首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K, Rb, Ba, Sr, Y, Zr and Nb have been determined in samples of MORB (mid-ocean ridge basalt) from the mid-Atlantic ridge at 45 °N by X-ray fluorescence spectrometry. This suite is characterised by higher concentrations of K, Rb, Ba and Nb (and lower K/Rb, K/Ba and Zr/Nb) than low-K tholeiites (typical MORB) previously described in the literature. Available data from other sources also shows that the 45 °N suite has higher Cs and U contents, rare earth-patterns enriched in the light REE, and higher 87Sr/86Sr ratios relative to typical MORB. The inter-element and isotopic ratios of typical MORB have been previously interpreted to imply that these samples have been derived from source areas which have undergone earlier differentiation and/or melting episodes. The 45 °N MORB samples are considered to be derived from more primitive or relatively undepleted mantle. It is noteworthy that these samples have inter-element ratios very similar to those obtained for oceanic island basalts associated with the mid-ocean ridges.The significance of the relative enrichment or depletion of Nb in MORB has not been previously noted and the use of the Zr/Nb ratio to illustrate these effects is emphasised. The abundances of Zr and Nb are apparently unaffected by sea-water alteration and thus the Zr/Nb ratio is potentially a more useful measure of depletion than ratios involving K and Rb, which are very sensitive to sea-water alteration. Brief mention is made of the variation of Zr/Nb in other MORB samples to demonstrate the existence of varying degrees of depletion in the respective source areas of these samples.  相似文献   

2.
The Ordovician Laohushan ophiolite, located in the eastern part of the North Qilian Mountains, is mainly composed of meta-peridotites, gabbros and basalts alternating with sediments. The sediments are mainly turbidites, including sandstones, siltstones, cherts etc. Major elements show that the basalts are subalkaline tholeiites and may be analogous to ocean-floor basalts. Except a few N-MORBs, most of the basalts are E-MORBs as indicated by incompatible element ratios such as (La/Ce)N, La/Sm, Ce/Zr, Zr/Y and Zr/Nb. Negative Nb anomaly is common but negative Zr, Hf and Ti anomalies are quite rare. Based on the geochemical characteristics, it is suggested that the Laohushan basalts were formed in a back-arc basin. εNd (t) of the basalts ranges between +3.0 and +8.9 and (87Sr/86Sr), ranges between 0.7030 and 0.7060, indicating a depleted mantle source which was mixed with more or less enriched mantle components. Furthermore, the petrography of the sandstones and geochemistry of the cherts suggest that the  相似文献   

3.
ABSTRACT

We present zircon U-Pb crystallization ages combined with bulk rock major and trace element geochemistry and Sr-Nd-Pb and zircon in-situ Hf isotopic compositions of the Amand and Moro granitoid intrusions in northwest Iran. The Amand and Moro plutons include granite and syeno-diorite with LA-ICP-MS U-Pb zircon ages of 367 ± 6.8 Ma and 351 ± 1.3 Ma, respectively, representative of Late Devonian-Early Carboniferous magmatic activity in NW Iran. Geochemical characteristics such as typical enrichments in alkalis, Nb, Zr, Ga and Y, depletion in P and Sr and fractionated REE patterns with high Ga/Al ratios and Eu negative anomalies are consistent with A-type magmatic signatures. The granitoids are classified as A2-type and within-plate granitoids. The bulk rock geochemistry (enrichments in Th, Nb and, high Th/Yb, Zr/Y ratios) along with low variation of 143Nd/144Nd(i) and 87Sr/86Sr(i) ratios and positive zircon εHf(t) support the role of a mantle plume component for the evolution of the Amand and Moro A-type granitoids in an extensional tectonic environment. In fitting with wider regional knowledge, this magmatism occurred during Paleo-Tethys opening in northern Gondwana.  相似文献   

