate and a conservative tracer, followed by sampling over 8 d. Corn syrup resulted in the best RDX removal (82% on average) and the largest RDX degradation rate coefficient (1.4 ± 1.1 d?1). Emulsified oil resulted in the best TNT removal (99%) and largest TNT degradation rate coefficient (5.7 × 10?2 d?1). These results will be used to simulate full‐scale in situ bioremediation scenarios at Umatilla and will support a go/no‐go decision to initiate full‐scale bioremediation remedy optimization.  相似文献   

9.
Spatial distribution (horizonal and vertical) of groundwater microbial communities and the hydrogeochemistry in confined aquifers were studied approximately along the groundwater flow path from coteau to plain in the Nomhon area, Qinghai‐Tibet plateau, China. The confined groundwater samples at different depths and locations were collected in three boreholes through a hydrogeological section in this arid and semi‐arid area. The phylogenetic analysis of 16S rRNA genes and multivariate statistical analysis were used to elucidate similarities and differences between groundwater microbial communities and hydrogeochemical properties. The integrated isotopic geochemical measurements were applied to estimate the source and recharge characteristics of groundwater. The results showed that groundwater varied from fresh to saline water, and modern water to ancient water following the flowpath. The recharge characteristics of the saline water was distinct with that of fresh water. Cell abundance did not vary greatly along the hydrogeochemical zonality; however, dissimilarities in habitat‐based microbial community structures were evident, changing from Betaproteobacteria in the apex of alluvial fan to Gammaproteobacteria and then to Epsilonproteobacteria in the core of the basin (alluvial‐lacustrine plain). Rhodoferax, Hydrogenophaga, Pseudomonas, and bacterium isolated from similar habitats unevenly thrived in the spatially distinct fresh water environments, while Sulfurimonas dominanted in the saline water environment. The microbial communities presented likely reflected to the hydrogeochemical similarities and zonalities along groundwater flowpath.  相似文献   

10.
In this study the occurrence of diclofenac and sub‐products in effluent emerging from the University Hospital at the Federal University of Santa Maria was investigated. One metabolite was identified and, in aqueous solution, three degradation products. The quantification was conducted by means of HPLC‐DAD, and the determination of metabolite and degradation products by LC–ESI–MS/MS–QTrap. For the HPLC‐DAD method, a 70:30 mixture of methanol/sodium phosphate was used in isocratic mode. For the LC–ESI–MS/MS–QTrap determinations, a mobile phase, where phase A was an ammonium acetate solution 5 × 10?3 mol L?1, and phase B was methanol (5 × 10?3 mol L?1)/ammonium acetate (9:1, v/v), on gradient mode. The LDs for the HPLC and LC–MS/MS methods, respectively, were 2.5 and 0.02 µg L?1, the LQs, 8.3 and 0.05 µg L?1, and the linear range from 10 up to 2000 µg L?1 and 0.05 up to 10 µg L?1. As expected, the LC–ESI–MS/MS–QTrap method was more sensitive and less laborious. The metabolite 4′‐hydroxy‐diclofenac was identified. Photolysis was used for the degradation studies and three products of diclofenac were identified (m/z of 214, 286 and 303) in aqueous solution. These results notwithstanding, no degradation products of diclofenac were found in the hospital effluent.  相似文献   

11.
Soil denitrification in reservoir shoreline wetlands is an important process for removing excess inorganic nitrogen from upland runoff and controlling eutrophication in aquatic ecosystems. As yet, little is known about the influence of vegetation characteristics on the soil denitrification potential in reservoir shoreline wetlands, although vegetation can affect both denitrifying bacteria and soil properties. In this study, we measured the spatial variability of denitrification enzyme activity (DEA) using acetylene block method in shoreline wetlands of the Danjiangkou Reservoir, a water source of the South‐to‐North Water Transfer Project in China. Results indicated that DEA ranged from 0.001 to 2.449 µg N (N2O) g?1 h?1, with a mean of 0.384 µg N (N2O) g?1 h?1. DEA varied significantly among five representative plant communities and the highest DEA (0.248–2.449 µg N (N2O) g?1 h?1) was observed in the Polygonum hydropiper community. Plant biomass and vegetation cover were significantly and positively related to DEA and together explained 44.2% of the total variance. These results suggest that vegetation characteristics should also be considered in assessing soil denitrification capacity and restoring shoreline wetlands for nitrogen pollution removal in the Danjiangkou Reservoir after dam heightening.  相似文献   

