首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Re-Os dating on copper-nickel sulfide ores from the Baotan area, Guangxi, yielded an ore-forming age of 982 ± 21 Ma (2σ), which demonstrates that copper-nickel sulfide deposits and their related mafic-ultramafic rocks occurred in the same period of time with the ophiolites in northeastern Jiangxi. Both of them are the products of collision-convergence between the Cathaysian plate and Yangtze plate and the subsequent extensional environment. Calculation of the γOs of the 982 Ma copper-nickel sulfide ores and its correlation with Re/Os indicate that injection-type massive ores display lower γOs values (-15.6 to -8.2) and lower Re/Os ratios (0.32 to 0.43), while basal liquation-type ores have γOs-27.9 to -7.3 and Re/Os=5.36 to 11.24. This suggests that these copper-nickel sulfide ores and their related mafic-ultramafic rocks were derived from a Re-depleted mantle source and that contamination with some crustal material occurred during their intrusion.  相似文献   

2.
Magnetite separates from the Shaquanzi Fe-Cu deposit in the eastern Tianshan are used for Re-Os geochronological study.Re-Os data show that magnetite separates contain ca.0.7 to 50.9 ppb Re and ca.16 to 63 ppt Os.Eight samples yield a model 3isochron age of(303±12)Ma(2),which is within uncertainty consistent with of the Re-Os date(295±7 Ma)of associated pyrite.Tectonic evolution shows that the Late Carboniferous Aqishan-Yamansu belt was a back-arc rift.Therefore,the Re-Os age of ca.300 Ma indicates that the Shaquanzi Fe-Cu deposit may have formed in a back-arc extensional environment and was closely related to mantle-derived magmatism.The successful application of Re-Os magnetite geochronology in the Shaquanzi Fe-Cu deposit suggests that the purity of magnetite,relatively high Re and Os contents,and the closure of Re-Os systematic are base factors for a successful Re-Os geochronology.There would be a good prospect for Re-Os geochronology for magnetite.  相似文献   

3.
It is recognized that there are at least two sorts of significant environments for porphyry copper deposits, i.e. magmatic arcs and collisional orogens[14]. The deposits in the former environments are exampled by the circle-Pacific porphyry copper belt, such as An-dean-type deposits, which mainly formed in the period of the Andean tectonic cycle characterized by trans- pressional and transtensional movements along the arc-parallel strike-slip fault zone in the Late Eo-cene-Early Oligocene[5…  相似文献   

4.
The bottom of the Lower Cambrian series is an important bed typical of boundary event. The bed had been enriched with many useful elements such as Ni, Mo, Cu, Pb, Zn, Au, Ag, Ru, Rh, Pd, Os, Ir and Pt, many rare and dispersed elements such as Cd, Se, Tl, …  相似文献   

5.
The large-scale Huangshaping Pb-Zn-W-Mo polymetallic deposit is located in the central Nanling min- eralization zone, South China. Six molybdenite samples from the Huangshaping deposit were selected for Re-Os isotope measurement in order to define the mineralization age of the deposit. It yields a Re-Os isochron age of 154.8±1.9 Ma (2σ ), which is in accordance with the Re-Os model ages of 150.9― 156.9 Ma. This age is about 7 Ma younger than their host granite porphyry, which was dated as 161.6±1.1 Ma by zircon U-Pb method using LA-ICPMS. All these ages demonstrate that the Huang- shaping granite and related Pb-Zn-W-Mo deposit occurred in the middle Yanshanian period, when many other granitoid and related ore deposits emplaced and formed, e.g. the Qitianling granite and Furong tin deposit, the Qianlishan granite and giant Shizhuyuan W-Sn-Mo-Bi deposit and Jinchuantang Sn-Bi deposit in the nearby area. They constitute the main part of the magmatic-metallogenic belt of southern Hunan, and represent the large-scale metallogeny in middle Yanshanian in the area. The lower rhenium content in molybdenite of Huangshaping deposit suggests that the ore-forming material was mainly of crust origin.  相似文献   

6.
This paper reports Re-Os and Nd isotopes of black shales at the bottom of Lower Cambrian from the northern Tarim Basin and traces source materials of the black shales through isotopes. The average Re/Os, 187Re/188Os, and 187Os/188Os ratios of the black shales at the bottom of Lower Cambrian from the Tarim Basin are 7.18, 5.6438, and 1.9616, respectively. These isotopic ratios suggest the crustal sources of the black shales. The εNd(0) value is -13.17, the εNd(540 Ma) value is -7.32 and the Nd model ages are 1.535 Ga. These parameters in the black shales are quite consistent with those from the basement rocks. Based on the Re-Os and Nd isotopic characteristics of the black shales, we conclude that the continental crust mainly composed of basement rocks is the source material of the black shales. Through comparison of these isotopic parameters with those from the Yangtze Platform, it is clear that the Re-Os isotopic characteristics in the black shales from the Tarim and Yangtze platforms are quite different, which maybe indicates the differences in depositional settings between two platforms. These Re-Os isotopic data provide us with constraints to analyze the genetic relation between the two platforms.  相似文献   

