首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a theoretical investigation on the performance of multiple‐tuned liquid column dampers (MTLCD) for reducing torsional vibration of structures in comparison with single‐tuned liquid column dampers (STLCD). The analytical model is first developed for torsional vibration of a structure with an MTLCD under either harmonic excitation or white noise excitation. The experimental results are then used to verify the analytical model for coupled MTLCD‐structure systems under harmonic excitation. The performance of an MTLCD and its beneficial parameters for achieving the maximum torsional response reduction to white noise excitation are finally investigated through an extensive parametric study in terms of the distance from the centre line of the MTLCD to the rotational axis of the structure, the ratio of the horizontal length to the total length of liquid column, frequency bandwidth, head‐loss coefficient, the number of TLCD units in an MTLCD, frequency‐turning ratio and the spectral level of excitation moment. The results show that there is an optimal head‐loss coefficient and an optimal frequency bandwidth for an MTLCD to achieve the maximum torsional response reduction. It is also demonstrated that the sensitivity of an optimized MTLCD to the frequency‐tuning ratio is less than that of an optimized STLCD, and it can be further improved by increasing the bandwidth but at the cost of less torsional vibration reduction. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
Design parameters for single- and multiple-tuned liquid column dampers for reducing the response of structures to seismic excitations are presented. A deterministic analysis is carried out using 72 earthquake ground motion records to determine the tuning ratio, tube width to liquid length ratio, and head loss coefficient corresponding to a given mass ratio for single-tuned liquid column dampers. A similar analysis is performed to determine the central tuning ratio, tuning bandwidth, and grouping of dampers for multiple-tuned liquid column dampers. The study indicates that by properly selecting the design parameters, single- and multiple-tuned liquid column dampers can reduce the response of structures to seismic excitation by up to 45 per cent. Design examples using single- and multiple-tuned liquid column dampers in a bridge and a ten-storey building are presented to illustrate how the parameters are selected and to demonstrate the performance of the devices under different ground excitations. The response of several structures with tuned liquid column dampers is compared with that using tuned mass dampers where it is shown that both devices result in comparable reductions in the response. © 1998 John Wiley & Sons, Ltd. This paper was produced under the auspices of the U.S. Government and it is therefore not subject to copyright in the U.S.  相似文献   

3.
Multiple tuned mass dampers (MTMD) consisting of many tuned mass dampers (TMDs) with a uniform distribution of natural frequencies are taken into consideration for attenuating undesirable vibration of a structure under the ground acceleration. A study is conducted to search for the preferable MTMD which performs better and is easily manufactured from the five available models (i.e. MTMD‐1 – MTMD‐5), which comprise various combinations of the stiffness, mass, damping coefficient and damping ratio in the MTMD. The major objective of the present study then is to evaluate and compare the control performance of these five models. The structure is represented by its mode‐generalized system in the specific vibration mode being controlled by adopting the mode reduced‐order approach. The optimum parameters of the MTMD‐1 – MTMD‐5 are investigated to reveal the influence of the important parameters on their effectiveness and robustness using a numerical searching technique. The parameters include the frequency spacing, average damping ratio, tuning frequency ratio, mass ratio and total number. The criteria selected for the optimum searching are the minimization of the maximum value of the displacement dynamic magnification factor (DDMF) and that of the acceleration dynamic magnification factor (ADMF) of the structure with the MTMD‐1 – MTMD‐5 (i.e. Min.Max.DDMF and Min.Max.ADMF). It is demonstrated that the optimum MTMD‐1 and MTMD‐4 yield approximately the same control performance, and offer higher effectiveness and robustness than the optimum MTMD‐2, MTMD‐3, and MTMD‐5 in reducing the displacement and acceleration responses of structures. It is further demonstrated that for both the best effectiveness and robustness and the simplest manufacturing, it is preferable to select the optimum MTMD‐1. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
