首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 158 毫秒
1.
The western Ireland Ordovician stratigraphy has been previously used to constrain the timing of docking of an island arc and its fore‐arc basin with the margin of Laurentia for the British and Irish Caledonides. New field relationships and age data indicate that one of the key formations, the Rosroe Formation (459.2 ± 0.8 and 465.1 ± 2.1 Ma), and its supposed lateral equivalent, the Maumtrasna Formation are younger than previously interpreted. New age data for a tuff band in the Maumtrasna Formation (468.9 ± 1.3 Ma) also support previous studies showing it can be correlated to the adjacent Mweelrea Formation. The new field evidence, age data and geochemistry contradict some previous studies and show that the Maumtrasna, Rosroe and Derrylea formations can no longer be considered lateral equivalents. Based on the new stratigraphy a revised tectonic model is required with sedimentation in this part of the Caledonides taking place in a fore‐arc basin outboard of a continental arc and the oceanic arc was an along‐strike equivalent of this arc situated in an embayment of the Laurentian margin. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The Middle Ordovician Rosroe Formation consists of some 1350 m of coarse, mainly siliciclastic to volcaniclastic sedimentary rocks, deposited in a submarine fan environment, and is restricted to the southern limb of the South Mayo Trough, western Ireland. Discrete allochthonous blocks, reaching 5 m in size, are present in the formation at several localities. Conodonts recovered from these blocks, collected from two separate locations, are of late Early and mid Mid Ordovician age. The conodonts have high conodont‐alteration indices (CAI 5) indicative of temperatures as high as 300o to max. 480 °C; some found in the Lough Nafooey area have abnormally high indices (CAI 6), which correspond to temperatures of about 360o to max. 550 °C. The oldest fauna is dominated by Periodon aff. aculeatus and characterized by Oepikodus evae typical of the Oepikodus evae Zone (Floian Stage; Stage Slices Fl2–3, Lower Ordovician). The younger conodont assemblage, characterized by Periodon macrodentatus associated with Oistodella pulchra, is referred to the P. macrodentatus conodont Biozone (lower Darriwilian; Stage Slices Dw1–2). The Rosroe conodont assemblages are of Laurentian affinity; comparable faunas are well known from several locations along the east to south‐eastern platform margin of Laurentia and the Notre Dame subzone of central Newfoundland, Canada. The faunal composition from the limestone blocks suggests a shelf edge to slope (or fringing carbonate) setting. The faunal assemblages are coeval with, respectively, the Tourmakeady Formation (Floian–Dapingian) and Srah Formation (Darriwilian) in the Tourmakeady Volcanic Group in the eastern part of the South Mayo Trough and probably are derived from the same or similar laterally equivalent short‐lived carbonate successions that accumulated at offshore ‘peri‐Laurentian’ islands, close to and along the Laurentian margin. During collapse of the carbonate system in the late Mid Ordovician, the blocks were transported down a steep slope and into deep‐water by debris flows, mixing with other rock types now found in the coarse polymict clastics of the Rosroe Formation. The faunas fill the stratigraphical ‘gap’ between the Lower Ordovician Lough Nafooey Volcanic Group and the upper Middle Ordovician Rosroe Formation in the South Mayo Trough and represent a brief interval conducive to carbonate accumulation in an otherwise siliciclastic‐ and volcaniclastic‐dominated sedimentary environment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
《Sedimentology》2018,65(6):2117-2148
The origin of the fourth member of the Eocene Shahejie Formation in the northern steep slopes of the Minfeng Sub‐sag, Dongying Sag, China, was investigated by integrating core studies and flume tank depositional simulations. A non‐channelized depositional model is proposed in this paper for nearshore subaqueous fans in steep fault‐controlled slopes of lacustrine rift basins. The deposits of nearshore subaqueous fans along the base of steep border‐fault slopes of rift basins are typically composed of deep‐water coarse‐grained sediment gravity‐flow deposits directly sourced from adjacent footwalls. Sedimentation processes of nearshore subaqueous fans respond to tectonic activities of boundary faults and to seasonal rainfall. During tectonically active stages, subaqueous debris flows triggered by episodic movements of border‐faults dominate the sedimentation. During tectonically quiescent stages, hyperpycnal flows generated by seasonal rainfall‐generated floods, normal discharges of mountain‐derived rivers and deep‐lacustrine suspension sedimentation are commonly present. The results of a series of flume tank depositional simulations show that the sediments deposited by subaqueous debris flows are wedge‐shaped and non‐channelized, whereas the sediments deposited by hyperpycnal flows generated by sporadic floods from seasonal rainfall are characterized by non‐channelized, coarse‐grained lobate depositional bodies which switch laterally because of compensation sedimentation of hyperpycanal flows. The hyperpycnal‐flow‐deposited non‐channelized lobate depositional bodies can be divided into a main body and lateral edges. The main body can be further subdivided into a proximal part, middle part and frontal part. Normal mountain‐derived river‐discharge‐deposited sediments are characterized by thin‐bedded, fine‐grained sandstones and siltstones with a limited distribution range. Normal mountain‐derived river‐discharge‐deposited sediments and deep‐lacustrine mudstones are commonly eroded in the area close to boundary faults. A nearshore subaqueous fan can be divided into three segments: inner fan, middle fan and outer fan. The inner fan is composed of debrites and the proximal part of the main body. The middle fan consists of the middle part of the main body and lateral edges, normal mountain‐derived river‐discharge‐deposited fine‐grained sediments and deep‐lacustrine mudstones. The outer fan comprises the frontal part of the main body, lateral edges, and deep‐lacustrine mudstones. Based on the non‐channelized depositional model for nearshore subaqueous fans, criteria for stratigraphic subdivision and correlation are discussed and applied.  相似文献   

