首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Since the 1990s, questions have arisen as to whether the release of ethanol‐blended fuel will inhibit natural attenuation of other gasoline constituents in groundwater. This study evaluated the hypothesis that ethanol affects hydrocarbon attenuation and whether the use of ethanol‐blended fuel alters the applicability of monitored natural attenuation (MNA) as an approach for managing risks at fuel‐release sites. Groundwater data from California's GeoTracker database were used to compare attenuation of benzene, toluene, methyl tert‐butyl ether (MTBE), and tert‐butyl alcohol (TBA) at sites with and without detections of ethanol. Excel‐based tools were developed to conduct attenuation evaluations on thousands of wells simultaneously. Ethanol was detected at least once in 4.5% of the wells and 0.6% of the samples of which it was analyzed. The distribution of Mann‐Kendall concentration trend analysis results and first‐order attenuation rates were essentially the same at sites with or without ethanol detections. Median plume lengths were shorter at sites where ethanol had not been detected compared to sites where ethanol was detected (36 vs. 43 m for benzene; 36 vs. 42 m for toluene; 43 vs. 52 m for MTBE; and 44 vs. 59 m for TBA). However, the distribution of plume lengths was similar irrespective of ethanol concentrations, suggesting other factors may influence plume elongation. Finally, while anaerobic ethanol degradation can result in methane generation, the distributions of methane concentrations were the same at sites with and without ethanol detections. These results suggest that the use of ethanol‐blended fuel should not limit the application of MNA at most biodegrading fuel‐release sites.  相似文献   

2.
Detailed site investigations to assess potential inhalation exposure and risk to human health associated with the migration of petroleum hydrocarbon vapors from the subsurface to indoor air are frequently undertaken at leaking underground storage tank (UST) sites, yet documented occurrences of petroleum vapor intrusion are extremely rare. Additional assessments are largely driven by low screening‐level concentrations derived from vapor transport modeling that does not consider biodegradation. To address this issue, screening criteria were developed from soil‐gas measurements at hundreds of petroleum UST sites spanning a range of environmental conditions, geographic regions, and a 16‐year time period (1995 to 2011). The data were evaluated to define vertical separation (screening) distances from the source, beyond which, the potential for vapor intrusion can be considered negligible. The screening distances were derived explicitly from benzene data using specified soil‐gas screening levels of 30, 50, and 100 µg/m3 and nonparametric Kaplan‐Meier statistics. Results indicate that more than 95% of benzene concentrations in soil gas are ≤30 µg/m3 at any distance above a dissolved‐phase hydrocarbon source. Dissolved‐phase petroleum hydrocarbon sources are therefore unlikely to pose a risk for vapor intrusion unless groundwater (including capillary fringe) comes in contact with a building foundation. For light nonaqueous‐phase liquid (LNAPL) hydrocarbon sources, more than 95% of benzene concentrations in soil gas are ≤30 µg/m3 for vertical screening distances of 13 ft (4 m) or greater. The screening distances derived from this analysis are markedly different from 30 to 100 ft (10 to 30 m) vertical distances commonly found cited in regulatory guidance, even with specific allowances to account for uncertainty in the hydrocarbon source depth or location. Consideration of these screening distances in vapor intrusion guidance would help eliminate unnecessary site characterization at petroleum UST sites and allow more effective and sustainable use of limited resources.  相似文献   