In this study, several mass dampers were designed and fabricated to suppress the seismic responses of a ¼‐scale three‐storey building structure. The dynamic properties of the dampers and structure were identified from free and forced vibration tests. The building structure with or without the dampers was, respectively, tested on a shake table under the white noise excitation, the scaled 1940 El Centro earthquake and the scaled 1952 Taft earthquake. The dampers were placed on the building floors using the sequential procedure developed by the authors in previous studies. Experimental results indicated that the multiple damper system is substantially superior to a single tuned mass damper in mitigating the floor accelerations even though the multiple dampers are sub‐optimal in terms of tuning frequency, damping and placement. These results validated the sequential procedure for placement of the multiple dampers. The structure was also analysed numerically based on the shake table excitation and the identified structure and damper parameters for all test cases. Numerical and experimental results are in good agreement, validating the dynamic properties identified. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
Active multiple tuned mass dampers (AMTMD) consisting of many active tuned mass dampers (ATMDs) with a uniform distribution of natural frequencies have been, for the first time, proposed for attenuating undesirable vibrations of a structure under the ground acceleration.The multiple tuned mass dampers (MTMD) in the AMTMD is manufactured by keeping the stiffness and damping constant and varying the mass. The control forces in the AMTMD are generated through keeping the identical displacement and velocity feedback gain and varying the acceleration feedback gain. The structure is represented by its mode‐generalized system in the specific vibration mode being controlled using the mode reduced‐order method. The optimum parameters of the AMTMD are investigated to delineate the influence of the important parameters on the effectiveness and robustness of the AMTMD by conducting a numerical searching technique. The parameters include the frequency spacing, average damping ratio, tuning frequency ratio, total number and normalized acceleration feedback gain coefficient. The criterion, which can be stated as the minimization of the minimum values of the maximum dynamic magnification factors (i.e. Min.Min.Max.DMF), is chosen for the optimum searching. Additionally, for the sake of comparison, the results of the optimum MTMD (the passive counterpart of AMTMD) and ATMD are also taken into account in the present paper. It is demonstrated that the proposed AMTMD can be expected to significantly reduce the oscillations of structures under the ground acceleration. It is also shown that the AMTMD can remarkably improve the performance of the MTMD and has higher effectiveness than ATMD. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
多维地震作用下非对称结构利用TLCD减震控制研究   总被引:5,自引:1,他引:5  
本文提出在结构两正交方向同时设置U形调液阻尼器(TLCD)用来减小地震作用下的平动-扭转反应,文中建立了结构-TLCD体系在多维地震动作用下的运动方程,分析了系统参数对减震效果的影响,最后通过数值算例,给出了高层建筑平扭耦联地震反应的减震效果。  相似文献   

7.
土木工程结构的双层多重调谐质量阻尼器控制策略   总被引:4,自引:0,他引:4  
为能得到用尽可能少的调谐质量阻尼器(TMD)组成有效性和鲁棒性高的多重调谐质量阻尼器控制系统,本文提出了一种适用于土木工程结构的新控制策略——双层多重调谐质量阻尼器(DMT—MD)。使用定义的优化目标函数,评价了双层多重调谐质量阻尼器(DMTMD)的控制性能。数值结果表明,双层多重调谐质量阻尼器(DMTMD)比多重凋谐质量阻尼器(MTMD)具有更好的有效性和对频率调谐的鲁棒性。DMTMD比双重调谐质量阻尼器(DTMD)具有更好的有效性,而DMTMD和DT—MD对频率调谐的鲁棒性近似相同。因此,双层多重调谐质量阻尼器是一种先进的结构控制策略。  相似文献   

8.
This paper presents a study on the behaviour of rectangular liquid dampers under a horizontal excitation of arbitrary time history. The theoretical model to predict motion of a shallow liquid in a rectangular tank is adapted from a previous researchers' model which was developed for sinusoidal excitations. The model includes an energy dissipation term arising from liquid viscosity. In the present consideration of arbitrary excitations, the energy dissipation term is derived in a straightforward way, without resorting to the equivalent linearization method or assumption of harmonic response as used by earlier researchers. The up-crossing rate of wave height is used in furnishing the Reynolds number required for the evaluation of shear stress in the boundary layer. Since there was no known precedent study involving arbitrary excitations, experiments have been performed accordingly to verify the model. Generally, the theoretical model furnishes results which are found to be in close agreement with the experimental ones. The results also illustrate the strong dependency of liquid motion upon the natural frequency of the damper, amplitude and frequency content of the excitation spectrum. The model is then applied to study the effectiveness of tuned liquid dampers in vibration control of a single-degree-of-freedom structure subjected to earthquake excitations. Significant suppression of structural vibration can be achieved using tuned liquid dampers.  相似文献   

9.