12.
A pioneering investigation of semi‐volatile organic compounds (SVOCs) in shallow groundwater in China was hereby reported. Representative groundwater samples were collected from three selected regions: Eastern Hai River Plain, Yangtze River Delta, and Yunnan‐Guizhou Plateau, and analyzed for 103 SVOCs linked to agricultural and industrial practices. Analytical results showed that 70 of the 103 SVOCs were present in the groundwater samples, a detection frequency of approximately 86%. Compounds detected most frequently included P,P′‐DDT (53.49%, MDL 0.0007 µg/L), 2,4‐dinitrotoluene (51.16%, MDL 0.02 µg/L), and phenol (51.16%, MDL 0.02 µg/L). Fifteen SVOCs, such as P,P′‐DDT, 2,4‐dinitrotoluene, heptachlor, and aldrin, were detected at concentrations exceeding the USA National Recommended Water Quality Criteria‐2009 (USNRWQC‐2009). Most of these 15 SVOCs belong to polycyclic aromatic hydrocarbons and organochlorine pesticides. The detection of SVOCs in the Yunnan‐Guizhou Plateau warrants special concern, since this region has limited human activities and been assumed as an environmentally pristine area. The data from this work are expected to contribute to the database of contemporary groundwater quality in China.  相似文献   

13.
Propane biosparging and bioaugmentation were applied to promote in situ biodegradation of 1,4‐dioxane at Site 24, Vandenberg Air Force Base (VAFB), CA. Laboratory microcosm and enrichment culture testing demonstrated that although native propanotrophs appeared abundant in the shallow water‐bearing unit of the aquifer (8 to 23 ft below ground surface [bgs]), they were difficult to be enriched from a deeper water‐bearing unit (82 to 90 feet bgs). Bioaugmentation with the propanotroph Rhodococcus ruber ENV425, however, supported 1,4‐dioxane biodegradation in microcosms constructed with samples from the deep aquifer. For field testing, a propane‐biosparging system consisting of a single sparging well and four performance monitoring wells was constructed in the deep aquifer. 1,4‐dioxane biodegradation began immediately after bioaugmentation with R. ruber ENV425 (36 L; 4 × 109 cells/mL), and apparent first‐order decay rates for 1,4‐dioxane ranged from 0.021 day?1 to 0.036 day?1. First‐order propane consumption rates increased from 0.01 to 0.05 min?1 during treatment. 1,4‐dioxane concentrations in the sparging well and two of the performance monitoring wells were reduced from as high as 1090 µg/L to <2 µg/L, while 1,4‐dioxane concentration was reduced from 135 µg/L to 7.3 µg/L in a more distal third monitoring well. No 1,4‐dioxane degradation was observed in the intermediate aquifer control well even though propane and oxygen were present. The demonstration showed that propane biosparging and bioaugmentation can be used for in situ treatment of 1,4‐dioxane to regulatory levels.  相似文献   

14.
This study investigates potential occurrence, distribution, and sources of the newly added gasoline oxygenate, methyl‐tert‐butyl ether (MTBE) and the petroleum derivatives benzene, toluene, ethylbenzene, and xylenes called collectively, BTEX, in Jordan's heavily populated Amman–Zarqa Basin (AZB). It presents the first data on the levels of MTBE and BTEX in the aquifers of this basin. One hundred and seventy‐nine (179) groundwater wells were sampled near petrol service stations, oil refinery storage tanks, car wrecks, bus stations, and chemical industries at different locations in the basin. Headspace GC and purge and trap GC–MS were utilized to determine the target substances in the samples. Concentrations of BTEX varied between no‐detection (minimum) for all of them to 6.6 µg/L (maximum) for ethylbenzene. MTBE was found in few samples but none has exceeded the regulated levels; its concentrations ranged between no‐detection to 4.1 µg/L. However, though the contamination levels are very low they should be considered alarming.  相似文献   

