首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Olivine-clinopyroxenite xenoliths exhumed in alkali basalts(sensu lato) in the Nógrád–GömörVolcanic Field (NGVF), northern Hungary, contain abundant silicatemelt inclusions. Geothermobarometric calculations indicate thatthese xenoliths crystallized as cumulates in the upper mantlenear the Moho. These cumulate xenoliths are considered to representa period of Moho underplating by mafic alkaline magmas priorto the onset of Late Tertiary alkaline volcanism in the Carpathian–Pannonianregion. The major and trace element compositions of silicatemelt inclusions in olivine display an evolutionary trend characterizedby a strong decrease in CaO/Al2O3. The parental melt of thecumulates was a basanite formed by low-degree ( 2%) partialmelting of a garnet peridotite source. The compositional trendof the silicate melt inclusions, textural features, and modellingwith pMELTS show that the parental melt evolved by major clinopyroxeneand minor olivine crystallization followed by the appearanceof amphibole simultaneously with significant resorption of theearlier clinopyroxene and olivine. The resulting residual meltwas highly enriched in Al2O3, alkalis and most incompatibletrace elements. This type of melt is likely to infiltrate andreact with surrounding mantle peridotite as a metasomatic agent.It might also form high-pressure pegmatite-like bodies in themantle that might be the source of the amphibole and sanidinemegacrysts also found in the alkali basalts of the NGVF. Preferentialremelting of the later-formed (i.e. lower temperature) mineralassemblage (amphibole, sanidine, residual glass) might havesignificantly contaminated the host alkaline mafic lavas, increasingtheir Al2O3 and total alkali contents and, therefore, reducingtheir MgO, FeO and CaO content. KEY WORDS: silicate melt inclusions; geochemistry; petrogenesis; Nógrád–Gömör Volcanic Field; Pannonian Basin  相似文献   

2.
ABSTRACT

Clinopyroxene megacrysts in volcanic rocks can provide substantial information on the evolution of the magmatic system at depth. Although considerable attention has been paid to these crystals, their origin is not yet completely resolved. The clinopyroxene megacrysts worldwide can be divided into two major types in general: the green Cr-diopside type and the black Al-augite type. There is a consensus view that the Cr-diopside megacrysts are mantle xenocrysts, whereas two contrasting opinions exist regarding the origin of the black Al-augite megacrysts. One favours a cognate origin, viewing them as crystallization products of the host magmas under high-pressure; while the other argues that they are xenocrysts crystallized from previous alkali basalts or fragments of mantle peridotites, pyroxenites or pegmatite veins. A review study on the clinopyroxene megacrysts in Meso-Cenozoic volcanic rocks from the North China Craton (NCC) and their comparison with those worldwide provides new constraints on their origin, namely, the Cr-diopside megacrysts, as previously thought, are all xenocrysts, representing disaggregated clinopyroxene crystals from clinopyroxene-rich mantle rocks. Contrary to the formerly proposed cognate origin, the Al-augite megacrysts are also xenocrysts, having no direct genetic link to their host rocks. They crystallized from melts that have formed earlier than the host magmas, and probably accumulated in a magma chamber or occurred as sheets or veins filling a fracture network surrounding a magma chamber in the upper mantle. During the subsequent eruption of the host lavas, these previously formed crystals were incorporated into the magma and were brought up to the surface.  相似文献   

3.
Xenoliths from the upper mantle and lower crust are abundant in Plio–Pleistocene alkali basalts of the Nógrád-Gömör Volcanic Field (NGVF; northern Pannonian Basin, northern Hungary/southern Slovakia), representing a valuable ‘probe’ of lithospheric structures and processes. Ultramafic xenoliths have been divided into two groups: (1) Type-I, composed mostly of olivine with subsidiary orthopyroxene, clinopyroxene and spinel, and (2) Type-II, containing mostly Al- and Ti-rich clinopyroxene with subordinate olivine, spinel and plagioclase. Both types often contain amphibole and, to a lesser extent, mica. The refractory character of Type-I xenoliths suggests they represent mantle depleted by prior episodes of partial melting. In contrast, Type-II series (wehrlites, olivine clinopyroxenites, clinopyroxenites and plagioclase-bearing ultramafic lithologies), on the basis of their textural features, thermobarometric histories and major and trace element variation, appear to have formed as magmatic cumulates. Petrologic and geochemical studies of Type-II xenoliths from Nógrád-Gömör suggest they crystallized from basaltic melts emplaced within the lithospheric mantle and lower crust, prior to the onset of Plio–Pleistocene volcanic activity. After their consolidation, metasomatic agents reacted with the anhydrous cumulate phases producing amphiboles and micas at the expense of olivine and clinopyroxene. The metasomatic agents appear to have been adakitic rather than basaltic in composition, possibly linked to a retreating arc–forearc system. Large-scale contamination of the lithospheric mantle can therefore be attributed to fluid and melt fractions related to subduction beneath the outer Carpathian arc.  相似文献   