4.
The Juzzak Sill occurs in the western part of the east-west trending, subduction-related magmatic belt known as the Chagai arc. The sill is concordantly emplaced in the Paleocene Juzzak Formation and locally cross-cuts the Early to Middle Eocene Robat Limestone and Eocene Saindak Formation. The sill is a porphyritic pyroxene diorite that grades into a porphyritic andesite (60.12–61.57 wt% SiO2) along the chilled margins. It comprises phenocrysts of hypersthene and plagioclase (An32–45) in a medium- to fine-grained groundmass of these minerals, opaque oxide, and apatite. The rocks are high-K (2.37–2.86 wt% K2O) calc-alkaline with low Mg# (42–55), Cr (51–80 ppm), and Ni (22–30 ppm) contents. Mantle-normalized trace element patterns, exhibited by marked negative Nb anomalies and positive spikes for Sr, Rb, and Zr and are akin to island arc signatures. The relatively higher ratios of Zr/Y (3.57–6.58), Ti/V (46.05–54.36), Ta/Yb (0.14–0.15), and Th/Yb (2.56–2.65) and high 87Sr/86Sr ratio (0.70524) suggest the role of continental crust materials, thus implying continental margin-type arc affinity. The source diagnostic ratios including K/Ba, P/Zr, and La/Ce of Juzzak Sill andesite and Eocene andesite from the Chagai arc are more or less similar, but the former has a much higher K/Y and Ba/Y ratios, which suggests assimilations of the host sediments during intrusion.  相似文献   

5.
Geochemistry of the Adamello massif (northern Italy)   总被引:2,自引:0,他引:2  
The Tertiary Adamello massif, outcropping over an area of more than 550 km2 in the southern Alps (northern Italy) is composed mainly of granitoid rocks (granodiorite, tonalite, quartz diorite) with minor amounts of diorite and gabbro. The major and trace element composition of these rocks is comparable to calc-alkaline volcanic rocks of continental margins. The granitoid rocks display spatial and temporal variations in their composition, particularly in Na, P, Sr, La, Nb and Y contents and 87Sr/86Sr ratios. The variations were probably produced by concurrent contamination/wall-rock assimilation and fractional crystallization of high-alumina basaltic magma.  相似文献   

6.
东南沿海分布大面积的白垩纪晚期侵入岩。这些岩石可分为两期:其中115~100Ma以钙碱性系列岩石为主,岩石组合为辉长岩-闪长岩-花岗闪长岩-二长花岗岩-碱性长石花岗岩;而100~86Ma的岩石为碱性系列,岩石组合为石英二长斑岩-正长斑岩-碱性长石花岗岩。115~100Ma的辉长岩以角闪辉长岩为主,具有极高的CaO、MgO和Al_(2)O_(3)含量,具有极低的SiO_(2)(42.9%~53.8%)、全碱(K_(2)O+Na_(2)O:0.86%~5.28%)、Ba、Nb、Th、Rb和Zr含量,也具有极低的FeO^(T)/MgO、La/Yb和Zr/Hf比值,较高的Eu/Eu^(*)、Sr/Y比值和Sr含量,为基性-超基性堆晶岩。与辉长岩同期的闪长岩和细粒暗色包体具有较高的SiO_(2)(50.34%~63.68%),较低的CaO、P_(2)O_(5)、MgO、Al_(2)O_(3)含量,相对低的Eu/Eu^(*)和Sr/Y比值,变化较大的La/Yb和Zr/Hf比值,代表了从基性岩浆储库中抽取的富硅熔体。115~100Ma的花岗闪长岩和二长花岗岩类岩石为准铝质岩石,SiO_(2)含量变化较大(61.7%~75.3%),具有较低的FeO^(T)/MgO、Ga/Al比值和Nb、Zr及Nb+Zr+Ce+Y元素含量,显示出典型I型花岗岩的特征。这些花岗岩具有相对高的La/Yb、Eu/Eu^(*)和Zr/Hf比值和高的Sr、Ba和Zr含量。结合岩相学特征,这些花岗岩为堆晶花岗岩。而115~100Ma的碱性长石花岗岩具有极高的SiO_(2)含量(大于75%),低的Eu/Eu^(*)、La/Yb、Zr/Hf和Sr/Y比值,具有低的Ba、Sr和Zr含量和高的Rb、Nb、Y和Th含量和Rb/Sr比值,表明这些花岗岩是由富硅岩浆储库中抽离的高硅熔体侵入地壳形成。100~86Ma期间形成的二长斑岩和正长斑岩具有极高的全碱含量,可以达到8%~12%,其SiO_(2)主要集中在60%~70%,具有极高的Zr、Sr和Ba含量和Eu/Eu^(*)、La/Yb和Sr/Y比值,显示出堆晶花岗岩的特征。而100~86Ma期间形成的大部分碱性长石花岗岩具有极高的SiO_(2)含量(大于75%),并显示出A型花岗岩的特征,具有高的Rb/Sr比值和高的Rb、Y和Th和低的Ba、Sr含量和低的Zr/Hf、La/Yb、Eu/Eu^(*)和Sr/Y比值,表明它们是由富硅岩浆储库抽离的高硅熔体侵入浅部地壳形成。东南沿海高硅花岗岩的形成和穿地壳岩浆系统密切相关,高硅花岗岩是由浅部地壳内晶体-熔体分异产生的熔体侵入地壳所形成,而高硅花岗岩的地球化学特征与岩浆储库的水及挥发份含量密切相关。115~100Ma期间,从富水的岩浆储库抽离的熔体形成具有低高场强元素含量和低Rb/Sr比值的高硅花岗岩,这一过程与古太平洋板块俯冲有关;100~86Ma期间,从富挥发份的岩浆储库抽离的熔体形成碱性特征、富含高场强元素和具有高的Rb/Sr比值的高硅花岗岩,这一过程和古太平洋板块回撤软流圈上涌有关。  相似文献   