3.
Sulfate reducing conditions are widely observed in groundwater plumes associated with petroleum hydrocarbon releases. This leads to sulfate depletion in groundwater which can limit biodegradation of hydrocarbons (usually benzene, toluene, ethylbenzene, xylenes [BTEX] compounds) and can therefore result in extended timeframes to achieve groundwater cleanup objectives by monitored natural attenuation. Under these conditions, sulfate addition to the subsurface can potentially enhance BTEX biodegradation and facilitate enhanced natural attenuation. However, a delivery approach that enables effective contact with the hydrocarbons and is able to sustain elevated and uniform sulfate concentrations in groundwater remains a key challenge. In this case study, sulfate addition to a groundwater plume containing predominantly benzene by land application of agricultural gypsum and Epsom salt is described. Over 4 years of groundwater monitoring data from key wells subjected to pilot‐scale and site‐wide land application events are presented. These are compared to data from pilot testing employing liquid Epsom salt injections as an alternate sulfate delivery approach. Sulfate land application, sulfate retention within the vadose zone, and periodic infiltration following ongoing precipitation events resulted in elevated sulfate concentrations (>150 mg/L) in groundwater that were sustained over 12 months between application events and stimulated benzene biodegradation as indicated by declines in dissolved benzene concentration, and compound‐specific isotope analysis data for carbon in benzene. Long‐term groundwater benzene concentration reductions were achieved in spite of periodic rebounds resulting from water table fluctuations across the smear zone. Land application of gypsum is a potentially cost‐effective sulfate delivery approach at sites with open, unpaved surfaces, relatively permeable geology, and shallow hydrocarbon impacts. However, more research is needed to understand the fate and persistence of sulfate and to improve the likelihood of success and effectiveness of this delivery approach.  相似文献   

4.
This article describes various statistical analyses of plume-length data to evaluate the hypothesis that the presence of ethanol in gasoline may hinder the natural attenuation of hydrocarbon releases. Plume dimensions were determined for gasoline-contaminated sites to evaluate the effect of ethanol on benzene and toluene plume lengths. Data from 217 sites in Iowa (without ethanol; set 1) were compared to data from 29 sites in Kansas that were contaminated by ethanol-amended gasoline (10% ethanol by volume; set 2). The data were log-normally distributed, with mean benzene plume lengths (± standard deviation) of 193 ± 135 feet for set 1 and 263 ± 103 feet for set 2 (36% longer). The median lengths were 156 feet and 263 feet (69% longer), respectively. Mean toluene plume lengths were 185± 131 feet for set 1 and 211 ±99 feet for set 2 (14% longer), and the median lengths were 158 feet and 219 feet (39% longer), respectively. Thus, ethanol-containing BTEX plumes were significantly longer for benzene (p < 0.05), but not for toluene. A Wilcoxon signed rank test showed that toluene plumes were generally shorter than benzene plumes, which suggests that toluene was attenuated to a greater extent than benzene. This trend was more pronounced for set 2 (with ethanol), which may reflect that benzene attenuation is more sensitive to the depletion of electron acceptors caused by ethanol degradation. These results support the hypothesis that the presence of ethanol in gasoline can lead to longer benzene plumes. The importance of this effect, however, is probably site-specific, largely depending on the release scenario and the available electron acceptor pool.  相似文献   

5.
Natural source zone depletion (NSZD) refers to processes within chemically impacted vadose and saturated zones that reduce the mass of contaminants remaining in a defined source control volume. Studies of large petroleum hydrocarbon release sites have shown that the depletion rate by vapor phase migration of degradation products from the source control volume through the vadose zone (V‐NSZD) is often considerably higher than the rate of depletion from the source control volume by groundwater flow carrying dissolved petroleum hydrocarbons arising from dissolution, desorption, or back diffusion, and degradation products arising from biodegradation (GW‐NSZD). In this study, we quantified vadose zone and GW‐NSZD at a small unpaved fuel release site in California typical of those in settings with predominantly low permeability media. We estimated vadose zone using a dense network of efflux monitoring locations at four sampling events over 2 years, and GW‐NSZD using groundwater monitoring data downgradient of the source control volume in three depth intervals spanning up to 9 years. On average, vadose zone was 17 times greater than GW‐NSZD during the time interval of comparison, and vadose zone was in the range of rates quantified at other sites with petroleum hydrocarbon releases. Estimating vadose zone and GW‐NSZD rates is challenging but the vadose zone rate is the best indicator of overall source mass depletion, whereas GW‐NSZD rates may be useful as baselines to quantify progress of natural or engineered remediation in portions of the saturated zone in which there are impediments to loss of methane and other gases to the vadose zone.  相似文献   

