首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fully automated objective-based method for master recession curve (MRC) separation was developed by using Microsoft Excel spreadsheet and Visual Basic for Applications (VBA) code. The core of the program code is used to construct an MRC by using the adapted matching strip method (Posavec et al. 2006). Criteria for separating the MRC into two or three segments are determined from the flow-duration curve and are represented as the probable range of percent of flow rate duration. Successive separations are performed automatically on two and three MRCs using sets of percent of flow rate duration from selected ranges and an optimal separation model scenario, having the highest average coefficient of determination R2, is selected as the most appropriate one. The resulting separated master recession curves are presented graphically, whereas the statistics are presented numerically, all in separate sheets. Examples of field data obtained from two springs in Istria, Croatia, are used to illustrate its application. The freely available Excel spreadsheet and VBA program ensures the ease of use and applicability for larger data sets.  相似文献   

2.
A visual basic spreadsheet macro for recession curve analysis   总被引:3,自引:0,他引:3  
Posavec K  Bacani A  Nakić Z 《Ground water》2006,44(5):764-767
A Visual Basic program for an Excel spreadsheet was written to construct a master recession curve (MRC), using the adapted matching strip method, for recession analysis of ground water level time series. The program uses five different linear/nonlinear regression models to adjust individual recession segments to their proper positions in the MRC. The program can also be used to analyze the recession segments of other time series, such as daily stream discharge or stage. Some examples of field data from Croatia are used to illustrate the usefulness of its application.  相似文献   

3.
Stream‐flow recessions are commonly characterized by the exponential equation or in the alternative power form equation of a single linear reservoir. The most common measure of recession is the recession constant K, which relates to the power function form of the recession equation for a linear reservoir. However, in reality it can be seen that the groundwater dynamics of even the simplest of aquifers may behave in a non‐linear fashion. In this study three different storage–outflow algorithms; single linear, non‐linear and multiple linear reservoir were considered to model the stream‐flow recession of the upper Blue Nile. The recession parameters for the linear and non‐linear models were derived by the use of least‐squares regression procedures. Whereas, for the multiple linear reservoir model, a second‐order autoregressive AR (2) model was applied first in order to determine the parameters by the least‐squares method. The modelling of the upper Blue Nile recession flow performed shortly after the wet season, when interflow and bank storage may be contributing considerably to the river flow, showed that the non‐linear reservoir model simulates well with the observed counterparts. The variation related to preceding flow on a recession parameter of the non‐linear reservoir remains significant, which was obtained by stratification of the recession curves. Although a similar stratification did not show any systematic variation on the recession parameters for the linear and multiple linear reservoir models. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
A comparison between commonly used techniques for hydrograph recession analysis, namely the semi‐logarithmic plot of a single recession segment, the master recession and a relatively new approach based on wavelet transform was carried out. These methods were applied to a number of flood hydrograph events of two catchments in West Java, Indonesia. The results show that all the methods tested produce reasonable and comparable results. However, problems arise in the semi‐logarithmic plot and the master recession, i.e. determining the recession parameter K is not an easy task especially where the plotted data on a semi‐logarithmic plot is not a linear but a curved line. On a curved line, the end of direct flow or starting point of baseflow is not clear and it is quite difficult to identify. Hence, the best line as a basis for computing the recession parameter K becomes uncertain. The wavelet transform approach, however, produces promising results and minimizes a number of problems associated with hydrograph recession analysis. The end of direct flow and the location of the baseflow component are easily determined through the wavelet maps. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Fast segmentation algorithms for long hydrometeorological time series   总被引:2,自引:0,他引:2  
A time series with natural or artificially created inhomogeneities can be segmented into parts with different statistical characteristics. In this study, three algorithms are presented for time series segmentation; the first is based on dynamic programming and the second and the third—the latter being an improved version of the former—are based on the branch‐and‐bound approach. The algorithms divide the time series into segments using the first order statistical moment (average). Tested on real world time series of several hundred or even over a thousand terms the algorithms perform segmentation satisfactorily and fast. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Y. Wang  K. Brubaker 《水文研究》2014,28(9):3388-3403
The Soil and Water Assessment Tool (SWAT) is widely used in modeling water quantity and quality. In the original SWAT, groundwater flow is calculated using a linear‐reservoir model, with outflow proportional to storage. However, observations show that this assumption is not always applicable; for example, macropores in Karst formations would seriously affect the groundwater behavior. A nonlinear groundwater algorithm was introduced in a new version of the SWAT model, called ISWAT. The Shenandoah Valley area in the Eastern U.S., which includes a number of geologic formations including Karst, was selected to test the modified ISWAT model. Parameter ESTimation (PEST) was coupled with ISWAT to auto‐calibrate the nonlinear parameter values. Ten years of record at 15 stream gauges were used to calibrate the model. The nonlinear ISWAT, statistically and visually, performed better in stream discharge estimation especially during baseflow recession and low‐flow periods. This indicated that the nonlinear algorithm can better represent groundwater behavior. The coupled ISWAT‐PEST approach can be used in future stream discharge simulation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
This study proposed three algorithms that can potentially be used to provide sea surface temperature (SST) conditions for typhoon prediction models. Different from traditional data assimilation approaches, which provide prescribed initial/boundary conditions, our proposed algorithms aim to resolve a flow-dependent SST feedback between growing typhoons and oceans in the future time. Two of these algorithms are based on linear temperature equations (TE-based), and the other is based on an innovative technique involving machine learning (ML-based). The algorithms are then implemented into a Weather Research and Forecasting model for the simulation of typhoon to assess their effectiveness, and the results show significant improvement in simulated storm intensities by including ocean cooling feedback. The TE-based algorithm I considers wind-induced ocean vertical mixing and upwelling processes only, and thus obtained a synoptic and relatively smooth sea surface temperature cooling. The TE-based algorithm II incorporates not only typhoon winds but also ocean information, and thus resolves more cooling features. The ML-based algorithm is based on a neural network, consisting of multiple layers of input variables and neurons, and produces the best estimate of the cooling structure, in terms of its amplitude and position. Sensitivity analysis indicated that the typhoon-induced ocean cooling is a nonlinear process involving interactions of multiple atmospheric and oceanic variables. Therefore, with an appropriate selection of input variables and neuron sizes, the ML-based algorithm appears to be more efficient in prognosing the typhoon-induced ocean cooling and in predicting typhoon intensity than those algorithms based on linear regression methods.  相似文献   