The effectiveness of tuned mass dampers (TMD) in vibration control of buildings was investigated under moderate ground shaking caused by long‐distance earthquakes with frequency contents resembling the 1985 Mexico City (SCT) or the 1995 Bangkok ground motion. The elastic–perfectly plastic material behaviour was assumed for the main structure, with linear TMDs employed by virtue of their simplicity and robustness. The accumulated hysteretic energy dissipation affected by TMD was examined, and the ratio of the hysteretic energy absorption in the structure with TMD to that without it is proposed to be used, in conjunction with the peak displacement ratio, as a supplementary TMD performance index since it gives an indication of the accumulated damage induced in the inelastic structures. For the ground motions considered, TMD would be effective in reducing the hysteretic energy absorption demand in the critical storeys for buildings in the 1.8–2.8 s range. The consequence is reduction in damage of the buildings which would otherwise suffer heavy damage in the absence of TMD, resulting in economical restorability in the damage control limit state. This is of practical significance in view of the current trend toward performance‐based design. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
Tuned mass dampers for response control of torsional buildings   总被引:1,自引:0,他引:1  
This paper presents an approach for optimum design of tuned mass dampers for response control of torsional building systems subjected to bi‐directional seismic inputs. Four dampers with fourteen distinct design parameters, installed in pairs along two orthogonal directions, are optimally designed. A genetic algorithm is used to search for the optimum parameter values for the four dampers. This approach is quite versatile as it can be used with different design criteria and definitions of seismic inputs. It usually provides a globally optimum solution. Several optimal design criteria, expressed in terms of performance functions that depend on the structural response, are used. Several sets of numerical results for a torsional system excited by random and response spectrum models of seismic inputs are presented to show the effectiveness of the optimum designs in reducing the system response. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
Multiple tuned mass dampers (MTMDs) consisting of many tuned mass dampers (TMDs) with a uniform distribution of natural frequencies are considered for attenuating undesirable vibration of a structure. The MTMD is manufactured by keeping the stiffness and damping constant and varying the mass. The structure is represented by its mode‐generalized system in the specific vibration mode being controlled using the mode reduced‐order method. The optimum parameters of the MTMD are investigated to delineate the influence of the important parameters on the effectiveness and robustness of the MTMD by conducting a numerical searching technique in two directions. The parameters include: the frequency spacing, average damping ratio, mass ratio and total number. The criterion selected for the optimization is the minimization of the maximum value of the dynamic magnification factor (DMF) of the structure with MTMD (i.e. Min.Max.DMF). In this paper, for the sake of comparison, the MTMD(II), which is made by keeping the mass constant and varying the stiffness and damping coefficient, and a single TMD are also taken into account. It is demonstrated that the optimum frequency spacing of the MTMD is the same as that of the MTMD(II) and the optimum average damping ratio of the MTMD is a little larger than that of the MTMD(II). It is also found that the optimum MTMD is more effective than the optimum MTMD(II) and the optimum single TMD with equal mass. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
The implementation of viscous dampers to microelectronics factories has been previously proved not to affect the micro‐vibration of the factories in operation so that the vibration‐sensitive manufacturing process will not be interfered. Therefore, a seismic retrofit strategy which employs the viscous dampers installed in between the exterior and interior structures of the ‘fab’ structure is proposed in the study. The design formulas corresponding to the proposed retrofit method are derived using the non‐proportional damping theory. Based on the study, it is found that the added damping ratio to the fab structure depends greatly on the frequency ratio of the two structures in addition to the damping coefficients of the added dampers. Outside the bandwidth of the frequency ratio in which the added damping ratio is very sensitive to the variation of the frequency ratio, the added damping ratio can be well captured using the classical damping theory. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