6.
The risk that benzene and toluene from spills of gasoline will impact drinking water wells is largely controlled by the natural anaerobic biodegradation of benzene and toluene. Benzene and toluene, as well as ethanol and other biofuels, are degraded under anaerobic conditions to the same pool of degradation products. Biodegradation of biofuels may produce concentrations of degradation products that make the thermodynamics for degradation of benzene and toluene infeasible under methanogenic conditions and produce larger plumes of benzene and toluene. This study evaluated the concentrations of fuel alcohols that are necessary to inhibit the anaerobic degradation of benzene and toluene under methanogenic conditions. At two ethanol spill sites, concentrations of ethanol greater ≥42 mg/L inhibited the anaerobic degradation of toluene. The pH and concentrations of acetate, dissolved inorganic carbon, and molecular hydrogen were used to calculate the Gibbs free energy for the biodegradation of toluene. In general, the anaerobic biodegradation of toluene was not thermodynamically feasible in water with ≥42 mg/L ethanol. In a microcosm study, when the concentrations of ethanol were ≥14 mg/L or the concentrations of n‐butanol were ≥16 mg/L, the biodegradation of the alcohols consistently produced concentrations of hydrogen, dissolved inorganic carbon, and acetate that would preclude natural anaerobic biodegradation of benzene and toluene by syntrophic organisms. In contrast, iso‐butanol and n‐propanol only occasionally produced conditions that would preclude the biodegradation of benzene and toluene.  相似文献   

7.
Quantifying the overall progress in remediation of contaminated groundwater has been a significant challenge. We utilized the GeoTracker database to evaluate the progress in groundwater remediation from 2001 to 2011 at over 12,000 sites in California with contaminated groundwater. This paper presents an analysis of analytical results from over 2.1 million groundwater samples representing at least $100 million in laboratory analytical costs. Overall, the evaluation of monitoring data shows a large decrease in groundwater concentrations of gasoline constituents. For benzene, half of the sites showed a decrease in concentration of 85% or more. For methyl tert‐butyl ether (MTBE), this decrease was 96% and for TBE, 87%. At remediation sites in California, the median source attenuation rate was 0.18/year for benzene and 0.36/year for MTBE, corresponding to half‐lives of 3.9 and 1.9 years, respectively. Attenuation rates were positive (i.e., decreasing concentration) for benzene at 76% of sites and for MTBE at 85% of sites. An evaluation of sites with active remediation technologies suggests differences in technology effectiveness. The median attenuation rates for benzene and MTBE are higher at sites with soil vapor extraction or air sparging compared with sites without these technologies. In contrast, there was little difference in attenuation rates at sites with or without soil excavation, dual phase extraction, or in situ enhanced biodegradation. The evaluation of remediation technologies, however, did not evaluate whether specific systems were well designed or implemented and did not control for potential differences in other site factors, such as soil type.  相似文献   

8.
Consumption of aquifer Fe(III) during biodegradation of ground water contaminants may result in expansion of a contaminant plume, changing the outlook for monitored natural attenuation. Data from two research sites contaminated with petroleum hydrocarbons show that toluene and xylenes degrade under methanogenic conditions, but the benzene and ethylbenzene plumes grow as aquifer Fe(III) supplies are depleted. By considering a one-dimensional reaction front in a constant unidirectional flow field, it is possible to derive a simple expression for the growth rate of a benzene plume. The method balances the mass flux of benzene with the Fe(III) content of the aquifer, assuming that the biodegradation reaction is instantaneous. The resulting expression shows that the benzene front migration is retarded relative to the ground water velocity by a factor that depends on the concentrations of hydrocarbon and bioavailable Fe(III). The method provides good agreement with benzene plumes at a crude oil study site in Minnesota and a gasoline site in South Carolina. Compared to the South Carolina site, the Minnesota site has 25% higher benzene flux but eight times the Fe(III), leading to about one-sixth the expansion rate. Although it was developed for benzene, toluene, ethylbenzene, and xylenes, the growth-rate estimation method may have applications to contaminant plumes from other persistent contaminant sources.  相似文献   