8.
An Erratum has been published for this article in Earthquake Engineering & Structural Dynamics 33(6) 2004, 793. The dynamic stiffness of a foundation embedded in a multiple‐layered halfspace is calculated postulating one‐dimensional wave propagation in cone segments. In this strength‐of‐materials approach the sectional property of the cone segment increases in the direction of wave propagation. Reflections and refractions with waves propagating in corresponding cone segments occur at layer interfaces. Compared to rigorous procedures the novel method based on cone segments is easy to apply, provides conceptual clarity and physical insight in the wave propagation mechanisms. This method postulating one‐dimensional wave propagation in cone segments with reflections and refractions at layer interfaces is evaluated, calculating the dynamic stiffness of a foundation embedded in a multiple‐layered halfspace. For sites resting on a flexible halfspace and fixed at the base, engineering accuracy (deviation of ±20%) is achieved for all degrees of freedom with a vast parameter variation. The behaviour below the cut‐off frequency in an undamped site fixed at its base is also reliably predicted. The accuracy is, in general, better than for the method based on cone frustums, which can lead to negative damping. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Quantifying the proportion of the river hydrograph derived from the different hydrological pathways is essential for understanding the behaviour of a catchment. This paper describes a new approach using the output from master recession curve analysis to inform a new algorithm based on the Lyne and Hollick ‘one‐parameter’ signal analysis filtering algorithm. This approach was applied to six catchments (including two subcatchments of these) in Ireland. The conceptual model for each catchment consists of four main flow pathways: overland flow, interflow, shallow groundwater and deep groundwater. The results were compared with those of the master recession curve analysis, a recharge coefficient approach developed in Ireland and the semi‐distributed, lumped and deterministic hydrological model Nedbør‐Afstrømings‐Model. The new algorithm removes the ‘free variable’ aspect that is typically associated with filtering algorithms and provides a means of estimating the contribution of each pathway that is consistent with the results of hydrograph separation in catchments that are dominated by quick response pathways. These types of catchments are underlain by poorly productive aquifers that are not capable of providing large baseflows in the river. Such aquifers underlie over 73% of Ireland, ensuring that this new algorithm is applicable in the majority of catchments in Ireland and potentially in those catchments internationally that are strongly influenced by the quick‐responding hydrological pathways. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
For the offline segmentation of long hydrometeological time series, a new algorithm which combines the dynamic programming with the recently introduced remaining cost concept of branch-and-bound approach is developed. The algorithm is called modified dynamic programming (mDP) and segments the time series based on the first-order statistical moment. Experiments are performed to test the algorithm on both real world and artificial time series comprising of hundreds or even thousands of terms. The experiments show that the mDP algorithm produces accurate segmentations in much shorter time than previously proposed segmentation algorithms.  相似文献   

