首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of sulfur on phosphorus solubility in rhyolitic melt and the sulfur distribution between apatite, ±anhydrite, melt and fluid have been determined at 200 MPa and 800–1,100 °C via apatite crystallization and dissolution experiments. The presence of a small amount of sulfur in the system (0.5 wt.% S) under oxidizing conditions increases the solubility of phosphorus in the melt, probably due to changing calcium activity in the melt as a result of the formation of Ca-S complexing cations. Apatite solubility geothermometers tend to overestimate temperature in Ca-poor, S-bearing system at oxidizing conditions. In crystallization experiments, the sulfur content in apatite decreases with decreasing temperature and also with decreasing sulfur content of the melt. The sulfur partition coefficient between apatite and rhyolitic melt increases with decreasing temperature (KdSapatite/melt=4.5–14.2 at T=1,100–900 °C) under sulfur-undersaturated conditions (no anhydrite). The sulfur partition coefficient is lower in anhydrite-saturated melt (~8 at 800 °C) than in anhydrite-undersaturated melt, suggesting that KdSapatite/melt depends not only on the temperature but also on the sulfur content of the melt. These first results indicate that the sulfur content in apatite can be used to track the evolution of sulfur content in a magmatic system at oxidizing conditions.Editorial responsibility: J. Hoefs  相似文献   

2.
The Mogan and Fataga formations on the island of Gran Canaria, Canary Islands, represent a sequence of approximately 30 intercalated pyroclastic and lava flows (total volume about 500 km3 dense-rock equivalent) including subalkaline rhyolitic, peralkaline rhyolitic and trachytic pyroclastic flows, nepheline trachyte lavas and a small volume of alkali basaltic lavas and tephra deposits. The eruption of the intermediate to silicic rocks of the Mogan and Fataga formations follows the roughly 4 Ma duration of basaltic shield volcanism. The most common assemblage in the evolved (Mogan and Fataga) rocks is anorthoclase+ edenitic amphibole+ilmenite+magnetite±augite±hypersthene +apatite+pyrrhotite. A few flows also contain plagioclase, biotite, or sphene. Coexisting Fe-Ti oxides yield equilibrium temperatures between 835 and 930° C and log between –11.2 and –12.6. The lowermost pyroclastic flow of the Mogan formation is zoned from a rhyolitic base (848° C) to a basaltic top (931° C). Unit P1 has an oxygen isotope feldspar-magnetite temperature (850° C) very close to its Fe-Ti oxide temperature. One of the youngest Mogan flows is zoned from a comendite (836° C) at the base to a comenditic trachyte (899° C) at the top. The Fataga formation pyroclastic flows show only slight compositional zonation, and one flow has the same Fe-Ti oxide compositions at top and base.Calculations using the reaction 1/3 magnetite+SiO2 (melt)=ferrosilite+1/6 O2 indicate total pressures of 1–4 (±3) kb for six of the Mogan flows and one of the Fataga flows. For four of the pyroclastic flows, equilibria involving tremolite-SiO2-diopside-enstatite-H2O and phlogopite-SiO2-sanidine-enstatite-H2O imply water contents of 0.9 to 2.6 (±0.5) wt% and between 80 and 610 bars, which indicates that magma within the Tejeda reservoir was H2O-undersaturated throughout the entire history of Mogan to Fataga volcanism. The fluorine contents of amphibole, biotite, and apatite, and chlorine contents of apatite reveal thatf HF/ andf HCl/ high compared to most igneous rocks and are consistent with the peralkaline nature of most of the volcanics. Thef HCl estimate for one flow is 10–2 to 10–1 bars andf HF for six of the flows ranges from about 10–1 to 6 bars. Pyrrhotite compositions yield estimates for log between –1 and –3, log between –2 and 1.5, and log between 0.5 and 3, which fall in the range of most intermediate to silicic systems. The lack of a systematic trend with time for magma composition, Fe-Ti oxide temperatures, water contents, phenocryst abundances, and ferromagnesian phase composition indicate that the Tejeda magmatic system was open and kept at nearly the same conditions by the periodic addition of more primitive melts.The intensive thermodynamic parameters estimated from coexisting phenocryst equilibria are used to constrain the eruption dynamics based on solution of the conservation equations for a vapor plus pyroclast mixture. The estimates of magma reservoir temperature, pressure, and water concentration, when combined with a one-dimensional fluid dynamical model of a pyroclastic eruption, imply that the velocities of the ash flows at the vent exit were on the order of 100 to 200 m s–1, and the mass flow rates were about 107 kg s–1 for an assumed vent radius of 10 m.  相似文献   