9.
Groundwater remediation and no-further action decision making at petroleum underground storage tank (UST) sites has largely been based on an understanding of plume length, plume stability, and attenuation rates for key hydrocarbon constituents. Regulatory guidance to support and guide such decisions is based in part on plume studies involving individual hydrocarbon constituents, namely benzene and methyl tert-butyl ether (MTBE). Questions remain regarding whether current guidance is applicable to chemical mixtures such as gasoline range organics (GRO), diesel range organics (DRO), and oxygen containing organic compounds (OCOCs) resulting from hydrocarbon biodegradation. To help address this concern, data from California's GeoTracker database were used to estimate maximum plume lengths, plume stability, and attenuation rates of DRO (which can be used as an analytical surrogate for OCOCs) and GRO relative to benzene and MTBE. The distributions of maximum plume lengths were similar for the four constituents with medians ranging from 27 to 32 m. The fraction of monitoring wells with a decreasing concentration trend ranged from 19% for DRO to 40% for MTBE, while fewer than 7% of the wells had an increasing concentration trend for any of the constituents. Median attenuation rates ranged from 0.10% day−1 for DRO to 0.17% day−1 for MTBE. The results suggest attenuation based risk management is appropriate for DRO and GRO plumes at most petroleum UST sites.  相似文献   

10.
11.
Vapor intrusion (VI) occurs when volatile contaminants in the subsurface migrate through the vadose zone into overlying buildings. The 2015 U.S. EPA petroleum VI guidance recommends that additional investigation of the VI risk from gasoline hydrocarbons at the underground storage tank (UST) sites is not necessary where the vertical distance between a building and a vapor source exceeds a recommended vertical screening distance. However, due to the lack of soil-gas data on the attenuation of ethylene dibromide (EDB), additional VI investigations to evaluate VI risk from EDB are recommended at UST sites with leaded gasoline releases containing EDB. We analyzed soil-gas and groundwater concentrations of EDB from eight petroleum UST sites using a new analytical method with soil-gas detection limit <0.16 μg/m3 EDB (VI screening level at the 10−6 risk level). The analysis included (1) assessing the frequency of EDB detections ≤0.16 μg/m3 at various vertical separation distances and (2) predicting vertical screening distances for EDB using the U.S. EPA PVIScreen model for different soil types in the vadose zone above dissolved-phase and LNAPL sources. Ranges of estimated aerobic biodegradation rate constants for EDB, air exchange rates for residential buildings, and source vapor concentrations for other constituents were combined with conservative estimates of EDB source concentrations as model inputs. Concentrations of EDB in soil-gas indicated that the U.S. EPA recommended vertical screening distances are protective of VI risk from EDB. Conversely, vertical screening distances predicted by modeling were >6 ft (1.8 m) for sites with sand and loam soil above dissolved phase sources and >15 ft (4.6 m) for sites with sand soil above LNAPL sources. This predicted dependence on the vapor source type and soil type in the vadose zone highlights the importance of soil characterization for VI screening at sites with EDB sources.  相似文献   

12.
Pseudomonas putida MHF 7109 has been isolated and identified from cow dung microbial consortium for biodegradation of selected petroleum hydrocarbon compounds – benzene, toluene, and o‐xylene (BTX). Each compound was applied separately at concentrations of 50, 100, 250, and 500 mg L?1 in minimal salt medium to evaluate degradation activity of the identified microbial strain. The results indicated that the strain used has high potential to degrade BTX at a concentration of 50 mg L?1 within a period of 48, 96, and 168 h, respectively; whereas the concentration of 100 mg L?1 of benzene and toluene was found to be completely degraded within 120 and 168 h, respectively. Sixty‐two percent of o‐xylene were degraded within 168 h at the 100 mg L?1 concentration level. The maximum degradation rates for BTX were 1.35, 1.04, and 0.51 mg L?1 h?1, respectively. At higher concentrations (250 and 500 mg L?1) BTX inhibited the activity of microorganisms. The mass spectrometry analysis identified the intermediates as catechol, 2‐hydroxymuconic semialdehyde, 3‐methylcatechol, cis‐2‐hydroxypenta‐2,4‐dienoate, 2‐methylbenzyl alcohol, and 1,2‐dihydroxy‐6‐methylcyclohexa‐3,5‐dienecarboxylate, for BTX, respectively. P. putida MHF 7109 has been found to have high potential for biodegradation of volatile petroleum hydrocarbons.  相似文献   