7.
Mineral chemistry, major and trace elements, and 87Sr/86Sr ratios are presented for 29 igneous rocks dredged from the northern portion of the Izu-Ogasawara arc. These rocks are compositionally bimodal. Basement gabbro and trondhjemite from the arc are extremely poor in K2O (0.05–0.19%) and Rb (0.48–0.62 ppm), and their REE patterns and Sr isotope ratios indicate that there are island arc tholeiites. Quaternary volcanic rocks from the present volcanic front (Shichito Ridge; active arc), back-arc seamounts (east side; inactive arc) and Torishima knoll between the two back-arc depressions (incipient back-arc basins) behind the active arc have the same geochemical characteristics as the above plutonic rocks though they are not as depleted in K and Rb. Rhyolite pumice from the backarc depression is also the depleted island arc tholeiite, whereas basalts from the depression have compositions that are transitional between MORB and island arc tholeiites in trace element (Ti, Ni, Cr, V, Y and Zr) and mineral chemistries. The back-arc depression basalts have relatively high BaN/CeN(0.66–1.24), Cen/YbN(1.1–1.9) and K/Ba(45–105) and low 87Sr/86Sr (0.70302–0.70332) and Ba/Sr (0.1–0.2), which are similar to other back-arc basin basalts and E-type MORB, but are quite unlike the depleted island arc tholeiites. The diverse trace element and Sr isotope compositions of basalt-andesite from the back-arc depressions imply the interplay between E-type MORB and island arc tholeiite. These chemical characteristics and the relationships of (Ce/Yb)N vs (Ba/Ce)N and (Ce/Yb)N vs 87Sr/86Sr suggest that the back-arc depression magmas are generated by mixing of E-type MORB and depleted island arc tholeiite magmas. Geochemical characters of the associated rhyolite from the depression are compatible with partial melting of lower crust.  相似文献   

8.
Major and trace element and isotopic ratios (Sr, Nd and Pb) are presented for mafic lavas (MgO > 4 wt%) from the southwestern Yabello region (southern Ethiopia) in the vicinity of the East African Rift System (EARS). New K/Ar dating results confirm three magmatic periods of activity in the region: (1) Miocene (12.3–10.5 Ma) alkali basalts and hawaiites, (2) Pliocene (4.7–3.6 Ma) tholeiitic basalts, and (3) Recent (1.9–0.3 Ma) basanite-dominant alkaline lavas. Trace element and isotopic characteristics of the Miocene and Quaternary lavas bear a close similarity to ocean island basalts that derived from HIMU-type sublithospheric source. The Pliocene basalts have higher Ba/Nb, La/Nb, Zr/Nb and 87Sr/86Sr (0.70395–0.70417) and less radiogenic Pb isotopic ratios (206Pb/204Pb = 18.12–18.27) relative to the Miocene and Quaternary lavas, indicative of significant contribution from enriched subcontinental lithospheric mantle in their sources. Intermittent upwelling of hot mantle plume in at least two cycles can explain the magmatic evolution in the southern Ethiopian region. Although plumes have been originated from a common and deeper superplume extending from the core–mantle boundary, the diversity of plume components during the Miocene and Quaternary reflects heterogeneity of secondary plumes at shallower levels connected to the African superplume, which have evolved to more homogeneous source.  相似文献   