3.
The composition of S-rich apatite, of volatile-rich glass inclusions in apatite, and of interstitial glasses in alkaline xenoliths from the 1949 basanite eruption in La Palma has been investigated to constrain the partitioning of volatiles between apatite and alkali-rich melts. The xenoliths are interpreted as cumulates from alkaline La Palma magmas. Apatite contains up to 0.89 wt% SO3 (3560 ppm S), 0.31 wt% Cl, and 0.66 wt% Ce2O3. Sulfur is incorporated in apatite via several independent exchange reactions involving (P5+, Ca2+) vs. (S6+, Si4+, Na+, and Ce3+). The concentration of halogens in phonolitic to trachytic glasses ranges from 0.15 to 0.44 wt% for Cl and from <0.07 to 0.65 wt% for F. The sulfur concentration in the glasses ranges from 0.06 to 0.23 wt% SO3 (sulfate-saturated systems). The chlorine partition coefficients (DClapatite/glass) range from 0.4 to 1.3 (average DClapatite/glass = 0.8), in good agreement with the results of experimental data in mafic and rhyolitic system with low Cl concentrations. With increasing F in glass inclusions DFapatite/glass decreases from 35 to 3. However, most of our data display a high partition coefficient (~30) close to DFapatite/glass determined experimentally in felsic rock. DSapatite/glass decreases from 9.1 to 2.9 with increasing SO3 in glass inclusions. The combination of natural and experimental data reveals that the S partition coefficient tends toward a value of 2 for high S content in the glass (>0.2 wt% SO3). DSapatite/glass is only slightly dependent on the melt composition and can be expressed as: SO3 apatite (wt%) = 0.157 * ln SO3 glass (wt%) + 0.9834. The phonolitic compositions of glass inclusions in amphibole and haüyne are very similar to evolved melts erupted on La Palma. The lower sulfur content and the higher Cl content in the phonolitic melt compared to basaltic magmas erupted in La Palma suggest that during magma evolution the crystallization of haüyne and pyrrhotite probably buffered the sulfur content of the melt, whereas the evolution of Cl concentration reflects an incompatible behavior. Trachytic compositions similar to those of the (water-rich) glass inclusions analyzed in apatite and clinopyroxene are not found as erupted products. These compositions are interpreted to be formed by the reaction between water-rich phonolitic melt and peridotite wall-rock.  相似文献   

4.
The diffusion of water in a peralkaline and a peraluminous rhyolitic melt was investigated at temperatures of 714–1,493 K and pressures of 100 and 500 MPa. At temperatures below 923 K dehydration experiments were performed on glasses containing about 2 wt% H2O t in cold seal pressure vessels. At high temperatures diffusion couples of water-poor (<0.5 wt% H2O t ) and water-rich (~2 wt% H2O t ) melts were run in an internally heated gas pressure vessel. Argon was the pressure medium in both cases. Concentration profiles of hydrous species (OH groups and H2O molecules) were measured along the diffusion direction using near-infrared (NIR) microspectroscopy. The bulk water diffusivity () was derived from profiles of total water () using a modified Boltzmann-Matano method as well as using fittings assuming a functional relationship between and Both methods consistently indicate that is proportional to in this range of water contents for both bulk compositions, in agreement with previous work on metaluminous rhyolite. The water diffusivity in the peraluminous melts agrees very well with data for metaluminous rhyolites implying that an excess of Al2O3 with respect to alkalis does not affect water diffusion. On the other hand, water diffusion is faster by roughly a factor of two in the peralkaline melt compared to the metaluminous melt. The following expression for the water diffusivity in the peralkaline rhyolite as a function of temperature and pressure was obtained by least-squares fitting:
where is the water diffusivity at 1 wt% H2O t in m2/s, T is the temperature in K and P is the pressure in MPa. The above equation reproduces the experimental data (14 runs in total) with a standard fit error of 0.15 log units. It can be employed to model degassing of peralkaline melts at water contents up to 2 wt%.  相似文献   