13.
This work focuses on the site‐specific assessment of source zone natural attenuation (SZNA) at chlorinated aliphatic hydrocarbon (CAH)‐impacted sites. The approach is similar in some ways, but different in other ways from recently proposed SZNA assessment paradigms for petroleum‐impacted sites. The similarities lie in the organization of the approach around determining: (1) whether or not SZNA is occurring, (2) the current SZNA rate, and (3) what is the future projection for SZNA rate changes and the final state of the source zone. Differences lie in how those rates are determined, especially with respect to the quantities measured and data reduction. Petroleum‐impacted site SZNA approaches emphasize quantifying fluxes of electron acceptors, while the proposed CAH assessment approach emphasizes quantifying parent and daughter compound fluxes. A paradigm for assessing SZNA at CAH sites is presented and its use is illustrated, for example former dry cleaner site, where the SZNA rate was approximately 3.5 kg/year as tetrachloroethylene (PCE) with about 80% of the mass loss attributed to groundwater flow and 20% attributed to vapor transport.  相似文献   

14.
Natural source zone depletion (NSZD) has emerged as a practical alternative for restoration of light non‐aqueous phase liquid (LNAPL) sites that are in the later stages of their remediation lifecycle. Due to significant research, the NSZD conceptual model has evolved dramatically in recent years, and methanogenesis is now accepted as a dominant attenuation process (e.g., Lundegard and Johnson 2006 ; Ng et al. 2015 ). Most of the methane is generated within the pore space adjacent to LNAPL (Ng et al. 2015 ) from where it migrates through the unsaturated zone (e.g., Amos and Mayer 2006 ), where it is oxidized. While great progress has been made, there are still some important gaps in our understanding of NSZD. NSZD measurements provide little insight on which constituents are actually degrading; it is unclear which rate‐limiting factors that can be manipulated to increase NSZD rates; and how longevity of the bulk LNAPL and its key constituents can be predicted. Various threads of literature were pursued to shed light on some of the questions listed above. Several processes that may influence NSZD or its measurement were identified: temperature, inhibition from acetate buildup, protozoa predation, presence of electron acceptors, inhibition from volatile hydrocarbons, alkalinity/pH, and the availability of nutrients can all affect methanogenesis rates, while factors such as moisture content and soil type can influence its measurement. The methanogenic process appears to have a sequenced utilization of the constituents or chemical classes present in the LNAPL due to varying thermodynamic feasibility, biodegradability, and effects of inhibition, but the bulk NSZD rate appears to remain quasi‐zero order. A simplified version of the reactive transport model presented by Ng et al. 2015 has the potential to be a useful tool for predicting the longevity of key LNAPL constituents or chemical fractions, and of bulk LNAPL, but more work is needed to obtain key input parameters such as chemical classes and their biodegradation rates and any potential inhibitions.  相似文献   