9.
《Geodinamica Acta》2001,14(1-3):159-167
Pliocene–Pleistocene volcanism accompanied strike-slip-related transtensional deformation along the Kızılırmak fault segment of the Central Anatolian fault zone (CAFZ) in the west of Şarkışla (Sivas–central Turkey). These volcanic rocks are represented by alkali olivine basalts. They can be divided into four different sub-groups on the basis of their Zr, Nb, TiO2 contents. A primitive mantle-normalized incompatible trace element diagram for four subgroups shows close similarity to typical OIB pattern. Some of the incompatible trace element ratios (Ce/Y, Zr/Nb, La/Ba, La/Nb) are also akin to OIB values. Highly fractionated REE patterns (La/YbN=24.7–9.2) with no Eu anomaly are the main features of the alkali basalts and are comparable to alkaline volcanism in continental rift zones. On the basis of Al2O3/TiO2, Nb/Y, Zr/Y Zr/Nb ratios, the geochemical differences among four sub-groups can be explained by variable degrees of partial melting of compositionally similar mantle source. Th/Nb, Th/Y, Nb/Y ratios and the primitive mantle-normalized trace element diagram suggests significant amount of crustal involvement for most of the alkali olivine basalts erupted along the CAFZ. Rupture of the continental lithosphere by strike-slip-related transtensional deformation might have caused decompressional partial melting of the asthenospheric mantle and generating alkali olivine basalts in this region.  相似文献   

10.
松潘-甘孜地块的丹巴二叠纪玄武岩(大石包组)具有较高的TiO2含量(>2%)和高的Ti/Y比值(平均519),显示LREE富集、HREE亏损的右倾型稀土配分型式((La/Yb)N=4.2~13.6),εNd(t)=-0.33~2.70,具有洋岛玄武岩(OIB)地球化学特征,形成于大陆板内环境。其源区来自原始地幔始于石榴子石稳定区的低程度部分熔融,岩浆上升过程中有来自地壳物质的加入,因而其不相容元素比值如Zr/Nb(4.41~13.09)、La/Nb(1.03~1.80)和Th/La(0.08~0.18)等,以及初始的87Sr/86Sr比值(0.706008~0.707257)均表现出不同程度的富集特征,岩浆演化早期经历了以辉石、橄榄石为主的分离结晶作用。该套玄武岩的元素-同位素地球化学特征和源区性质类似于峨眉山溢流玄武岩的高钛(HT)系列,因此认为其是峨眉山地幔柱活动的产物,属于峨眉山大火成岩省(ELIP)的一部分。松潘-甘孜地块和扬子西缘晚古生代以前地层的可比性以及峨眉山溢流玄武岩的分布特征显示,松潘-甘孜洋盆伴随着扬子克拉通的裂解而打开,并且可能都与峨眉山地幔柱有关,是地幔柱活动的浅部地质响应。  相似文献   

11.
The Kahoolawe shield volcano produced precaldera and caldera-filling tholeiites and mildly alkalic post-caldera lavas that petrographically and compositionally resemble such lavas from other Hawaiian shield volcanoes. However, Kahoolawe tholeiites display wide ranges in incompatible trace element ratios (e.g., Nb/Th=9–24, Th/Ta=0.6–1.3), 87Sr/86Sr (0.70379–0.70440), 143Nd/144Nd (0.51273–0.51298), and 206Pb/204Pb (17.92–18.37). The isotopic variation exceeds that at any other Hawaiian shield volcano, and spans about half the range for all Hawaiian tholeiites. Quasi-cyclic temporal evolution of Kahoolawe tholeiites is consistent with combined fractional crystallization and periodic recharge by primitive magmas. Ratios of highly incompatible trace elements and Sr, Nd, and Pb isotopic ratios from coherent sub-trends that reflect recurrent interactions between variably evolved magmas and two other mantle components whose compositions are constrained by intersections between these trends. The most MgO-rich Kahoolawe tholeiites are partial melts of a high Nb/Th (23.5) ascending plume, possibly comprising ancient subducted oceanic lithosphere. Slightly evolved tholeiites experienced combined crystal fractionation and assimilation (AFC) of material derived from a distinct reservoir (Nb/Th 9) of asthenospheric derivation. The most evolved tholeiites display compositional shifts toward a third component, having mid ocean ridge basalt-like isotopic ratios but enriched OIB-like trace element ratios, representing part of the lithospheric mantle (or melts thereof). Periodic recurrence of all three magma variants suggests that eruptions may have tapped coeval reservoirs distributed over a large depth range. Kahoolawe provides new evidence concerning the nature of the Hawaiian plume, the distribution of compositional heterogeneities in the suboeanic mantle, and the processes by which Hawaiian tholeiites form and evolve.  相似文献   