5.
Redox states of lithospheric and asthenospheric upper mantle   总被引:31,自引:7,他引:24  
The oxidation state of lithospheric upper mantle is heterogeneous on a scale of at least four log units. Oxygen fugacities ( ) relative to the FMQ buffer using the olivine-orthopyroxene-spinel equilibrium range from about FMQ-3 to FMQ+1. Isolated samples from cratonic Archaean lithosphere may plot as low as FMQ-5. In shallow Proterozoic and Phanerozoic lithosphere, the relative is predominantly controlled by sliding Fe3+-Fe2+ equilibria. Spinel peridotite xenoliths in continental basalts follow a trend of increasing with increasing refractoriness, to a relative well above graphite stability. This suggests that any relative reduction in lithospheric upper mantle that may occur as a result of stripping lithosphere of its basaltic component is overprinted by later metasomatism and relative oxidation. With increasing pressure and depth in lithosphere, elemental carbon becomes progressively refractory and carbon-bearing equilibria more important for control. The solubility of carbon in H2O-rich fluid (and presumably in H2O-rich small-degree melts) under the P,T conditions of Archaean lithosphere is about an order of magnitude lower than in shallow modern lithosphere, indicating that high-pressure metasomatism may take place under carbon-saturated conditions. The maximum in deep Archaen lithosphere must be constrained by equilibria such as EMOG/D. If the marked chemical depletion and the orthopyroxene-rich nature of Archaean lithospheric xenoliths is caused by carbonatite (as opposed to komatiite) melt segregation, as suggested here, then a realistic lower limit may be given by the H2O +C=CH4+O2 (C-H2O) equilibrium. Below C –H2O a fluid becomes CH4 rather than CO2-bearing and carbonatitic melt presumably unstable. The actual in deep Archaean lithosphere is then a function of the activities of CO2 and MgCO3. Basaltic melts are more oxidized than samples from lithospheric upper mantle. Mid-ocean ridge (MORB) and ocean-island basalts (OIB) range between FMQ-1 (N-MORB) and about FMQ +2 (OIB). The most oxidized basaltic melts are primitive island-arc basalts (IAB) that may fall above FMQ+3. If basalts are accurate probes of their mantle sources, then asthenospheric upper mantle is more oxidized than lithosphere. However, there is a wide range of processes that may alter melt relative to that of the mantle source. These include partial melting, melt segregation, shifts in Fe3+/Fe2+ melt ratios upon decompression, oxygen exchange with ambient mantle during ascent, and low-pressure volatile degassing. Degassing is not very effective in causing large-scale and uniform shifts, while the elimination of buffering equilibria during partial melting is. Upwelling graphite-bearing asthenosphere will decompress along -pressure paths approximately parallel to the graphite saturation surface, involving reduction relative to FMQ. The relative will be constrained to below the CCO equilibrium and will be a function of . Upwelling asthenosphere whose graphite content has been exhausted by partial melting, or melts that have segregated and chemically decoupled from a graphite-bearing residuum will decompress along -decompression paths controlled by continuous Fe3+-Fe2+ solid-melt equilibria. These equilibria will involve increases in relative to the graphite saturation surface and relative to FMQ. Melts that finally segregate from that source and erupt on the earth's surface may then be significantly more oxidized than their mantle sources at depth prior to partial melting. The extent of melt oxidation relative to the mantle source may be directly proportional to the depth of graphite exhaustion in the mantle source.  相似文献   

6.
Diffusion couple experiments with wet half (up to 4.6 wt%) and dry half were carried out at 789–1,516 K and 0.47–1.42 GPa to investigate water diffusion in a peralkaline rhyolitic melt with major oxide concentrations matching Mount Changbai rhyolite. Combining data from this work and a related study, total water diffusivity in peralkaline rhyolitic melt can be expressed as:
$ D_{{{\text{H}}_{ 2} {\text{O}}_{\text{t}} }} = D_{{{\text{H}}_{ 2} {\text{O}}_{\text{m}} }} \left( {1 - \frac{0.5 - X}{{\sqrt {[4\exp (3110/T - 1.876) - 1](X - X^{2} ) + 0.25} }}} \right), $
$ {\text{with}}\;D_{{{\text{H}}_{ 2} {\text{O}}_{\text{m}} }} = \exp \left[ { - 1 2. 7 8 9- \frac{13939}{T} - 1229.6\frac{P}{T} + ( - 27.867 + \frac{60559}{T})X} \right], $
where D is in m2 s?1, T is the temperature in K, P is the pressure in GPa, and X is the mole fraction of water and calculated as = (C/18.015)/(C/18.015 + (100 ? C)/33.14), where C is water content in wt%. We recommend this equation in modeling bubble growth and volcanic eruption dynamics in peralkaline rhyolitic eruptions, such as the ~1,000-ad eruption of Mount Changbai in North East China. Water diffusivities in peralkaline and metaluminous rhyolitic melts are comparable within a factor of 2, in contrast with the 1.0–2.6 orders of magnitude difference in viscosities. The decoupling of diffusivity of neutral molecular species from melt viscosity, i.e., the deviation from the inversely proportional relationship predicted by the Stokes–Einstein equation, might be attributed to the small size of H2O molecules. With distinct viscosities but similar diffusivity, bubble growth controlled by diffusion in peralkaline and metaluminous rhyolitic melts follows similar parabolic curves. However, at low confining pressure or low water content, viscosity plays a larger role and bubble growth rate in peralkaline rhyolitic melt is much faster than that in metaluminous rhyolite.
  相似文献   