4.
Alkali basalts were discovered in the Timok Magmatic Complex only in a borehole near Zlot. They are composed of plagioclase and clinopyroxene phenocrysts lying in intersertal to pilotaxitic groundmass. The characteristic feature of these rocks is the high content of needle shaped magnetite.

Various disequilibrium features in alkali basalt of Zlot reflect complex convection effects and recharge, most probably in a shallow magma chamber. Major and trace elements data indicate that alkali basalts of Zlot originated from magmas deriving from metasomatized mantle wedge above a subducting and dehydrating plate. However the investigated rocks did not originate from primary magmas, but from a magma which has undergone considerable fractional crystallization.  相似文献   


5.
张明  解广轰 《地球化学》1996,25(5):425-444
对中国东部赋存于新生代玄武岩中的地幔岩捕虏体的全岩和单斜辉石等作了主元素和微量元素分析,证实了二辉橄榄岩及其单斜辉石在主元素有连续变化的趋势,反映了具部分熔融后残留相的性质。方辉橄榄岩及其中的单斜辉石的主元素,Nd/Yb,Ti/Zr和Sr/Zr值与二辉橄榄岩的同类矿物是不连续过渡。  相似文献   

6.
陈博  朱永峰  安芳  邱添  陈艺超 《地质通报》2011,30(7):1017-1026
新疆克拉玛依地区出露的早古生代蛇绿混杂岩带规模巨大,岩石单元出露齐全。白碱滩地区的地幔橄榄岩相对比较新鲜,单斜辉石、斜方辉石、尖晶石和橄榄石保存完好。研究表明,白碱滩蛇绿岩就位前,地幔岩发生了大于50km的快速隆升,且没有发生部分熔融。百口泉地区发现的地幔岩普遍遭受了改造,辉石多发生了强烈蚀变(透闪石化),但尖晶石和橄榄石保存较好。百口泉地区出露的地幔岩和白碱滩地幔岩的矿物组成基本一致,表明它们属于同一蛇绿混杂岩带。百口泉蛇绿岩剖面的揭露,将该蛇绿混杂岩带的范围向NE方向延伸了35km。  相似文献   

7.
全球幔源岩Pb-Sr-Nd同位素体系   总被引:5,自引:0,他引:5  
朱炳泉 《地学前缘》2007,14(2):24-36
根据各种同位素数据库得到的3万多个晚古生代以来的幔源岩(包括洋中脊玄武岩、洋岛玄武岩、岛弧火山岩、大陆与大洋溢流玄武岩以及大陆板内玄武岩)Pb-Sr-Nd同位素资料和图解分析,对各类火山岩的源区以及地幔的垂向与横向不均一性问题作了进一步讨论。笔者认为不存在具有公共性质的EM1、EM2和HIMU地幔端员,它们的源区可能来自上、下地幔过渡带,只在局部地区出现,独一无二。PREMA(FOZO)则是洋岛玄武岩和溢流玄武岩公共端员。DUAPAL异常现象不只是在洋中脊玄武岩中出现,在洋岛玄武岩、岛弧火山岩和大洋溢流玄武岩中也存在同步的地球化学分区现象。溢流玄武岩的同位素体系特征表明它们的源区涉及再循环地幔的壳幔混合、岩石圈减压熔融、上—下地幔过渡带和似原始-略亏损的下地幔。Pb同位素体系为鉴别俯冲带的存在提供了更严格的证据,这种鉴别表明,安第斯弧火山作用不是洋陆俯冲带产生的。  相似文献   

8.
云南金沙江蛇绿岩的地球化学特征及其成因的初步研究   总被引:3,自引:0,他引:3  
本文报道了出露于云南省德钦县白马雪山、书松、共卡及吉义独地区的金沙江蛇绿岩的地球化学特征。该蛇绿岩各岩石单元均为LREE富集型。文中讨论了金沙江蛇绿岩的成因及其形成的构造环境,指出该区玄武岩的微量元素和REE分布可用NMORB与OIB的混合来解释,推测形成于类似现今冰岛的扩张脊与地幔热柱重叠的构造环境  相似文献   