15.
This study investigated the development of pesticide pollution two, three, and 17 years after spills of the herbicides dichlorprop, mecoprop (MCPP), MCPA, 2,4‐D (phenoxy acids), simazine, and terbutylazine (triazines) in a former orchard machinery service yard. The spills had occurred over several decades on a 23‐m thick, mainly anaerobic fractured clayey till aquitard. Angled monitoring wells were installed in the aquitard 3 years after the spills ceased in 1989. In 1993, monitoring revealed that high groundwater concentrations of dichlorprop (677 µg/L) and MCPP (139 µg/L) were accumulated as a zone of maximum pollution in anaerobic and largely immobile pore water at 5 to 6 m depth in the aquitard profile. In contrast, 2,4‐D was determined in only one water sample, and MCPA and simazine and terbutylazine were determined only in low concentrations (below10 µg/L), although these pesticides had been handled at the site in greater amounts than dichlorprop and MCPP according to detailed historic information obtained for the site. Repeated monitoring in the same wells after a further 14 years in 2007 revealed that no identifiable degradation of MCPP had occurred, while dichlorprop had degraded by 75% to 80% (estimated half‐life of approximately 5 years). Furthermore, degradation products related to the phenoxy acids had accumulated, especially 4‐CPP with a maximum concentration of 218 µg/L. In the same zone, MCPA and simazine had almost disappeared. As the pollution was mainly accumulated in largely immobile pore water of the aquitard clayey matrix, and the groundwater recharge was low (30 to 60 mm/year), only minor vertical displacement of the zone with maximum pollution zone had occurred during the 15 years of monitoring. However, concentrations of dichlorprop (0.01 to 0.02 µg/L), MCPP (0.1 to 0.2 µg/L), and 4‐CPP (0.6 to 0.7 µg/L) had spread along textural heterogeneities in the aquitard into the underlying sandy aquifer at 23‐m depth.  相似文献   

16.
Contradictory results are reported for the behaviour of quaternary ammonium compounds (QACs) in sewage treatment plants (STPs). QACs may sorb onto activated sludge. Only little information is available with respect to effects of QACs against bacteria in STPs. Only 5 to 15 % of bacteria present in sewage sludge can be detected by means of culture dependent microbiological methods. The shift of the bacterial populations due to effects of test compounds have not been studied up to now with culture independent methods. The microbial populations shift was studied in situ using culture independent chemotaxonomy profiling ubiquinones and polyamines. Additionally, toxic effects of QACs against bacteria present in the test vessels of the Zahn‐Wellens test (OECD 302 B) were assessed with a toxicity control in the test. The ubiquinone profiles representing changes in Gram‐negative populations mainly showed that the activated sludge was affected only in test vessels containing benzalkonium chloride. According to chemotaxonomy Acinetobacter or/and some members of Pseudomonas spp. have been selected by benzalkonium chloride after some adaptation period (8 to 12 days).  相似文献   