7.
The effect of Rayleigh distillation by outgassing of SO2 and H2S on the isotopic composition of sulfur remaining in silicate melts is quantitatively modelled.A threshold mole fraction of sulfur in sulfide component of the melts is reckoned to be of critical importance in shifting the δ^34S of the melts mith respect to the original magmas.The partial equilibrium fractionation in a magmatic system is evaluated by assuming that a non-equilibrium flux of sulfur occurs between magmatic volatiles and the melts,while an equilibrium fractionation is approached between sulfate and sulfide within the melts.The results show that under high fo2 conditions,the sulfate/sulfide ratio in a melt entds to increase,and the δ^34S value of sulfur in a solidified rock might then be shifted in the positive direction.This may either be due to Rayleigh outgassing in case the mole fraction of sulfide is less than the threshold,or due to a unidirectional increase in δ^34S value of the sulfate with decreaing temperature,Conversely,at low fo2,the sulfate/sulfide ratio tends to decrease and the δ^34S value of total sulfur could be driven in the negative direction,either because of the Rayleigh outgassing in case the mole fraction of sulfide is greater than the threshold,or because of a unidirectional decrease inδ^34S value of the sulfide.To establish isotopic equilibrium between sulfate and sulfide,the HM,QFM or WM buffers in the magmatic system are suggested to provide the redox couple that could simultaneously reduce the sulfate and oxidize the sulfide.CaO present in the silicatte Melts is also called upon to participate in the chemical equilibrium between sulfate and sulfide,Consequently,the δ^34S value of an igneous rock could considerably deviate from that of its original magma due to the influence of oxygen fugacity and temperature at the time of magma solidification.  相似文献   

8.
This study presents accurate and precise iron isotopic data for 16 co-magmatic rocks and 6 pyroxene–magnetite pairs from the classic, tholeiitic Red Hill sill in southern Tasmania. The intrusion exhibits a vertical continuum of compositions created by in situ fractional crystallisation of a single injection of magma in a closed igneous system and, as such, constitutes a natural laboratory amenable to determining the causes of Fe isotope fractionation in magmatic rocks. Early fractionation of pyroxenes and plagioclase, under conditions closed to oxygen exchange, gives rise to an iron enrichment trend and an increase in $ f_{{{\text{O}}_{2} }} $ of the melt relative to the Fayalite–Magnetite–Quartz (FMQ) buffer. Enrichment in Fe3+/ΣFemelt is mirrored by δ57Fe, where VIFe2+-bearing pyroxenes partition 57Fe-depleted iron, defining an equilibrium pyroxene-melt fractionation factor of $ \Updelta^{57} {\text{Fe}}_{{{\text{px}} - {\text{melt}}}} \le - 0.25\,\permille \times 10^{6} /T^{2} $ . Upon magnetite saturation, the $ f_{{{\text{O}}_{2} }} $ and δ57Fe of the melt fall, commensurate with the sequestration of the oxidised, 57Fe-enriched iron into magnetite, quantified as $ \Updelta^{57} {\text{Fe}}_{{{\text{mtn}} - {\text{melt}}}} = + 0.20\,\permille \times 10^{6} /T^{2} $ . Pyroxene–magnetite pairs reveal an equilibrium fractionation factor of $ \Updelta^{57} {\text{Fe}}_{{{\text{mtn}} - {\text{px}}}} \approx + 0.30\,\permille $ at 900–1,000?°C. Iron isotopes in differentiated magmas suggest that they may act as an indicator of their oxidation state and tectonic setting.  相似文献   

9.
The partition of Ni between olivine and monosulfide-oxide liquid has been investigated at 1300–1395° C, =10–8-9–10–6.8, and =10–2.0–10–0.9, over the composition range 20–79 mol. % NiS. The product olivine compositions varied from Fo98 to Fo59 and from 0.06 to 3.11 wt% NiO. The metal/sulfur ratio of the sulfide-oxide liquid increases with increase in , decrease in , and increase in NiS content. The Ni/Fe exchange reaction has been perfectly reversed using natural olivine and pure forsterite as starting materials. The FeO and NiO contents of olivine from runs equilibrated at the same and form isobaric distributions with NiS content, which, to a first approximation, are dependent at constant temperature and total pressure on a variable term, –0.5 log ( / ). The Ni/Fe distribution coefficient (K D3) exhibits only a weak decrease from 35 to 29 with increase in from the IW buffer to close to the FMQ buffer. At values higher than FMQ, the sulfide-oxide liquid has the approximate composition (Ni,Fe)3±xS2K D358. The present K D3 vs O/(S+O) data define a trend which extrapolates to K D320 at 10 wt% oxygen in the sulfide-oxide liquid. The compositions of olivine and Ni-Cu sulfides associated with early-magmatic basic rocks and komatiites are consistent, at 1400° C, with a value of -log ( / ) of about 7.7, which is equivalent to 0.0 wt% oxygen in the hypothesized immiscible sulfide-oxide liquid. Therefore, K D3 would not be reduced significantly from the 30 to 35 range for sulfide-oxide liquids with low oxygen contents.  相似文献   