9.
Oxygen isotope compositions of olivine and pyroxene phenocrysts and pyroxene and amphibole megacrysts from Neogene alkali basalts of the Pannonian basin (0.5–11 Ma) have been determined by laser fluorination. Measured δ18O values in olivine and clinopyroxene phenocrysts show rather restricted variations from 5.00 to 5.20‰ and from 5.07 to 5.34%., respectively, with cpx-ol fractionations Δ18O(cpx-ol) ranging from + 0.04 to + 0.29‰. These δ18O values are significantly lower than those of the corresponding whole rocks, suggesting that low temperature alteration has increased the 18O/16O ratios of the groundmass of host rocks, even in fresh looking samples, whereas their phenocrysts have retained original oxygen isotope compositions. The uniform oxygen isotope ratio in the phenocrysts suggests that the mantle source of the alkali basalts was also homogeneous with respect to its oxygen isotope composition, which is in contrast to the relatively wide variation of Sr, Nd and Pb isotope ratios in the source. Variations in radiogenic isotope compositions in the basalts have been explained by the interaction of subduction-related fluids with the mantle source of the basalts. If this is the case, then the fluids which caused significant changes in the Sr and Pb isotope ratios of the mantle source clearly did not noticeably modify its oxygen isotope composition. These data support the opinion that the upper mantle is more homogeneous with respect to its oxygen isotope composition than it was previously considered.  相似文献   

10.
藏北戈木错渐新世碱性钾质火山岩中单斜辉石斑晶普遍出现正环带、反环带和韵律环带结构,多具有"绿核辉石"的结构特征。通过矿物电子探针测得"绿核辉石"的核部有高Mg#和低Mg#两种不同成分,两者都不同程度发育有筛孔状熔蚀结构,环带结构主要发育在辉石的幔部到边部,与绿色核部存在明显的成分间断,幔部环带结构的成分变化范围相对较窄。"绿核辉石"的成分和结构特征反映了同源碱性钾质岩浆在壳内岩浆房中发生了岩浆补给-混合作用,复杂的环带结构记录了混合岩浆的结晶过程。  相似文献   

11.
We present new geochemical analyses of minerals and whole rocks for a suite of mafic rocks from the crustal section of the Othris Ophiolite in central Greece. The mafic rocks form three chemically distinct groups. Group 1 is characterized by N-MORB-type basalt and basaltic andesite with Na- and Ti-rich clinopyroxenes. These rocks show mild LREE depletion and no HFSE anomalies, consistent with moderate degrees (~15%) of anhydrous partial melting of depleted mantle followed by 30–50% crystal fractionation. Group 2 is represented by E-MORB-type basalt with clinopyroxenes with higher Ti contents than Group 1 basalts. Group 2 basalts also have higher concentrations of incompatible trace elements with slightly lower HREE contents than Group 1 basalts. These chemical features can be explained by ~10% partial melting of an enriched mantle source. Group 3 includes high MgO cumulates with Na- and Ti-poor clinopyroxene, forsteritic olivine, and Cr-rich spinel. The cumulates show strong depletion of HFSE, low HREE contents, and LREE enrichments. These rocks may have formed by olivine accumulation from boninitic magmas. The petrogenesis of the N-MORB-type basalts and basaltic andesites is in excellent agreement with the melting conditions inferred from the MOR-type peridotites in Othris. The occurrence of both N- and E-MORB-type lavas suggests that the mantle generating the lavas of the Othris Ophiolite must have been heterogeneous on a comparatively fine scale. Furthermore, the inferred parental magmas of the SSZ-type cumulates are broadly complementary to the SSZ-type peridotites found in Othris. These results suggest that the crustal section may be genetically related to the mantle section. In the Othris Ophiolite mafic rocks recording magmatic processes characteristic both of mid-ocean ridges and subduction zones occur within close spatial association. These observations are consistent with the formation of the Othris Ophiolite in the upper plate of a newly created intra-oceanic subduction zone. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
华南板块西南缘、越北地块以北桂西那坡县城以西及西南一带发育一套晚二叠世基性岩,由层状、似层状次火山岩相辉绿岩、辉绿玢岩及球状岩组成。根据岩石地球化学特征,那坡基性岩可划分为高Ti(TiO_22.8%和Ti/Y500)和低Ti两部分。高Ti基性岩为碱性玄武岩,而低Ti基性岩为拉斑玄武岩。与低Ti基性岩相比,高Ti基性岩整体具有相对较低的SiO_2、MgO和较高的FeO_t、P_2O_5,轻、重稀土分馏明显,富集大离子亲石元素(LILE)和高场强元素(HFSE),显示出似OIB地球化学特征,与峨眉山高Ti玄武岩具高度亲缘性;低Ti基性岩具有相对较高的SiO_2、MgO和较低的FeO_t、P_2O_5,稀土配分曲线较平坦,富集LILE,严重亏损HFSE(Nb、Ta),与岛弧玄武岩地球化学特征类似。从微量元素比值及相关图解对岩浆源区和构造环境判别,那坡高Ti基性岩来自富集OIB地幔源区,而低Ti基性岩兼具OIB和岛弧岩浆源区的过渡特征。结合岩石地球化学特征及区域地质背景,认为那坡高Ti基性岩可能为峨眉山地幔柱岩浆作用的产物,低Ti基性岩为古特提斯俯冲与峨眉山地幔柱共同作用的产物,揭示了那坡地区晚二叠世同时受到峨眉山地幔柱和古特提斯俯冲相互作用的影响。  相似文献   