17.
Groundwater in the Bengal Basin is badly polluted by arsenic (As) which adversely affects human health. To provide low‐As groundwater for As mitigation, it was sought across 235 km2 of central West Bengal, in the western part of the basin. By drilling 76 boreholes and chemical analysis of 535 water wells, groundwater with <10 µg/L As in shallow aquifers was found under one‐third of a study area. The groundwater is in late Pleistocene palaeo‐interfluvial aquifers of weathered brown sand that are capped by a palaeosol of red clay. The aquifers form two N‐S trending lineaments that are bounded on the east by an As‐polluted deep palaeo‐channel aquifer and separated by a shallower palaeo‐channel aquifer. The depth to the top of the palaeo‐interfluvial aquifers is mostly between 35 and 38 m below ground level (mbgl). The palaeo‐interfluvial aquifers are overlain by shallow palaeo‐channel aquifers of gray sand in which groundwater is usually As‐polluted. The palaeosol now protects the palaeo‐interfluvial aquifers from downward migration of As‐polluted groundwater in overlying shallow palaeo‐channel aquifers. The depth to the palaeo‐interfluvial aquifers of 35 to 38 mbgl makes the cost of their exploitation affordable to most of the rural poor of West Bengal, who can install a well cheaply to depths up to 60 mbgl. The protection against pollution afforded by the palaeosol means that the palaeo‐interfluvial aquifers will provide a long‐term source of low‐As groundwater to mitigate As pollution of groundwater in the shallower, heavily used, palaeo‐channel aquifers. This option for mitigation is cheap to employ and instantly available.  相似文献   

18.
An algal culture medium was developed which reflects the extreme chemical conditions of acidic mining lakes (pH 2.7, high concentrations of iron and sulfate) and remains stable without addition of organic carbon sources. It enables controlled experiments e.g. on the heterotrophic potential of pigmented flagellates in the laboratory. Various plankton organisms isolated from acidic lakes were successfully cultivated in this medium. The growth rates of a Chlamydomonas isolate from acidic mining lakes were assessed by measuring cell densities under pure autotrophic and heterotrophic conditions (with glucose as organic C‐source) and showed values of 0.74 and 0.40, respectively.  相似文献   

19.
Arsenic Removal from Natural Groundwater Using Cupric Oxide   总被引:1,自引:0,他引:1  
Groundwater is a main source of drinking water for some rural areas. People in these rural areas are potentially at risk from elevated levels of arsenic (As) due to a lack of water treatment facilities. The objectives of this study were to (1) measure As concentrations in approximately 50 groundwater samples from rural domestic wells in the western United States, (2) explore the potential of cupric oxide (CuO) particles in removal of As from groundwater samples under natural conditions (i.e., without adding competing anions and adjusting the pH or oxidation state), and (3) determine the effects of As removal on the chemistry of groundwater samples. Forty‐six groundwater well samples from rural domestic areas were tested in this study. More than 50% of these samples exceeded the U.S. Environmental Protection Agency Maximum Contaminant Limit (US EPA MCL) of 10 µg/L for As. CuO particles effectively removed As from groundwater samples across a wide range of pH (7.11 and 8.95) and concentrations of competing anions including phosphate (<0.05 to 3.06 mg/L), silica (<1 to 54.5 mg/L), and sulfate (1.3 to 735 mg/L). Removal of As showed minor effects on the chemistry of groundwater samples, therefore most of the water quality parameters remained within the US EPA MCLs. Overall, results of this study could help develop a simple one‐step process to remove As from groundwater.  相似文献   

20.
To investigate the levels of arsenic (As) in the water sources of Cankiri Province, the samples were collected from the stations of central Cankiri (n = 27) and Kursunlu town (n = 12) during 2009 and 2010. The concentrations of As were analyzed with an atomic absorption spectrophotometer, and then compared with permissible limit, 10 µg/L in drinking water, by Turkish legislation and World Health Organization (WHO). The As levels were higher than this limit (mean value 10–30 µg/L in 26 stations), whereas, they were found to be >30 µg/L in 12 sampling points. The water sources were categorized for health risk assessment such as reservoir, tap, well, and spring, and then chronic daily intake for oral and dermal exposure to As via drinking water, hazard quotient (HQ), and hazard index were calculated by using indices. The HQ values were found to be >1 in all samples of Cankiri Province. The effects of As on human health were then evaluated using carcinogenic risk (CR). CR values for As were also estimated to be >10?5 in drinking water samples of Cankiri Province and might exert potential CR for people. These assessments would point out required drinking water treatment strategy to ensure safety of consumers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号