10.
The partitioning behavior of Cl among apatite, mafic silicate melt, and aqueous fluid and of F between apatite and melt have been determined in experiments conducted at 1066 to 1150 °C and 199-205 MPa. The value of DClapatite/melt (wt. fraction of Cl in apatite/Cl in melt) ≈0.8 for silicate melt containing less than ∼3.8 wt.% Cl. At higher melt Cl contents, small increases in melt Cl concentration are accompanied by large increases in apatite Cl concentration, forcing DClapatite/melt to increase as well. Melt containing less than 3.8% Cl coexists with water-rich vapor; that containing more Cl coexists with saline fluid, the salinity of which increases rapidly with small increases in melt Cl content, analogous to the dependency of apatite composition on melt Cl content. This behavior is due to the fact that the solubility of Cl in silicate melt depends strongly on the composition of the melt, particularly its Mg, Ca, Fe, and Si contents. Once the melt becomes “saturated” in Cl, additional Cl must be accommodated by coexisting fluid, apatite, or other phases rather than the melt itself. Because Cl solubility depends on composition, the Cl concentration at which DClapatite/melt and DClfluid/melt begin to increase also depends on composition. The experiments reveal that DFapatite/melt ≈3.4. In contrast to Cl, the concentration of F in silicate melt is only weakly dependent on composition (mainly on melt Ca contents), so DFapatite/melt is constant for a wide range of composition.The experimental data demonstrate that the fluids present in the waning stages of the solidification of the Stillwater and Bushveld complexes were highly saline. The Cl-rich apatite in these bodies crystallized from interstitial melt with high Cl/(F + OH) ratio. The latter was generated by the combined processes of fractional crystallization and dehydration by its reaction with the relatively large mass of initially anhydrous pyroxene through which it percolated.  相似文献   

11.
Sulfur partitioning between melt and fluid phase largely controls the environmental impact of volcanic eruptions. Fluid/melt partitioning data also provide the physical basis for interpreting changes in volcanic gas compositions that are used in eruption forecasts. To better constrain some variables that control the behavior of sulfur in felsic systems, in particular the interaction between different volatiles, we studied the partitioning of sulfur between aqueous fluids and haplogranitic melts at 200 MPa and 750–850 °C as a function of oxygen fugacity (Ni–NiO or Re–ReO2 buffer), melt composition (Al/(Na?+?K) ratio), and fluid composition (NaCl and CO2 content). The data confirm a first-order influence of oxygen fugacity on the partitioning of sulfur. Under “reducing conditions” (Ni–NiO buffer), Dfluid/melt is nearly one order of magnitude larger (323?±?14 for a metaluminous melt) than under “oxidizing conditions” (Re–ReO2 buffer; 74?±?5 for a metaluminous melt). This effect is likely related to a major change in sulfur speciation in both melt and fluid. Raman spectra of the quenched fluids show the presence of H2S and HS? under reducing conditions and of SO42? and HSO4? under oxidizing conditions, while SO2 is undetectable. The latter observation suggests that already at the Re–ReO2 buffer, sulfur in the fluid is almost completely in the S6+ state and, therefore, more oxidized than expected according to current models. CO2 in the fluid (up to xCO2?=?0.3) has no effect on the fluid/melt partitioning of sulfur, neither under oxidizing nor under reducing conditions. However, the effect of NaCl depends on redox state. While at oxidizing conditions, Dfluid/melt is independent of xNaCl, the fluid/melt partition coefficient strongly decreases with NaCl content under reducing conditions, probably due to a change from H2S to NaSH as dominant sulfur species in the fluid. A decrease of Dfluid/melt with alkali content in the melt is observed over the entire compositional range under reducing conditions, while it is prominent only between the peraluminous and metaluminous composition in oxidizing experiments. Overall, the experimental results suggest that for typical oxidized, silicic to intermediate subduction zone magmas, the degassing of sulfur is not influenced by the presence of other volatiles, while under reducing conditions, strong interactions with chlorine are observed. If the sulfur oxidation state is preserved during an explosive eruption, a large fraction of the sulfur released from oxidized magmas may be in the S6+ state and may remain undetected by conventional methods that only measure SO2. Accordingly, the sulfur yield and the possible climatic impact of some eruptions may be severely underestimated.  相似文献   