7.
The Niutangjie tungsten deposit is a bedded skarn-type scheelite deposit and is located at the junction between Ziyuan and Xingan counties in the north of Guangxi,China.The deposit is genetically related to a fine-grained two-mica granite within the orefield.Zircon LA-ICP-MS U-Pb dating of the granite yielded a Silurian(Caledonian)age of 421.8±2.4 Ma,which is contemporaneous with the adjacent Yuechengling batholith.Mineralization within the skarn is associated with a quartz,garnet,and diopside gangue,and scheelite is present in a number of different mineral assemblages,such as quartz-scheelite and quartz-sulfide-scheelite;these assemblages correspond to oxide and sulfide stages of mineralization.Sm-Nd isotope analysis of scheelite yielded an isochron age of 421±24 Ma.Although the uncertainty on this date is high,this age suggests that the scheelite mineralization formed during the Late Caledonian,at a similar time to the emplacement of the Niutangjie granite.Zircons within the granite have?Hf(t)values and Hf two-stage model ages of?6.5 to?11.6,and 1.79 to 2.11 Ga,respectively.These data suggest that the magma that formed the granite was derived from Mesoproterozoic crustal materials.Scheelite?Nd(t)values range from?13.06 to?13.26,also indicative of derivation from ancient crustal materials.Recent research has identified Caledonian magmatism in the western Nanling Range,indicating that this magmatism may be the source of contemporaneous tungsten mineralization.  相似文献   

8.
新疆西天山乌孙山地区科库萨依系列石英正长斑岩呈岩瘤状、岩脉状产出,侵入于早石炭世大哈拉军山组地层中。其LA-ICP-MS锆石U-Pb年龄为314.4±3.7 Ma(MSWD=0.51),属石炭世晚期,为本区岩浆活动及构造环境探讨提供年代学依据。  相似文献   

9.
The Shandong Peninsula (Jiaodong) is a very important gold producer of China. Over ten large and super-large quartz-vein type and shear zone-type gold deposits related to Yanshannian granite intrusions have been exploited in the northern part of the Jiaod…  相似文献   

10.
Being a part of the Paleo‐Tethys Ocean, closing of the Buqingshan‐Anyemaqen oceanic basin left a rich geologic record in the East Kunlun Orogenic Belt. The genesis and tectonic setting of the granites including quartz monzodiorite, granodiorite and mozogranite is discussed in light of the geochemical and U–Pb chronological data obtained. U–Pb dating studies on zircon from the quartz monzodiorite and monzogranite of the research area yielded ages of 220.11 ± 0.49 Ma ((Mean Square Weighted Deviates) MSWD = 0.046) and 223.33 ± 0.54 Ma (MSWD = 0.14), respectively, by Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry (LA–MC–ICP–MS) method. According to sedimentological and structural investigations, the Paleo‐Tethys Ocean in the Qimantag region began to close at about 235 Ma, and completely disapperared at about 220 Ma. The three types of granites in this study are considered to intrude the syn‐ to post‐collisional stages. The quartz monzodiorite and granodiorite belong to the I‐type granite whereas the monzogranite is of the S‐type granite. These two types of granites were formed by different ways of partial melting: first, partial melting of the lower crust took place as a result of asthenosphere upwelling triggered by break‐up of the leading edge or tearing of the descending oceanic slab. Subsequently partial melting of the middle–lower crust was caused by the underplating of basaltic magma formed by partial melting of the mantle wedge fluxed by fluids liberated by the oceanic slab dehydration. The magma responsible for the formation of S‐type granites appears to have originated from partial melting of the upper crustal material at a shallower level with a clear signature of continental crust.  相似文献   

11.
TheJindingoredeposit,locatedinthenorthwestYunnanProvince,isthelargestPb-Zndeposit(Pb Zn>15Mt1),averagingZn=6.08%andPb/Zn=1/4.7)inChinaatpresent.Toitsnorth,alargeCu-Co-AgdeposithasbeenfoundatBaiyangpingrecently1).TheJindingPb-Zndepositishostedinsandstonesa…  相似文献   

12.
Zircon is an accessory mineral occurring in many types of rocks. For the rich content of U and low content of common Pb, it is the principal mineral used for U-Th-Pb dating. It can be sur-vived during weathering, transiting, high-grade metamorphism and ev…  相似文献   