13.
The Taohekou Formation is a volcanic-sedimentary terrane formed in the early Silurian in the northern Daba Mountains, China. The volcanic rocks, with dominant alkali basalts and minor mantle xenoliths, are enriched in clinopyroxene phenocrysts. Geochemical analysis shows that the composition of clinopyroxenes from different lithofacies has a close affinity. There is a liner correlation present in composition of clinopyroxenes (including phenocryst, microcrystal and xenocryst) from coarse porphyritic basalts, pillow or fine porphyritic basalts to amygdaloidal basalts. All the clinopyroxenes, except the clinopyroxenes in mantle xenoliths, show a similar pattern of trace elements and REE, which indicates that they are likely products of successive fractional crystallization from cognate magma. Clinopyroxenes in mantle xenoliths, however, are mantle xenocrysts. The crystallization pressure of clinopyroxenes gradually decreases from mantle xenolith, deep-seated xenocryst, coarse porphritic basalts, pillow or fine porphritic basalts, to amygdaloidal basalts, which are 1.92-4.41 GPa, 1.18-2.36 GPa, 1.13-2.05 GPa, 0.44-0.62 GPa and 0.14-0.28 GPa respectively. Calculation results suggest that the primary magma originated from a mantle region deeper than 68 km and stagnates in intervals of 37-68 km, 15-20 km and 5-9 km during its ascent. The alkali basalts are characterized by increasing concentrations of Si and alkaline with the magmatic evolution. Meanwhile, they are markedly enriched in LREE, and the patterns of trace elements and REE are similar to those of oceanic island basalts.  相似文献   

14.
Clinopyroxene phenocrysts in the Kokchetav trachybasalts are variable in composition and textures. Two distinctive cores are recognized: diopside cores and green salite cores. The diopside cores with Mg# of 80–90 are mantled by colorless salite rims with Mg# of 70–80. The green salite cores have especially low Mg# (<70) but high Al and Ti contents. A Mg-rich band (Mg#=82–90) usually occurs between a green salite core and its rim, and/or between a colorless salite mantle and its rim. Dissolution surfaces are observed on all textural variants. Two magma chambers are needed to explain the observed clinopyroxene phenocrysts. A deep chamber at about 120 km in the upper mantle in which diopside cores crystallized, and a shallow chamber at depths of less than 40 km in which diopside cores were resorbed and overgrown by salite rims or mantles. Magma mixing in the shallow chamber is responsible for the formation of dissolution surfaces between the diopside bands and the colorless salite mantles. The dissolution surfaces on the diopside cores formed in the shallow chamber as a result of pressure decrease. This magma evolution scenario is complicated by the occurrence of the crustal-origin green salite cores in diopsides. These green cores likely represent the relics of continental materials, which were captured in the deep chamber and partially re-melted. Our observations indicate that subducted continental materials were returned to the Earth's surface as a result of magmatism. This study therefore provides direct evidence of a link between subducted continental materials (slab) and magmatism in this orogenic belt.  相似文献   