12.
On the basis of ore-forming periods and stages of the Dachang ore field, the pH and conditions and the S isotopic systematics during ore formation have been thcrmodynamically treated in this paper. Calculations show a progressively decreased pH, an increased oxidation regime and an intensified activity of sulfur from the early to the late stage. Owing to the unreliability of inferring the S source from δ34Smin, has been calculated using the Ohmoto’s model. Results indicate that the δ34 min frequency distribution is more concentrated than that of δ34Smin and the peak value shifts to negative region by 2.5%. The sulfur in the whole ore field seems to be of multiple source, i.e., different deposits have their own S sources. But the S isotopic composition pertaining to each stage is nearly constant, suggesting that the ore-forming system be open to sulfur and the supply of sulfur be sufficient. The conclusions deduced from calculations are supported by many lines of geological evidence.  相似文献   

13.
Ignimbrites from the central North Island consist mainly of glass or its devitrified product (70–95%); their phenocryst mineralogy is varied and includes plag., hyp., ti-mag., ilm., aug., hblende, biot., san., qtz, ol., with accessory apatite, zircon and pyrrhotite. The Fe-Mg minerals can be used to divide the ignimbrites into four groups with hyp.+aug. reflecting high quench temperatures and biot.+hblende +hyp.+aug., low quench temperatures. Oxygen fugacities lie above the QMF buffer curve and even in ignimbrites with low crystal contents the solid phases apparently buffered fO2. Some ignimbrites contain the assemblage actinolite, gedrite, magnetite and hematite, reflecting post-eruption oxidation. The mineralogy also allows estimation of using pyrrhotite and thence , . The assemblage biotite-sanidine can be used to estimate and thence . Water fugacity is calculated in a variety of ways using both biotite and hornblende as well as the combining reaction . It is high and approaches P total in most ignimbrites (~4kb) but is lower in unwelded pumice breccias. Comparison of temperature estimates using mineral geothermometers for the various phenocryst phases suggests that the ignimbrite magmas showed temperature differences of 60–100 °C and pressure differences of several kilobars. Individual magma chambers therefore, would have extended over several kilometres vertically. The chemical potential of water may have been constant through the magma.  相似文献   

14.
Microphenocrystic pyrrhotites were observed in the glassy groundmass of two dacite rocks from Satsuma-Iwojima, southwest Kyushu, Japan. It suggests that the dacite magma was saturated with respect to pyrrhotite at the time of eruption, and thus the sulfur contents in the groundmass can be taken as the solubility of sulfur in the dacite magma. The solubility of sulfur in the dacite rocks thus calculated is 65 to 72 ppm sulfur at the estimated conditions of T=900±50°C, and atm.  相似文献   

15.
Aenigmatite, sodic pyroxene and arfvedsonite occur as interstitial minerals in metaluminous to weakly peralkaline syenite patches in alkali dolerite, Morotu, Sakhalin. Aenigmatite is zoned from Ca, Al, Fe3+-rich cores to Ti, Na, Mn, Si-rich rims reflecting the main substitutions Fe2+Ti4+Fe3+, NaSiCaAl and Mn2+Fe2+. Aenigmatite replaces aegirine and ilmenite supporting the existence of a no-oxide field in — T space. In one case aenigmatite has apparently formed by reaction between ilmenite and arfvedsonite. Titanian aegirine (up to 3.0 wt% TiO2) and Fe-chlorite may replace aenigmatite. Sodic pyroxene occurs as zoned crystals with cores of aegirine-augite rimmed by aegirine and in turn by pale green aegirine containing 93 mol% NaFe3+Si2O6. Additional substitution of the type NaAlCaFe2+ is indicated by significant amounts (up to 6 mol%) of NaAlSi2O6. Arfvedsonite is zoned with rims enriched in Na, Fe and depleted in Ca which parallels the variation of these elements in the sodic pyroxenes.The high peralkalinity of the residual liquid from which the mafic phases formed resulted from the early crystallization of microperthite (which makes up the bulk of the syenites) leading to an increase in the Na2O/(Na2O+K2O) and (Na2O+K2O)/Al2O3 ratios of the remaining interstitial liquid which is also enriched in Ti, Fe, and Mn. Bulk composition of the melt, , temperature and volatile content were all important variables in determining the composition and stability of the peralkaline silicates. in the residual liquid appears to have been buffered by arfvedsonite-aegirine and later by the arfvedsonite-aenigmatite and aenigmatite-aegirine equilibria under conditions of a no-oxide field. An increase in , above that of the alkali buffer reactions, is inferred by an increase of Ti and Mn in aenigmatite rims. The latest postmagmatic vapour crystallization stage of the syenites is marked by extremely low which may have been facilitated by exsolution of a gas phase. Low is supported by the replacement of aenigmatite by titanian aegirine, and the formation of rare Ti-rich garnet with a very low (Ti4++Fe3+)/(Ti+Fe) ratio of 0.51, associated with leucoxene alteration of ilmenite.  相似文献   