13.
Re-Os isotopic dating for the molybdenites from the porphyry copper deposits of the Jinshajiang-Red River mineralization belt in Yunnan Province yields isochron ages of 33.9±1.1 Ma for the Machangqing deposit and 34.4±0.5 Ma for the Tongchang deposit. This result shows that both the Machangqing and the Tongchang porphyry Cu-Mo deposits from two different ore-fields formed simultaneously. This new data and the published Re-Os model ages of molybdenite (35.4 Ma, 35.9 Ma, 36.2 Ma) of the Yulong porphyry copper deposit in Tibet, which is located in the same Jinshajiang-Red River mineralization belt as the Machangqing deposit and the Tongchang deposit, suggest that these three Cenozoic porphyry copper deposits in the Jinshajiang-Red River mineralization belt were contemporary for their mineralization episode. That is to say, even their present locality is far away and nearly iso-distantly distributed, these three porphyry Cu(Mo) deposits belong to the same mineralization episode at the end of Eocene.  相似文献   

14.
It is revealed by CL images that there are multi-stage growth internal structures of zircons in the Huangtuling granulite, including the inherited zircons, protolith zircons, sector and planar zone zircons and retrograde zircons. In-situ trace element compositions and Pb-Pb ages have been analyzed by LAM-ICP-MS. The sector and the planar zone domains show typical trace element characteristics of granulite zircon (low Th, U, Th/U, total REEs, clear negative Eu anomalies, relatively depleted HREE and small differential degree between MREE and HREE, etc.), indicating that they formed during granulite-facies metamorphism. The protolith zircons have trace element characteristics of crustal zircon (high Th, U, Th/U, total REEs and enriched HREEs, etc.). 12 analyzed spots on granulite-facies domains give a weighted mean 207Pb/206Pb age of (2154±26) Ma (MSWD = 3.8), which is the best estimated age of granulite-facies metamorphism of this sample. The weighted mean 207Pb/206Pb age of 5 analyzed spots on protolith zircon domains is (2714 ± 22) Ma (MSWD = 1.4), which represents the protolith forming time. The discovery of ca. 3.4 Ga inherited zircon indicates that there are Palaeoarchean continental materials in this area. The interpretation of formation conditions and the ages of zircons can be constrained by simultaneous in-situ analysis of trace elements and ages.  相似文献   

15.
The Chinkuashih district at northern Taiwan hosts one of the largest Au deposits in the western Pacific gold province. Gold were precipitated from hydrothermal solutions as native gold or incorporated into sulfides at a temperature range of 200-350 °C. The sulfides in ore mines have 187Os/188Os ratios varying from 0.139 to 0.249. The positive 187Os/188Os-1/Os correlation is consistent with derivation from the hybrid fluids containing various proportions of mantle and crustal components. The crustal component was the meteoric water that had acquired its Sr and Os isotopic signatures from the local sedimentary formations and dacitic intrusions. The mantle component was the magmatic fluid segregated from the dacitic magma by fractional crystallization. Based on the 187Os/188Os-1/Os correlation, the hybrid fluids forming the Chinkuashih sulfides contained less than 30% magmatic fluid, except for one sulfide sample from Hsumei, which required >40% magmatic fluid. Compared to meteoric water, the magmatic fluid contained a higher Os content (130 times higher) and was enriched in Os relative to Sr with an Os/Sr ratio two orders higher than that of the crustal fluid. Consequently, the Os budget in the hybrid fluids was controlled by the magmatic fluid, although the meteoric water was volumetrically dominated. If gold and Os behave similarly in chemistry, the Chinkuashih gold deposits are of mantle origin and the area where sulfides with the greatest mantle Os signature may host undiscovered gold deposits. Finally, the 187Os/188Os ratios of sulfides show no relationship with the mineral assemblages of sulfides, implying that the sulfide mineral assemblages reflect local surfacial redox conditions rather than the chemical characteristics of parental fluids.  相似文献   

16.
Baogutu copper deposit in Western Junggar area is a mesoscopic porphyry deposit found in recent years. Study on its geochronology will help further understand ore genesis and regional ore-forming pattern. A series of small quartz-diorite and granodiorite stocks outcrop at Baogutu area, numbered I―X according to their size. A detailed exploration on Number V stock confirmed it as a mesoscopic scale copper deposit, and various exploration work has been carried out on other stocks with ore-forming evidence. Th...  相似文献   