The assessment of the effectiveness of mass dampers for the Chilean region within a multi-objective decision framework utilizing life-cycle performance criteria is considered in this paper. The implementation of this framework focuses here on the evaluation of the potential as a cost-effective protection device of a recently proposed liquid damper, called tuned liquid damper with floating roof (TLD-FR). The TLD-FR maintains the advantages of traditional tuned liquid dampers (TLDs), i.e. low cost, easy tuning, alternative use of water, while establishing a linear and generally more robust/predictable damper behavior (than TLDs) through the introduction of a floating roof. At the same time it suffers (like all other liquid dampers) from the fact that only a portion of the total mass contributes directly to the vibration suppression, reducing its potential effectiveness when compared to traditional tuned mass dampers. A life-cycle design approach is investigated here for assessing the compromise between these two features, i.e. reduced initial cost but also reduced effectiveness (and therefore higher cost from seismic losses), when evaluating the potential for TLD-FRs for the Chilean region. Leveraging the linear behavior of the TLD-FR a simple parameterization of the equations of motion is established, enabling the formulation of a design framework that beyond TLDs-FR is common for other type of linear mass dampers, something that supports a seamless comparison to them. This framework relies on a probabilistic characterization of the uncertainties impacting the seismic performance. Quantification of this performance through time-history analysis is considered and the seismic hazard is described by a stochastic ground motion model that is calibrated to offer hazard-compatibility with ground motion prediction equations available for Chile. Two different criteria related to life-cycle performance are utilized in the design optimization, in an effort to support a comprehensive comparison between the examined devices. The first one, representing overall direct benefits, is the total life-cycle cost of the system, composed of the upfront device cost and the anticipated seismic losses over the lifetime of the structure. The second criterion, incorporating risk-averse concepts into the decision making, is related to consequences (repair cost) with a specific probability of exceedance over the lifetime of the structure. A multi-objective optimization is established and stochastic simulation is used to estimate all required risk measures. As an illustrative example, the performance of different mass dampers placed on a 21-story building in the Santiago area is examined.  相似文献   

14.
This paper proposes bi‐directional coupled tuned mass dampers (BiCTMDs) for the seismic response control of two‐way asymmetric‐plan buildings subjected to bi‐directional ground motions. The proposed BiCTMD was developed from the three‐degree‐of‐freedom modal system, which represents the vibration mode of a two‐way asymmetric‐plan building. The performance of the proposed BiCTMD for the seismic response control of elastic two‐way asymmetric‐plan buildings was verified by investigating the reductions of the amplitudes of the associated frequency response functions. In addition, the investigation showed that the proposed BiCTMD is effective in reducing the seismic damage of inelastic asymmetric‐plan buildings. Therefore, the BiCTMD is an effective approach for the seismic response control of both elastic and inelastic two‐way asymmetric‐plan buildings. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The optimum parameters of tuned mass dampers (TMD) that result in considerable reduction in the response of structures to seismic loading are presented. The criterion used to obtain the optimum parameters is to select, for a given mass ratio, the frequency (tuning) and damping ratios that would result in equal and large modal damping in the first two modes of vibration. The parameters are used to compute the response of several single and multi-degree-of-freedom structures with TMDs to different earthquake excitations. The results indicate that the use of the proposed parameters reduces the displacement and acceleration responses significantly. The method can also be used in vibration control of tall buildings using the so-called ‘mega-substructure configuration’, where substructures serve as vibration absorbers for the main structure. It is shown that by selecting the optimum TMD parameters as proposed in this paper, significant reduction in the response of tall buildings can be achieved. © 1997 John Wiley & Sons, Ltd.  相似文献   

16.