15.
The Paleoproterozoic post-kinematic Ubendian mafic rocks from northeastern Katanga (Democratic Republic of Congo) are olivine-and-quartz tholeiites which in many respects resemble Phanerozoic continental tholeiites. The analogies are suggested by the petrographic features and the major element diagrams classically used to infer magmatic affinity. The clinopyroxene compositions straddle the boundary between clinopyroxenes from orogenic and extensional tectonic settings. In addition, the whole-rock compositions are mostly Ti- and P-poor as in low Ti–P continental flood basalts and in subduction-related mafic magmas. The same conclusion is sustained by the trace-element compositions (e.g., occurrence of mafic magmas with high Th/Ta and La/Ta values; low Sr/Ce ratios, etc). These geochemical features indicate involvement of a subduction component at the source of these extensional igneous rocks. Convective mixing of asthenospheric mantle with the overlying lithospheric mantle enriched during the Ubendian subduction or mixing of melts from both mantle components can account for the composition of the post-orogenic Ubendian mafic rocks.  相似文献   

16.
Upper mantle xenoliths from Wikieup, AZ, provide abundant evidence for magmatic modification of the uppermost mantle beneath the Transition Zone between the Colorado Plateau and the southern Basin and Range province. Upper mantle lithologies in this xenolith suite are represented by spinel peridotite, wehrlite, plagioclase peridotite, and Al-augite group pyroxenites. Isotopic data for these xenoliths yield relatively uniform values and suggest a common petrogenesis. Al-augite-bearing gabbro and pyroxenite xenoliths from this locality are interpreted to have formed by crystal fractionation processes from parent alkali basalts similar to the Wikieup host basalt. Mineral and whole rock compositions show consistent trends of increasing incompatible element contents (Fe, Al, Ca, Na, K, LIL, and LREE), and decreasing compatible element contents (Mg, Cr, Ni) from spinel peridotite to wehrlite to plagioclase peridotite to the host basalt composition. These compositional trends are interpreted as resulting from varying degrees of magma-mantle wall rock interaction as ascending mafic magmas infiltrated upper mantle peridotite. Small degrees of melt infiltration resulted in slightly modified spinel peridotite compositions while moderate degrees metasomatized spinel peridotite to wehrlite, and the highest degrees metasomatized it to plagioclase peridotite. Whole rock compositions and clinopyroxene, plagioclase, and whole rock isotopic data suggest that the infiltrating magmas were the same as those from which the gabbros and pyroxenites crystallized, and that they were alkalic in composition, similar to the Wikieup host alkali olivine basalts. Relatively uniform 143Nd/144Nd for the mineral separates and whole rocks in spite of the significantly wide range in their 147Sm/144Nd (0.71–0.23 in clinopyroxene) suggests that the Wikieup xenoliths including gabbro, pyroxenite, peridotite, wehrlite, and plagioclase peridotite, are all relatively young rocks formed or metasomatized by a relatively recent magmatic episode. Received: 21 May 1996 / Accepted: 23 December 1996  相似文献   

17.
The Naga Hills Ophiolite(NHO) represents one of the fragments of Tethyan oceanic crust in the Himalayan Orogenic system which is exposed in the Phek and Kiphire districts of Nagaland, India. The NHO is composed of partially serpentinized dunite, peridotite, gabbro, basalt, minor plagiogranite,diorite dyke and marine sediments. The basalts are mainly composed of fine grained plagioclase feldspar, clinopyroxene and orthopyroxene and show quenching and variolitic textures. The gabbros are characterized by medium to coarse grained plagioclase, orthopyroxene and clinopyroxene with ophitic to sub-ophitic textures. The ultramafic cumulates are represented by olivine, Cpx and Opx.Geochemically, the basalts and gabbros are sub-alkaline to alkaline and show tholeiitic features.The basalts are characterized by 44.1-45.6 wt.% of SiO_2 with 28-38 of Mg#, and the gabbros by38.7-43.7 wt.% of SiO_2, and 26-79 of Mg#. The ultramafic rocks are characterized by 37.4-52.2 wt.% of SiO_2, and 80-88 of Mg#. In multi-element diagrams(spidergrams) both basalts and gabbros show fractionated trends with strong negative anomalies of Zr. Nb. Sr and a gentle negative anomaly of P.However, the rare earth element(REE) plots of the basalts and gabbros show two distinct patterns. The first pattern, represented by light REE(LREE) depletion, suggests N-MORB features and can be interpreted as a signature of Paleo-Tethyan oceanic crust. The second pattern, represented by LREE enrichment with negligible negative Eu anomaly, conforms to E-MORB, and may be related to an arc tectonic setting. In V vs. Ti/1000, Cr vs. Y and AFM diagrams, the basalts and gabbros plot within Island Arc Tholeiite(IAT) and MORB fields suggesting both ridge and arc related settings. The ultramafic rocks exhibit two distinct patterns both in spidergrams and in REE plots. In the spidergram, one group displays highly enriched pattern, whereas the other group shows near flat pattern compared to primordial mantle. In the REE plot, one group displays steeper slopes [(La/Yb)N = 4.340-4.341], whereas the other displays moderate to flat slopes [(La/Yb)N = 0.97-1.67] and negative Eu-anomalies. Our study suggests that the ultramafic rocks represent two possible mantle sources(fertile and refractory).  相似文献   