11.
This paper presents an efficient methodology for computing constant‐ductility inelastic response spectra. The computation of constant‐ductility spectra involves numerical root‐finding algorithms to find the strongest structure providing a desired ductility response. Smooth inelastic structural behavior is modeled using a first‐order nonlinear differential equation and the transient structural response is solved using an implicit algorithm requiring Newton iterations at each time step. For structural models with smooth hysteretic behavior (not piece‐wise linear), a simple root‐finding method involving a combination of hyperbolic fits, linear interpolation, and Newton's method converges upon the highest strength (conservative) solution with a small number of iterations. The effect of the hysteretic smoothness on the occurrence of multiple roots is examined for two near‐fault and two far‐fault earthquake records, and for two measures of ductility and for normalized hysteretic energy. The results indicate how the smoothness of the hysteretic behavior affects ductility demand and constant‐ductility response spectra. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Current reliability‐based control techniques have been successfully applied to linear systems; however, incorporation of stochastic nonlinear behavior of systems in such control designs remains a challenge. This paper presents two reliability‐based control algorithms that minimize failure probabilities of nonlinear hysteretic systems subjected to stochastic excitations. The proposed methods include constrained reliability‐based control (CRC) and unconstrained reliability‐based control (URC) algorithms. Accurate probabilistic estimates of nonlinear system responses to stochastic excitations are derived analytically using enhanced stochastic averaging of energy envelope proposed previously by the authors. Convolving these demand estimates with capacity models yields the reliability of nonlinear systems in the control design process. The CRC design employs the first‐level and second‐level optimizations sequentially where the first‐level optimization solves the Hamilton–Jacobi–Bellman equation and the second‐level optimization searches for optimal objective function parameters to minimize the probability of failure. In the URC design, a single optimization minimizes the probability of failure by directly searching for the optimal control gain. Application of the proposed control algorithms to a building on nonlinear foundation has shown noticeable improvements in system performance under various stochastic excitations. The URC design appears to be the most optimal method as it reduced the probability of slight damage to 8.7%, compared with 11.6% and 19.2% for the case of CRC and a stochastic linear quadratic regulator, respectively. Under the Kobe ground motion, the normalized peak drift displacement with respect to stochastic linear quadratic regulator is reduced to 0.78 and 0.81 for the URC and CRC cases, respectively, at comparable control force levels. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
Streamflow forecasting is very important for the management of water resources: high accuracy in flow prediction can lead to more effective use of water resources. Hydrological data can be classified as non‐steady and nonlinear, thus this study applied nonlinear time series models to model the changing characteristics of streamflows. Two‐stage genetic algorithms were used to construct nonlinear time series models of 10‐day streamflows of the Wu‐Shi River in Taiwan. Analysis verified that nonlinear time series are superior to traditional linear time series. It is hoped that these results will be useful for further applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Recharge estimation is an important and challenging element of groundwater management and resource sustainability. Many recharge estimation methods have been developed with varying data requirements, applicable to different spatial and temporal scales. The variability and inherent uncertainty in recharge estimation motivates the recommended use of multiple methods to estimate and bound regional recharge estimates. Despite the inherent limitations of using daily gauged streamflow, recession curve displacement methods provide a convenient first‐order estimate as part of a multimethod hierarchical approach to estimate watershed‐scale annual recharge. The implementation of recession curve displacement recharge estimation in the United States Geologic Survey (USGS) RORA program relies on the subjective, operator‐specific selection of baseflow recession events to estimate a gauge‐specific recession index. This paper presents a parametric algorithm that objectively automates this tedious, subjective process, parameterizing and automating the implementation of recession curve displacement. Results using the algorithm reproduce regional estimates of groundwater recharge from the USGS Appalachian Valley and Piedmont Regional Aquifer‐System Analysis, with an average absolute error of less than 2%. The algorithm facilitates consistent, completely automated estimation of annual recharge that complements more rigorous data‐intensive techniques for recharge estimation.  相似文献   