研究了非对称结构扭转振动多重调谐质量阻尼器(MTMD)控制的最优位置。本文采用的MTMD具有相同的刚度、阻尼,但质量不同。基于导出的设置MTMD时非对称结构扭转角位移传递函数,建立了扭转角位移动力放大系数解析式。MTMD最优参数的评价准则定义为:非对称结构最大扭转角位移动力放大系数的最小值的最小化。MTMD的有效性评价准则定义为:非对称结构最大扭转角位移动力放大系数的最小值的最小化与未设置MTMD时非对称结构最大扭转角位移动力放大系数的比值。基于定义的评价准则,研究了非对称结构的标准化偏心系数(NER)和扭转对侧向频率比(TTFR)对不同位置MTMD最优参数和有效性的影响。  相似文献   

17.
An Erratum has been published for this article in Earthquake Engineering and Structural Dynamics 2003; 32(15):2451. Multiple active–passive tuned mass dampers (MAPTMD) consisting of many active–passive tuned mass dampers (APTMDs) with a uniform distribution of natural frequencies have been, for the first time here, proposed for attenuating undesirable oscillations of structures under the ground acceleration. The MAPTMD is manufactured by keeping the stiffness and damping coefficient constant and varying the mass. The control forces in the MAPTMD are generated through keeping the identical displacement and velocity feedback gain and varying the acceleration feedback gain. The structure is represented by the mode‐generalized system corresponding to the specific vibration mode that needs to be controlled. Through minimization of the minimum values of the maximum dynamic magnification factors (DMF) of the structure with the MAPTMD (i.e. through implementation of Min.Min.Max.DMF), the optimum parameters of the MAPTMD are investigated to delineate the influence of the important parameters such as mass ratio, total number, normalized acceleration feedback gain coefficient and system parameter ratio on the effectiveness (i.e. Min.Min.Max.DMF) and robustness of the MAPTMD. The optimum parameters of the MAPTMD include the optimum frequency spacing, average damping ratio and tuning frequency ratio. Additionally, for the sake of comparison, the results for a single APTMD are also taken into account in the present paper. It is demonstrated that the proposed MAPTMD can be employed to significantly reduce the oscillations of structures under the ground acceleration. Also, it is shown that the MAPTMD can render high robustness and has better effectiveness than a single APTMD. In particularly, if and when requiring a large active control force, MAPTMD is more promising for practical implementations on seismically excited structures with respect to a single APTMD. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
A continuously variable semi‐active damper is used in a tuned mass damper (TMD) to reduce the level of vibration of a single‐degree‐of‐freedom system subjected to harmonic base excitations. The ground hook dampers as have been used in the auto‐industry are being studied here. Using these dampers a new class of tuned mass dampers, named as ground hook tuned mass dampers (GHTMD) is being introduced. In order to generalize the design properties of the GHTMDs, they are defined in terms of non‐dimensional parameters. The optimum design parameters of GHTMDs for lightly damped systems are obtained based on the minimization of the steady‐state displacement response of the main mass. These parameters are computed for different mass ratios and main system damping ratios. Frequency responses of the resulting systems are compared to that of equivalent TMDs using passive dampers. In addition, other characteristics of this system as compared to the passive TMDs are discussed. A design guide to obtain the optimum parameters of GHTMD using the developed diagrams in this paper based on non‐dimensional values is presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
土木工程结构鲁棒控制的发展   总被引:1,自引:0,他引:1  
评述了结构控制的发展,指出发展结构鲁棒控制策略的重要性。重点评述了结构双重调谐质量阻尼器(DTMD)和多重双重调谐质量阻尼器(MDTMD)的控制策略,提出了需进一步发展主动双重调谐质量阻尼器(ADTMD)和主动多重双重调谐质量阻尼器(AMDTMD)控制策略、此外,评述了结构鲁棒控制的设计准则与高层建筑和大跨桥梁在风与地震作用下的统一自适应主动鲁棒控制策略。  相似文献   

20.
本文提出了一种新的控制策略——多重双重调谐质量阻尼器(以下简称为MDTMD)。MDTMD系统参数的可能组合形成十种MDTMD模型,本文评价其中最易制作的一种MDTMD模型。利用定义的优化目标函数,评价了MDTMD的控制性能。数值结果表明MDTMD比双重调谐质量阻尼器(DTMD)具有更好的有效性和对频率调谐的鲁棒性。但MDTMD的冲程大于DTMD的冲程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号