18.
位于大兴安岭-太行山重力梯度带西侧的阳原新生代玄武岩中含有大量橄榄岩和辉石岩包体。辉石岩包体含有绿色的Cr辉石岩和黑色的Al辉石岩包体两种类型,均为二辉岩,且多数样品中单斜辉石含量高于斜方辉石。岩石结构和主微量元素组成说明阳原辉石岩是高压堆晶体。其EMI型Sr-Nd同位素特征,明显不同于寄主玄武岩,暗示两者没有成因联系,而可能代表古老岩浆事件的产物。综合文献资料发现重力梯度带西侧的辉石岩包体大多具有富集同位素特征,而东侧的样品以亏损同位素组成为主。这种空间上的成分差异暗示重力梯度带分隔两个不同的地幔域,也可能与重力梯度带两侧岩石圈地幔形成时代不同有关。  相似文献   

19.
Petrological and geochemical studies on some volcanic and sub-volcanic rocks from the Lower Benue rift indicate that they are basalts, basaltic and doleritic sills, trachybasalt and trachyte which generally belong to the alkali basalt series. The alkaline affinity is clearly evident in both their normative and modal mineral compositions, as well as their chemical compositions. The generally high fractionation indices [(La/Yb)N] are 7.06 to 17.65 for the basaltic rocks and 23.59 to 135. 35 for the trachytic rocks, against low values commonly seen in subalkaline (tholeiitic) series, with strong enrichments in the incompatible elements. All this strongly supports their alkaline affinity. The basaltic rocks are generally fine-grained and porphyritic, consisting of phenocrysts of clinopyroxene and olivine in the groundmass of the same minerals together with plagioclase. The clinopyroxene is either diopside or clinoenstatite. The trachyte consists of oligoclase, orthoclase, biotite, quartz and exhibits typical trachytic, flow structure. The basaltic and doleritic sills are commonly altered, with calcite and epidote as common alteration prod-ucts. This alteration, which is reflected in the erratic behaviour of K2O, MnO and P2O5 on Harker variation diagrams, high values of LOI, strong depletions in the more mobile LILE (Rb, K, Ba and Sr) and high Th/Ta ratios, is attributed to the effects of an aqueous fluid phase and crustal contamination. On the whole, the mineralogical, as well as major-, trace-elements and REE data suggest that the rocks are co-genetic and most likely derived from differentiation of an alkali olivine-basalt magma, generating through variable low degrees of partial melting of probably an enriched lithospheric (upper) mantle following an asthenospheric uplift (mantle plume or intumescence) with HIMU signa-tures in a within-plate continental rift tectonic setting. This corroborates earlier results obtained for the intrusive rocks in the region.  相似文献   

20.
位于中国东南部的三水盆地、珠江口盆地、雷琼半岛和北部湾地区广泛分布新生代火山岩。火山岩的形成时间具有从内陆向沿海变新的特点,早第三纪三水和珠江口盆地火山岩具有由玄武岩与粗面岩-流纹岩构成的双峰式特点。其中玄武岩和粗面岩的微量元素和稀土元素的配分形式相似,富集大离子亲石元素并且有相似的εNd(T)同位素组成(2.34~6.4),说明它们来自相同的地幔源区,为同源岩浆演化的产物。玄武岩和粗面岩经历了不同的结晶分异过程,其中玄武岩在较深部岩浆房中经历橄榄石和单斜辉石为主的分离结晶作用,而粗面岩则是在浅部岩浆房中由玄武岩浆分异形成的过渡性岩浆再经过强烈的钾长石和斜长石、以及磷灰石的结晶分异形成的。晚第三纪珠江口盆地和北部湾火山岩、雷琼半岛第四纪火山岩则由碱性和拉斑玄武岩构成。这些火山岩的形成时间和地球化学和同位素特征表明它们经历了连续的软流圈地幔上涌和部分熔融过程,受控于自晚中生代以来的地幔柱构造。南海的形成是地幔柱活动引起的地幔上涌和大陆裂解作用的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号