12.
Petrologic and chemical data are presented for samples from five volcanically active islands in the northern Marianas group, an intra-oceanic island arc. The data include microprobe analyses of phenocryst and xenolith assemblages, whole rock major and trace element chemistry including REE, and Sr isotope determinations (87Sr/86Sr=0.7034±0.0001). Quartz-normative basalt and basaltic andesite are the most abundant lava types. These are mineralogically and chemically similar to the mafic products of other intra-oceanic islands arcs. It is suggested, however, that they are not typical of the ‘island arc tholeiitic’ series, having Fe enrichment trends and K/Rb, for example, more typical of calc-alkaline suits. Major and trace element characteristics, and the presence of cumulate xenoliths, indicate that extensive near surface (< 3 Kb) fractionation has occurred. Thus, even least fractionated basalts have low abundances of Mg, Ni and Cr, and high abundances of K and other large cation, imcompatible elements, relative to ocean ridge tholeiites. However, abundances of REE and small cation lithophile elements, such as Ti, Zr, Nb, and Hf are lower than typical ocean ridge tholeiites. The REE data and Sr isotope compositions suggest a purely mantle origin for the Marianas island arc basalts, with negligible input from subducted crustal material. Thus, subduction of oceanic lithosphere may not be a sufficient condition for initiation of island arc magmatism. Intersection of the Benioff zone with an asthenosphere under appropriate conditions may be requisite. Element ratios and abundances, combined with isotopic data, suggest that the source for the Marianas island arc basalts is more chondritic in some respects, and less depleted in large cations than the shallow (?) mantle source for ocean ridge tholeiites.  相似文献   

13.
The Transcaucasian intermountain area is part of the Caucasus segment of the Alpine-Mediterranean mountain belt. The continental intraplate basalts of the study area range in age from 6.10 ± 0.20 to 6.40 ± 0.20 Ma. The basalt erupted from monogenetic volcanoes are formed by lava flows and their pyroclastic equivalents. They are generally characterized by low volumes, are predominantly subalkalic with minor alkaline composition. The ultramafic xenoliths have not been identified in the basalts. The basalts may be subdivided into porphyritic and oligophyric groups. Fractional crystallization plays an important role in the petrogenesis of basalts. Almost all the studied samples showed different degrees of fractionation of olivine ± plagioclase ± clinopyroxene. No significant contamination of basalts with upper continental crustal material was confirmed by Rb/Sr and Rb/Ba ratios or by Sr, Nd isotopic and geochemical composition (87Sr/ 86Sr = 0.703683-0.704531±2; 143Nd/144Nd = 0.512788-0.512848 ±10; 147Sm/144Nd = 0.1036-0.1144 ±2-3). The studied basalts display, compared to heavy rare earth elements (HREE), highly fractionated light rare earth elements (LREE) with La/Yb=9.25-24.00. This makes them similar to ocean island basalts (OIB), which is also evidenced by Ce/Pb, La/Nb, Zr/Nb, Zr/Y ratios. The Dy/Yb-La/Yb and Yb-La/Yb and 87Sr/86Sr-143Nd/144Nd ratios indicating a “mixed” evolution of basalt-forming magmas. The basalt feeding magma chambers of the Transcaucasian intermountain area seem to be formed from a mixture of partial melting of Normal-MORB (Mid-Ocean Ridge Basalt) type upper mantle (garnet and spinel lherzolite) and EMII type components with strong ocean island basalts (OIB)-like signature.  相似文献   