15.
A detailed seasonal study of soil vapor intrusion at a cold climate site with average yearly temperature of 1.9 °C was conducted at a house with a crawlspace that overlay a shallow dissolved‐phase petroleum hydrocarbon (gasoline) plume in North Battleford, Saskatchewan, Canada. This research was conducted primarily to assess if winter conditions, including snow/frost cover, and cold soil temperatures, influence aerobic biodegradation of petroleum vapors in soil and the potential for vapor intrusion. Continuous time‐series data for oxygen, pressure differentials, soil temperature, soil moisture, and weather conditions were collected from a high‐resolution monitoring network. Seasonal monitoring of groundwater, soil vapor, crawlspace air, and indoor air was also undertaken. Petroleum hydrocarbon vapor attenuation and biodegradation rates were not significantly reduced during low temperature winter months and there was no evidence for a significant capping effect of snow or frost cover that would limit oxygen ingress from the atmosphere. In the residual light nonaqueous phase liquid (LNAPL) source area adjacent to the house, evidence for biodegradation included rapid attenuation of hydrocarbon vapor concentrations over a vertical interval of approximately 0.9 m, and a corresponding decrease in oxygen to less than 1.5% v/v. In comparison, hydrocarbon vapor concentrations above the dissolved plume and below the house were much lower and decreased sharply within a few tens of centimeters above the groundwater source. Corresponding oxygen concentrations in soil gas were at least 10% v/v. A reactive transport model (MIN3P‐DUSTY) was initially calibrated to data from vertical profiles at the site to obtain biodegradation rates, and then used to simulate the observed soil vapor distribution. The calibrated model indicated that soil vapor transport was dominated by diffusion and aerobic biodegradation, and that crawlspace pressures and soil gas advection had little influence on soil vapor concentrations.  相似文献   

16.
The total dissolved gas pressure (PTDG ) probe has been used in groundwater studies for over a decade, but rarely in assessing contaminant degradation, despite the many degradation reactions that produce or consume dissolved gases. Here we present three studies to demonstrate the application of PTDG measurements to groundwater experiencing contaminant degradation, with discussion of its benefits and limitations. The first study is a pilot‐scale laboratory experiment simulating dissolved ethanol contamination of an anaerobic sand aquifer. Continuous monitoring of PTDG showed the rapid onset of microbial hydrocarbon degradation via denitrification and fermentation. The subsequent formation of a gas phase was revealed when PTDG began mimicking the bubbling pressure (PG *; sum of hydrostatic and atmospheric pressure), fluctuating with atmospheric pressure. Some deviations of PTDG above PG * occurred also, which may hold promise for signalling substantial changes in the rate or type of degradation process (here, the onset of methanogenesis). In the second study, synoptic field measurements at a petroleum plume site demonstrated how elevated PTDG could identify wells with evidence of hydrocarbon degradation (denitrification and/or methanogenesis). And finally, combined field measurements of dissolved oxygen (DO) and PTDG in monitoring wells of a nitrate‐contaminated aquifer (Abbottsford‐Sumas) revealed areas where denitrification was likely occurring. Limitations to PTDG use identified in these studies included the masking of degradation processes by the presence of a gas phase, as when trapped following water table fluctuations or formed from rigorous degradation reactions, and confounded assessment of PTDG patterns from other natural or anthropogenic processes that can also influence groundwater PTDG .  相似文献   

17.
Site 24 was the subject of a 14-year (5110-day) study of a ground water plume created by the disposal of manufactured gas plant (MGP) tar into a shallow sandy aquifer approximately 25 years prior to the study. The ground water plume in 1988 extended from a well-defined source area to a distance of approximately 400 m down gradient. A system of monitoring wells was installed along six transects that ran perpendicular to the longitudinal axis of the plume centerline. The MGP tar source was removed from the site in 1991 and a 14-year ground water monitored natural attenuation (MNA) study commenced. The program measured the dissolved mono- and polycyclic aromatic hydrocarbons (MAHs and PAHs) periodically over time, which decreased significantly over the 14-year period. Naphthalene decreased to less than 99% of the original dissolved mass, with mass degradation rates of 0.30 per year (half-life 2.3 years). Bulk attenuation rate constants for plume centerline concentrations over time ranged from 0.33 ± 0.09 per year (half-life 2.3 ± 0.8 years) for toluene and 0.45 ± 0.06 per year (half-life 1.6 ± 0.2 years) for naphthalene. The hydrogeologic setting at Site 24, having a sandy aquifer, shallow water table, clay confining layer, and aerobic conditions, was ideal for demonstrating MNA. However, these results demonstrate that MNA is a viable remedial strategy for ground water at sites impacted by MAHs and PAHs after the original source is removed, stabilized, or contained.  相似文献   