17.
The Tadhak alkaline ring-complex of Permian age provides two whole rock UPb isochrons giving concordant ages in agreement within relative errors with the RbSr isochron age:235U207Pb isochron: 271 ± 32Ma(MSWD= 0.3);238U206Pb isochron: 254 ± 18Ma(MSWD= 7.8), both on 8 whole-rock samples. The existence of these isochrons indicates that in favorable conditions U (and Pb) can be immobile. This can be due either to the lack of hard oxidizing conditions and/or to the location of U, in very low concentrations, in weathering-resistant minerals. The initial ratios (206Pb/204Pb = 18.714 ± 70and207Pb/204Pb = 15.589 ± 16), corrected for their Permian age, lie in the range observed for oceanic island basalts or continental alkali basalts and indicate an origin in a similar mantle, without any significant crustal contamination. This was also suggested by the initial87Sr/86Sr ratio of 0.70457 ± 4. Moreover, these Sr and Pb isotopic characteristics belong to the field of the so-called “Dupal” anomaly and indicate that it existed already 270 Ma ago. This study shows the potential interest of isotopic investigations of within-plate alkaline ring-complexes to characterize subcontinental mantle compositions, particularly in the past.  相似文献   

18.
Organic-rich calcite laminated with gypsum in the evaporitic, non-fossiliferous Castile Formation of the Delaware Basin, southwest USA, yields a Total Pb/U isochron age of 251.5±2.8 Ma (MSWD=1.3). The Castile Formation is almost certainly Late Permian based on its 87Sr/86Sr value of 0.706923, identical to the distinct minimum in the late Permian Sr curve. In this paper we explore the potential for using U-Pb calcite ages to date traditionally undatable sections and show how this southern-midcontinent USA (far west Texas and southeast New Mexico) deposit can be correlated to the type section in China. We accept that diagenetic alteration can bias U-Pb results, but the data set we present shows no evidence for such alteration. Clearly with alteration the age we present would represent a minimum age for the Castile Formation. If the age actually dates the Castile Formation then it requires the Permian-Triassic boundary to be younger than 251.5±2.8 Ma.  相似文献   

19.
Based on its microstructure, Co-rich crust A1-1 from seamount Allison, central Pacific, was scraped at averaged interval of 1.3 mm to measure osmium isotopic composition, and subsequently to establish the 187Os/188Os profile of scraping section of the crust. By observing the variation of 187Os/188Os under 10Be chronology and matching it to the well-known seawater Os isotope evolution of the past 40 Ma, two growth hiatuses (H1 and H2) occurring in the periods respectively between 13.6 and 29.6 Ma and between 8 and 9.8 Ma in the crust were recognized. According to the two hiatuses, the dating scheme for each scraped layer of the crust was suggested. For the upper layers younger than 6.8Ma, their growth ages were calibrated under 10Be chronology; for the lower layers older than 6.8Ma, their growth ages were obtained from 187Os/188Os evaluation curve by linear interpolation. Hereby, the age for the most inner layer of the crust was determined to be 39.5 Ma. H1 and H2 exactly correspond to the boundary between phosphatization and non-phosphatization and volcanic ash layer in the crust, respectively.  相似文献   

20.
Os isotope ratios of mantle peridotites have been considered to be largely immune to recent melt-rock interaction. However, Os isotope ratios and PGE (Platinum group elements) concentrations of the Yong’an xenoliths have been significantly modified by melt percolation, and are not suitable for determining the formation age of lithosphere mantle in Yong’an. In this study, the Yong’an spinel peridotite xenoliths are divided into two groups: N-Type and E-Type. The N-Type group including cpx (clinopyroxene)-poor lherzolite and harzburgite, shows a large variation of Cr#(sp) (13.2-48) and sulfur contents (from 171 ppm to below detection limit), whereas the E-Type peridotites are mainly refractory harzburgites and are characterized by high Cr#(sp) (35.3-42.2) and overall low sulfur contents (below 51 ppm). Both types show similar major and REE (rare earth element) patterns. Furthermore, the N-Type peridotites display a restricted range of iridium-group PGE (IPGE), Os/Ir and Ru/Ir ratios (Os/Ir = 0.64-1.12, Ru/Ir = 1.52-1.79) and variable palladium-group PGE (PPGE) contents (3.4-14.9 ppb), whereas the E-Type peridotites show a large variation of Os/Ir and Ru/Ir ratios (Os/Ir = 0.33-0.84, Ru/Ir = 0.94-1.6), and a restricted range of PPGE (4.3-6.9 ppb). 187Os/188Os ratios of E-Type peridotites are higher than those of N-Type peridotites at comparable fertility levels. These results suggest that N-Type peridotites may have been overprinted by metasomatism via small melt fractions, in which the percolation of the volatile-rich, small melt fractions only resulted in LILE (large ion lithophile element) enrichment of clinopyroxene, and their whole rock PGE contents and Re-Os isotope values were little changed. Moreover, E-Type peridotites may have been modified by melt-rock reaction involving relatively large melt fractions, which may result in the formation of secondary cpx and olivine and the removal of IPGE-bearing minerals such as Ru-Os-(Ir) alloys or laurite, followed by precipitation of secondary sulfides from melt with radiogenic isotopic signature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号