14.
Abstract

Pliocene-Pleistocene volcanism accompanied strike-slip-related transtensional deformation along the K?z?l?rmak fault segment of the Central Anatolian fault zone (CAFZ) in the west of ?ark??la (Sivas-central Turkey). These volcanic rocks are represented by alkali olivine basalts. They can be divided into four different sub-groups on the basis of their Zr, Nb, TiO2 contents. A primitive mantle-normalized incompatible trace element diagram for four subgroups shows close similarity to typical OIB pattern. Some of the incompatible trace element ratios (Ce/Y, Zr/Nb, La/Ba, La/Nb) are also akin to OIB values. Highly fractionated REE patterns (La/YbN=24.7–9.2) with no Eu anomaly are the main features of the alkali basalts and are comparable to alkaline volcanism in continental rift zones. On the basis of Al2O3/TiO2, Nb/Y, Zr/Y Zr/Nb ratios, the geochemical differences among four sub-groups can be explained by variable degrees of partial melting of compositionally similar mantle source. Th/Nb, Th/Y, Nb/Y ratios and the primitive mantle-normalized trace element diagram suggests significant amount of crustal involvement for most of the alkali olivine basalts erupted along the CAFZ. Rupture of the continental lithosphere by strike-slip-related transtensional deformation might have caused decompressional partial melting of the asthenospheric mantle and generating alkali olivine basalts in this region. © 2001 Éditions scientifiques et médicales Elsevier SAS.  相似文献   

15.
Trace-element and preliminary Sr- and O-isotopic data are reported for a transitional alkaline-sub-alkaline lava series (MVS) from Patmos, Greece. The lava types belonging to this series are ne-trachybasalt, hy-trachybasalt, hy-trachyandesite and Q-trachyte. Rb, Sr and Ba contents, as well as K/Rb ratios, of the ne-trachybasalts differ from those of alkali basalts of oceanic islands and those of K-rich alkaline lavas of continental regions and are consistent with the occurrence of these volcanics in a destructive plate margin environment. Qualitatively, the variations shown by many trace elements throughout the MVS are explicable in terms of magma evolution via fractional crystallization involving removal of the observed phenocryst phases. Cross-cutting REE patterns can be explained by removal of small amounts of apatite. However, certain features of the data cannot be reconciled with the operation of fractional crystallization alone. These are: a) the compatible behavior of Ba throughout the MVS; b) the moderately (as opposed to highly) incompatible behavior of Zr, Rb and Nb relative to Th; and c) the significant decrease of K/Th, Rb/Th, Zr/Th, Zr/Nb, Nb/Th, Yb/Th, Ta/Th, U/Th and Zr/Ta ratios especially (but not exclusively) in the mafic part of the series. Quantitative modeling indicates that the hy-trachybasalts are anomalously enriched in both highly incompatible and highly compatible elements and these lavas are shown to be hybrids formed by mixing of ne-trachybasalt and hy-trachyandesite. Mixing proportions of the end members calculated from incompatible element abundances (19% ne-trachybasalt) differ from those calculated from compatible element abundances (62% ne-trachybasalt) and are inconsistent with proportions calculated from published mineral chemical data. In addition, mixing cannot account for the observed variations in incompatible element ratios and this is taken as evidence for the simultaneous operation of assimilation. Isotopic variations (87Sr/ 86Sr from 0.7049 to 0.7076 and 18O/16O from 4.7 to 8.6) and the positive correlation of isotope ratios with SiO2 and Th contents provide conclusive proof that assimilation occurred. Calculations show that the isotopic characteristics and the concentrations of many trace elements in the Q-trachytes can be explained by fractional crystallization of ne-trachybasalt combined with assimilation of average continental crust (87Sr/86Sr-0.710), and that large amounts of assimilation are not necessary (Ma/Mc=0.55). REE data are not well explained by this model and suggest a crustal end-member enriched in LREE relative to the average crust. Zr and Hf data are also not well explained and indicate that the assimilant was depleted in HFSE relative to average crust or that HFSE are held back in relatively insoluble phases such as zircon in the restite during assimilation. Nevertheless, the results of the modeling demonstrate that Ba concentrations may decrease during AFC processes and that high Sr contents (1500 ppm in the MVS ne-trachybasalts) do not render mafic, parental magmas immune to the effects of assimilation in terms of their 87Sr/86Sr ratios. The results of this study confirm conclusions based upon major-oxide and mineral chemical data for the MVS lavas but, more importantly, show that careful analysis of trace element data allows the various processes involved in magma evolution to be identified and quantified, even in the absence of major oxide and isotopic data. Finally, it is reiterated that magma mixing and assimilation may be coupled processes in the magma chambers beneath many volcanic centers, and recognition of this fact has profound implications for studies of magmas erupted at continental margins and through continental crust.  相似文献   