18.
Like tree rings, high‐resolution soil sampling of low‐permeability (low‐k) zones can be used to evaluate the style of source history at contaminated sites (i.e., historical pattern of concentration and composition vs. time since releases occurred at the interface with the low‐k zone). This is valuable for the development of conceptual site model (CSM) and can serve as an important line of evidence supporting monitored natural attenuation (MNA) as a long‐term remedy. Source histories were successfully reconstructed at two sites at Naval Air Station Jacksonville using a simple one‐dimensional (1D) model. The plume arrival time and historical composition were reconstructed from the time initial releases that were suspected to occur decades earlier. At the first site (Building 106), the source reconstructions showed relatively constant source concentrations, but significant attenuation over time in the downgradient plume in the transmissive zone, suggesting MNA may not be an appropriate remedy if source control is a requirement, but attenuation processes are clearly helping to maintain plume stability and reduce risk. At the second site (Building 780), source concentrations in the transmissive zone showed an approximately a one order of magnitude over time, but apparently less attenuation in the downgradient plume. The source reconstruction method appeared to reflect site remediation efforts (excavation, soil vapor extraction) implemented in the 1990s. Finally, a detailed analysis using molecular biological tools, carbon isotopes, and by‐products suggests that most degradation activity is associated with high‐k zones but not with low‐k zones at these source areas. Overall, the source reconstruction methodology provided insight into historical concentration trends not obtainable otherwise given the limited long‐term monitoring data.  相似文献   

19.
This study evaluates the theory, and some practical aspects of using temperature measurements to assess aerobic biodegradation in hydrocarbon contaminated soil. The method provides an easily applicable alternative for quantifying the rate of biodegradation and/or evaluating the performance of in situ remediation systems. The method involves two nonintrusive procedures for measuring vertical temperature profiles down existing monitoring wells; one using a thermistor on a cable for one‐time measurements and the other using compact temperature data loggers deployed for 3‐month to 1‐year period. These vertical temperature profile measurements are used to identify the depth and lateral extent of biodegradation as well as to monitor seasonal temperature changes throughout the year. The basic theory for using temperature measurements to estimate the minimum rate of biodegradation will be developed, and used to evaluate field measurements from sites in California where biodegradation of spilled petroleum hydrocarbons is due to natural processes. Following, temperature data will be used to evaluate the relative rates of biodegradation due to natural processes and soil vapor extraction (SVE) at a former refinery site in the North‐Central United States. The results from this study show that the temperature method can be a simple, cost effective tool for assessing biodegradation in the soil, and optimizing remediation systems at a wide variety of hydrocarbon spill sites.  相似文献   

20.
Geochemical Indicators of Intrinsic Bioremediation   总被引:19,自引:0,他引:19  
A detailed field investigation has been completed at a gasoline-contaminated aquifer near Rocky Point, NC, to examine possible indicators of intrinsic bioremediation and identify factors that may significantly influence the rate and extent of bioremediation. The dissolved plume of benzene, toluene, ethylbenzene, and xylene (BTEX) in ground water is naturally degrading. Toluene and o-xylene are most rapidly degraded followed by m-, p-xylene, and benzene. Ethylbenzene appears to degrade very slowly under anaerobic conditions present in the center of the plume. The rate and extent of biodegradation appears to be strongly influenced by the type and quantity of electron acceptors present in the aquifer. At the upgradient edge of the plume, nitrate, ferric iron, and oxygen are used as terminal electron acceptors during hydrocarbon biodegradation. The equivalent of 40 to 50 mg/I of hydrocarbon is degraded based on the increase in dissolved CO2 relative to background ground water. Immediately downgradient of the source area, sulfate and iron are the dominant electron acceptors. Toluene and o-xylene are rapidly removed in this region. Once the available oxygen, nitrate, and sulfate are consumed, biodegradation is limited and appears to be controlled by mixing and aerobic biodegradation at the plume fringes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号