15.
Accurate and efficient algorithms are derived for computing any desired response quantity of a single-degree-of-freedom linear oscillator subjected to an arbitrary forcing function. These algorithms are based on linear interpolation of the excitation between discrete points sampled uniformly in time. In the special case of the undamped oscillator, the displacement algorithm is equivalent to a previously published algorithm for this situation which was derived using a finite element approach. However, contrary to the claim made by the authors of this latter algorithm, it does not give an exact solution of the equation of undamped motion for an arbitrary forcing function.  相似文献   

16.
K. Eckhardt 《水文研究》2005,19(2):507-515
Recursive digital filtering of hydrographs is a baseflow separation method that can easily be automated and has been recommended for providing reproducible results. In the past, different formulations of the most simple filter type, the so‐called one‐parameter filter, have been proposed. In this paper, a theoretical framework is developed for filter algorithms that were constructed under the assumption that the outflow from an aquifer is linearly proportional to its storage. It is shown that these one‐parameter filters describing an exponential baseflow recession are all special cases of a two‐parameter filter whose equation is specified. Its parameters are the recession constant—which can be objectively determined by a recession analysis—and BFImax, the maximum value of the baseflow index that can be modelled by the algorithm. This introduces a subjective element into the baseflow calculation, since BFImax is not measurable. A preliminary analysis based on the results of conventional separation techniques shows that it might be possible to find typical BFImax values for classes of catchments that can be unequivocally distinguished by their hydrological and hydrogeological characteristics. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
本地震前兆电磁波观测数据处理软件(DCB软件)是一个基于Excel数据平台,用VBA编写的管理软件。本软件具有数据自动录入、数据库管理、绘图和打印等功能。以Excel作为数据处理平台的DCB软件具有以下优点:操作简单、数据直观、制作图表方便、便于数据管理、分析统计、传递交流,等等。VBA程序则具有容易学习、理解,方便修改等优点。  相似文献   

18.
Abstract

The analysis of drought discharge is of utmost relevance in the design of water intake structures, management of water resources, and in coping with environmental issues. In this context, the master recession curve represents a tool in hydrological analysis, giving integrated information on long period drought flow rates. In this paper, a technique is developed for deriving a master recession curve directly from daily discharge series that takes into account the high variability in the behaviour of individual recession segments. The statistical framework developed allows us to explicitly represent uncertainty, and hence a novel interpretation of the master recession curve is derived. The method is successfully applied to three important Italian basins draining the southern slopes of the eastern Alps.

Citation Fiorotto, V. and Caroni, E., 2013. A new approach to master recession curve analysis. Hydrological Sciences Journal, 58 (5), 966–975.  相似文献   

19.
20.
Hybrid simulation (HS) is a novel technique to combine analytical and experimental sub‐assemblies to examine the dynamic responses of a structure during an earthquake shaking. Traditionally, HS uses displacement‐based control where the finite element program calculates trial displacements and applies them to both the analytical and experimental sub‐assemblies. Displacement‐based HS (DHS) has been proven to work well for most structural sub‐assemblies. However, for specimens with high stiffness, traditional DHS does not work because it is difficult to precisely control hydraulic actuators in small displacement. A small control error in displacement will result in large force response fluctuations for stiff specimens. This paper resolves this challenge by proposing a force‐based HS (FHS) algorithm that directly calculates trial forces instead of trial displacements. The proposed FHS is finite element based and applicable to both linear and nonlinear systems. For specimens with drastic changes in stiffness, such as yielding, a switch‐based HS (SHS) algorithm is proposed. A stiffness‐based switching criterion between the DHS and FHS algorithms is presented in this paper. All the developed algorithms are applied to a simple one‐story one‐bay concentrically braced moment frame. The result shows that SHS outperforms DHS and FHS. SHS is then utilized to validate the seismic performance of an innovative earthquake resilient fused structure. The result shows that SHS works in switching between the DHS and FHS modes for a highly nonlinear and highly indeterminate structural system. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号