16.
The oxygen fugacity ( ) of a C-O-H fluid in equilibrium with graphite has been determined in the range 10–30 kbar by equilibrating solid -buffer assemblages in graphite capsules containing C-O-H fluid. By using different buffers (FexO-Fe3O4, Ni-NiO, Co-CoO, Mo-MoO2), the of the graphite-saturated fluid is bracketed within a narrow range. This technique produces a calibration for the imposed on a sample contained within a graphite capsule. To achieve a thermodynamically-invariant system at fixed P and T, the was imposed on the system with an external buffer and the double-capsule technique. The experiments were performed in solid-media, high pressure apparatus with 19 mm tale-pyrex assemblies. A series of experiments at 10, 15, 20, 25, and 30 kbar, 800–1600° C, with imposed by the Fe2O3-Fe3O4-H2O equilibrium were conducted. The experimental results have been fitted to the following equation:
  相似文献   

17.
In the Rogers Pass area of British Columbia the almandine garnet isograd results from a reaction of the form: 5.31 ferroan-dolomite+8.75 paragonite+4.80 pyrrhotite+3.57 albite+16.83 quartz+1.97 O2=1.00 garnet+16.44 andesine+1.53 chlorite+2.40 S2+1.90 H2O+10.62 CO2. The coefficients of this reaction are quite sensitive to the Mn content of ferroan-dolomite.Experimental data applied to mineral compositions present at the isograd, permits calculation of two intersecting P, T equilibrium curves. P=29088–39.583 T is obtained for the sub-system paragonite-margarite (solid-solution), plagioclase, quartz, ferroan-dolomite, and P=28.247 T–14126 is obtained for the sub-system epidote, quartz, garnet, plagioclase. These equations yield P=3898 bars and T=638° K (365° C). These values are consistent with the FeS content of sphalerite in the assemblage pyrite, pyrrhotite, sphalerite and with other estimates for the area.At these values of P and T the composition of the fluid phase in equilibrium with graphite in the system C-O-H-S during the formation of garnet is estimated as: bars, bars, bars, bars, bars, bars, bars, bars, , bars, bars.  相似文献   

18.
Relicts of silicate-iron fluid media were found in the Early Cretaceous rhyolites of the Nilginskaya depression, Central Mongolia. They are localized in matrix cavities and in the inclusions in quartz and sanidine phenocrysts. The mineral composition of rhyolites and aggregates of silicate-iron phases has been studied. Calculations showed that crystallization of ilmenite and magnetite in a matrix occurred within a temperature range of 593–700°C and oxygen fugacity $\Delta \log f_{O_2 }$ NNO from ?2.29 to 1.68. The average compositions of the rhyolites and residual glasses in melt inclusions (MI) have A/CNK index of 1.03–1.05. The compositions of MI glasses define a trend from agpaitic to plumasitic types (A/NK and A/CNK change from 0.8–0.9 to 1.1–1.2). According to calculations, the rhyolitic melt was solidified at 640–750°C. Based on cathodoluminescent study, inclusions with silicate-iron phases are observed separately or together with MI in the early and intermediate growth zones of quartz and sanidine crystals. Aggregates found in the inclusions are represented by loose matter consisting of silica with small admixture of Al, Na, K, and Cl; silicate-iron aggregates with wide variations of Fe and Si; essentially Fe-rich micaceous and mica-silicate-iron aggregates. They usually have variable composition (wt %): 30–60 SiO2, 10–25 Al2O3, 10–30 FeO, up to 3 TiO2, 1.5–4 MgO, up to 3 CaO, up to 3 Na2O, up to 3 K2O, and up to 4 P2O5. They presumably contain up to 10–15 wt % H2O. Some inclusions comprise large segregations of siderophyllite enriched in F (3–10 wt %) and Cl (0.1–3.3 wt %). Evolution of the rhyolitic melt from magmatic chamber to its vitrification after ejection led to the decrease of F content. The highest F content (1–1.8 wt %) is typical of MI glasses, while the lowest content (0.05–0.1 wt %) was found in the glassy matrix and rhyolitic samples. The melt degassing was accompanied by the release of F-rich fluid containing up to 1.3 wt % F (based on partition coefficient fluid/meltDF) or 0.2–0.8 mol/dm3 HF (based on composition of micas from matrix and inclusions). Segregations of silicate-iron media existed in the rhyolitic magma. During formation of rhyolitic pile, these media were in a liquid state. The silicate-iron fluid media captured in MI could not be true fluids or silicate melts. They were likely formed during fluid-magmatic interaction and transformation of fluid phases of different density (vapor and liquid true solutions) that existed in a F-rich melt. The high concentrations of F and Cl and elevated alkalinity of fluids contribute their enrichment in silica and other elements, which could lead to the formation of hydrosilicate liquids. It is suggested that such liquids (gels) in dispersed (colloidal) state extracted F and many trace elements (P, Ti, Mg, Ca, REE, As, Nb, Th, and V) from surrounding rhyolitic magma.  相似文献   