16.
The South arm of Sulawesi was an active continental margin from approximately 60 to 10 Ma, when it collided with the microcontinental fragment of Buton. Pre-collisional samples analyzed for this study are characterized by a geochemical signature typical of arc volcanics: high LILE/HFSE ratios; 87Sr/86Sr slightly higher than MORB; 143Nd/144Nd ratios similar to MORB. Syn-collisional samples have more enriched isotopic signatures, and are relatively potassium rich. This is interpreted to reflect a larger contribution from subducted sediments, added to the mantle wedge as a silicic melt. Melting of subducted sediments is interpreted to result from a decrease in subduction rate and an increase of temperature in the slab. Magmatism that postdates the collisional event by 10 Ma is characterized by higher Nb/Y ratios than the pre- or syn-collisional samples, and Sr and Nd isotopic signatures intermediate between these two groups. This is likely to reflect melting of a subduction-modified mantle, with a significant contribution from the sub-continental lithospheric mantle. Comparison with post-collisional magmatism from other areas of the world suggests that trace element signatures are similar, but isotopic characteristics are variable. The latter are likely to reflect both the age of the sub-continental lithospheric mantle and the time lag between cessation of subduction and formation of the post-collisional magmas.  相似文献   

17.
The petrology and geochemistry of the Azores Islands   总被引:7,自引:0,他引:7  
Forty lavas from the Azores Islands have been analyzed for 87Sr/86Sr ratios, major elements, first transition series metals, and LIL elements. The samples belong to the alkali basalt magma series but range from transitional hy-normative basalts from Terceira to basanitoids from Santa Maria. Differentiated lavas include both typical trachytes and comenditic trachytes and comendites. Major and trace element concentrations define smooth trends on variation diagrams, and these trends can be related to phases crystallizing in the rocks. Systematic interisland differences are also apparent in these variation diagrams. LIL element concentrations in island basalts are roughly twice as high as those in tholeiites from the adjacent Mid-Atlantic Ridge which transects the Azores Plateau. 87Sr/86Sr ratios in lavas from 6 of the 9 islands range from 0.70332 to 0.70354, a range similar to that found in tholeiites from the Mid-Atlantic Ridge transect of the Azores Plateau. This suggests that lavas from these islands and this portion of the Mid-Atlantic Ridge may be derived from a similar source. However, lavas from the islands of Faial and Pico have 87Sr/86Sr ratios up to 0.70394 and ratios in Sao Miguel lavas range up to 0.70525, suggesting basalts from these islands are derived from a chemically distinct source. Differences in the average LIL element concentrations of the least fractionated ridge tholeiites from the Azores Plateau and alkali basalts from the islands result from differences in extent of partial melting and residual mineralogy. The alkali basalts are derived by roughly half as much melting as are the tholeiites. Trace element concentrations in Azores peralkaline lavas preclude their derivation by partial melting of peridotitic mantle or basaltic crust; rather the data suggest they are produced by fractional crystallization of a basaltic parent.  相似文献   