19.
The proportions of species in a C-O-H-S fluid in equilibrium with graphite, pyrite and pyrrhotite were calculated for a range of pressure, temperature and conditions, using the equilibrium constants and mass balance method, for ideal and non-ideal mixing in the fluid. Under typical metamorphic conditions, H2O, CO2, CH4 and H2S are the principal fluid species with H2S favored by higher temperatures, lower pressures and lower conditions. The dominance of H2S in the fluid at high temperatures leads to values of becoming significantly less than 1, and causes hydrous minerals to dehydrate at lower temperatures than the case when . The production of H2S-bearing fluids provides a mechanism for the selective transfer of sulfur from a graphite-pyrite-pyrrhotite bearing pelite into a pluton via a fluid phase, without requiring wholesale melting and assimilation of rocks. Such a process is feasible if a magma is intruded by stoping, which allows a significant volume of pelite country rock to be raised rapidly to temperatures approaching that of the magma. H2S-bearing fluids produced from graphite-pyrite-pyrrhotite pelites (due either to magmatic intrusion or regional metamorphism) may also mobilize ore-forming metals as sulfide complexes.  相似文献   

20.
Hydrothermal experiments were conducted to determine the partitioning of Cl between rhyolitic to rhyodacitic melts, apatite, and aqueous fluid(s) and the partitioning of F between apatite and these melts at ca. 200 MPa and 900-924 °C. The number of fluid phases in our experiments is unknown; they may have involved a single fluid or vapor plus saline liquid. The partitioning behavior of Cl between apatite and melt is non-Nernstian and is a complex function of melt composition and the Cl concentration of the system. Values of DClapat/melt (wt. fraction of: Cl in apatite/Cl in melt) vary from 1 to 4.5 and are largest when the Cl concentrations of the melt are at or near the Cl-saturation value of the melt. The Cl-saturation concentrations of silicate melts are lowest in evolved, silica-rich melts, so with elevated Cl concentrations in a system and with all else equal, the maximum values of DClapat/melt occur with the most felsic melt. In contrast, values of DFapat/melt range from 11 to 40 for these felsic melts, and many of these are an order of magnitude greater than those applying to basaltic melts at 200 MPa and 1066-1150 °C. The Cl concentration of apatite is a simple and linear function of the concentration of Cl in fluid. Values of DClfluid/apat for these experiments range from 9 to 43, and some values are an order of magnitude greater than those determined in 200-MPa experiments involving basaltic melts at 1066-1150 °C.In order to determine the concentrations and interpret the behavior of volatile components in magmas, the experimental data have been applied to the halogen concentrations of apatite grains from chemically evolved rocks of Augustine volcano, Alaska; Krakatau volcano, Indonesia; Mt. Pinatubo, Philippines; Mt. St. Helens, Washington; Mt. Mazama, Oregon; Lascar volcano, Chile; Santorini volcano, Greece, and the Bishop Tuff, California. The F concentrations of these magmas estimated from apatite-melt equilibria range from 0.06 to 0.12 wt% and are generally equivalent to the concentrations of F determined in the melt inclusions. In contrast, the Cl concentrations of the magmas estimated from apatite-melt equilibria (e.g., ca. 0.3-0.9 wt%) greatly exceed those determined in the melt inclusions from all of these volcanic systems except for the Bishop Tuff where the agreement is good. This discrepancy in estimated Cl concentrations of melt could result from several processes, including the hypothesis that the composition of apatite represents a comparatively Cl-enriched stage of magma evolution that precedes melt inclusion entrapment prior to the sequestration of Cl by coexisting magmatic aqueous and/or saline fluid(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号