18.
ABSTRACT

We present the major and trace elements and Sr, Nd, and Pb isotopes in mid-ocean ridge basalts (MORB) from the East Pacific Rise (EPR) at 2.6–3.1°S. These samples are low-K tholeiites and show significant variation in their major element compositions (e.g. 4.60–8.18 wt% MgO, 8.34–12.12 wt% CaO, 9.78–14.25 wt% Fe2O3, and 0.06–0.34 K2O wt%). Trace element abundances of the 2.6–3.1°S MORB are variably depleted (e.g. (La/Sm), N = 0.51–0.78, Zr/Y = 2.35–3.42, Th/La = 0.035–0.056, and Ce/Yb = 2.38–3.96) but closely resemble the average N-MORB. In the compatible elements (Ni and Cr) against incompatible element Zr plots, the 2.6–3.1°S MORB show well-defined negative correlations, together with a liquid line of descent (LLD) modelling and petrographic observations, implying a significant role of olivine, plagioclase and clinopyroxene fractionation during magma evolution. When compared to global MORB and peridotites, the 2.6–3.1°S MORB and most of the other axial lavas from the South EPR show similar Zn/Fe, Zn/Mn, and Fe/Mn ratios, attesting to a peridotite-dominated mantle lithology. However, the relationships between incompatible trace element ratios, such as Zr/Rb and Nb/Sm, and the negative correlation between Zr/Nb and 87Sr/86Sr indicate a geochemically heterogeneous mantle source. The mantle beneath the South EPR likely consists of two components, with the enriched component residing as physically distinct domains (e.g. veins or dikes) in the depleted peridotite matrix. In the Sr–Nd–Pb isotope space, the South EPR MORB lie along the mixing lines between the depleted MORB mantle (DMM) and the ‘C’-like Pukapuka endmember. We infer that low-F melts derived from these enriched materials may cause localized mantle heterogeneity (veins or dikes) via an infiltration process. Subsequent melting of the refertilized mantle may impart an isotopically distinct characteristic to South EPR MORB.  相似文献   

19.
The Mesozoic diabase dikes of Liberia are tholeiites whose 87Sr/86Sr and 87Rb/86Sr ratios scatter widely on the Rb-Sr isochron diagram. The problem is attributed to differences in the initial 87Sr/86Sr ratios of these rocks which range from 0.70311 to 0.70792, assuming a uniform age of 186 Ma for the dikes and using (87Rb)=1.42 × 10–11y–1. The range of values is similar to that observed in the Mesozoic basalt flows and dikes of other Gondwana continents.New whole-rock K-Ar dates confirm previous conclusions that the diabase dikes in the Liberian and Pan-African age provinces of Liberia absorbed extraneous 40Ar after intrusion. Only the dikes in the Paynesville Sandstone have K-Ar dates that range from 117 Ma to 201 Ma and may not contain extraneous 40Ar. However, dikes from all three age provinces of Liberia have elevated initial 87Sr/86Sr ratios. These results indicate that contamination with radiogenic 87Sr occurred primarily before intrusion of the magma whereas the addition of extraneous 40Ar occurred after emplacement and reflects the age and mineral composition of the country rock.The 18O values of the Liberian diabase range from +5.6/% to +9.10/% and correlate positively with initial 87Sr/86Sr ratios. The data can be modeled by fractional crystallization and simultaneous assimilation of crustal rocks by the magma. However, samples containing amphibole and biotite replacing pyroxene deviate from the Sr-O isotope trajectories of the model and appear to have been depleted in 18O and enriched in 87Sr by interactions with groundwater at high temperature.Laboratory for Isotope Geology and Geochemistry Contribution No. 76  相似文献   

20.
Cenozoic lavas from Hainan Island,South China,comprise quartz tholeiite,olivine tholeiite,alkali basalt,and basanite and form a continuous,tholeiite-dominated,compositional spectrum.Highly incompatible elements and their relationships with isotopes in these lavas are shown to be useful in evaluating mantle-source composition,whereas modeling suggests that ratios of elements with bulk partition coefficients significantly larger than those of Nb and Ta may be sensitive to partial melting.Th/Ta and La/Nb ratios of alkali basalts are lower than those of tholeiites,and they are all lower than those of the primitive mantle,These ratios correlate positively with ^207Pb/^204Pb and ^87Sr/^86Sr ratios.Such relationships can be explained by mixing of depleted and enriched source components.A depleted component is indicated by alkali basalt compositions and is similar to some depleted OIB (PREMA).The enriched component,similar to sediment compositions,is indicated by tholeiites with high LILE/HFSE,^207Pb/^204Pb,and ^87Sr/^86Sr ratios.In general,basalts from Hainan and the South China Basin(SCB)share common geochemical characters.e.g.high Rb/Sr,Th/Ta,^207Pb/^206Pb,and low Ba/Th ratios.Such a geochemical trend is comparable to that of EMII-type OIB and best explained as the result of subduction.Occurrence of these characteristics in both continental Hainan basalts and SCB seamout basalts indicates the presence of a South China geochemical domain that exists in the mantle region below the lithosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号