4.
东昆仑地区发育一套显生宙碎屑岩地层,包括下寒武统沙松乌拉组、中—上奥陶统纳赤台群、上石炭统—下二叠统浩特洛哇组、下三叠统洪水川组、中三叠统希里科特组以及上三叠统八宝山组。研究区砂岩的CIA值反映沙松乌拉组砂岩源区化学风化程度较高,其余各组砂岩源区化学风化程度较低。主量和微量元素研究结果表明各组砂岩源区以长英质岩石为主,包含少量中性成分。La、Ce、Th、U、∑REE含量和La/Sc、Th/Sc、Sc/Cr、La/Y比值指示沙松乌拉组和纳赤台群砂岩沉积环境为大陆岛弧或活动大陆边缘,浩特洛哇组砂岩形成于被动大陆边缘环境,洪水川组砂岩沉积环境为活动大陆边缘,希里科特组砂岩的微量元素含量及其比值接近于活动大陆边缘和被动大陆边缘,八宝山组砂岩沉积环境为活动大陆边缘。综合分析认为沙松乌拉组和纳赤台群砂岩形成于原特提斯洋俯冲阶段,浩特洛哇组砂岩形成于古特提斯洋持续扩张阶段,洪水川组砂岩形成于古特提斯洋俯冲阶段,希里科特组砂岩形成于陆(弧)陆初始碰撞阶段,八宝山组砂岩形成于陆陆全面碰撞—碰撞后阶段。  相似文献   

5.
沟-弧-盆体系恢复对于研究增生造山过程和解析成矿作用具有重要指示意义,多宝山岛弧带是我国重要的铜钼多金属成矿区带,其沟-弧-盆体系恢复对成矿地质背景研究及拓展区域找矿具有重要意义。通过对多宝山地区早古生代地层、岩石和构造的野外调研和系列编图,结合最新的年代学资料,重新厘定了含矿地层单位——多宝山组、铜山组的形成时代和层位:确定多宝山组形成时代为寒武纪芙蓉世-早奥陶世,铜山组形成时代为早-中奥陶世;将铜山组置于多宝山组之上,暗示地表以下保存有规模较大的主要成矿地质体——多宝山组,由此扩大了深部找矿空间。在此基础上,重建了多宝山岛弧带早古生代地层序列。在多宝山岛弧带西北侧多宝山-三卡一带划分出早古生代俯冲增生杂岩带,根据俯冲增生杂岩带与岩浆弧、伴生沉积盆地的沉积建造及时空关系,划分出弧前盆地、弧间盆地、弧后盆地等构造单元,建立了多宝山岛弧带古生代沟-弧-盆体系格架,认为多宝山岛弧带西北侧多宝山-三卡一带存在早古生代洋盆,并于奥陶纪发生南东向俯冲。指出岩浆弧靠近俯冲增生杂岩带一侧是成矿有利部位,为多宝山岛弧带铜多金属矿的成矿背景和成矿地质条件研究提供了理论依据。  相似文献   

6.
西藏冈底斯岩浆弧叶巴组火山岩对于新特提斯洋俯冲时限的制约存在着重要的意义.通过对甲鲁朗地区叶巴组凝灰岩的LA-ICP-MS锆石U-Pb年龄和岩石地球化学组成的研究,锆石测年获得3件凝灰岩样品206Pb/238U年龄加权平均值分别为207.8±1.6 Ma、204.8±1.7 Ma和209.3±3.4 Ma,结合古生物化石证据,表明其形成于晚三叠世;凝灰岩样品富集轻稀土元素和大离子亲石元素(Rb、K、Th、U、Pb),亏损重稀土元素和高场强元素(Nb、Ta、Ti、P),同时亏损Sr元素,Eu负异常较明显.岩石地球化学特征表明叶巴组中酸性岩可能为壳幔混染成因.综合前人研究成果,认为叶巴组形成于新特提斯洋俯冲环境下的大陆边缘弧,新特提斯洋的俯冲从晚三叠世就已经开始.本研究为叶巴组的形成时代以及动力学背景提供了新的制约.   相似文献   

7.
塔里木显生宙盆地演化主要阶段   总被引:12,自引:1,他引:12  
塔里木显生宙盆地演化经历了震旦纪—泥盆纪、石炭纪—二叠纪和中—新生代3个一级构造旋回。这种旋回性主要与板缘的拉张裂解、俯冲消减和碰撞闭合等板块构造运动体制有关。每个一级构造旋回一般是以拉张体制下的盆地形成开始,尔后转化为挤压体制下的盆地,最终以构造反转结束。塔里木显生宙盆地演化可进一步分为6个二级演化阶段,即震旦—奥陶纪克拉通内裂陷盆地发展阶段、志留—泥盆纪克拉通内挤压盆地演化阶段、石炭—二叠纪弧后裂陷盆地形成阶段、三叠纪弧后前陆盆地发展阶段、侏罗纪—老第三纪碰撞复活前陆盆地形成阶段和新第三纪—第四纪碰撞后继盆地演化阶段,其划分标志是以盆地性质及其构造格局的重大转变为依据的。  相似文献   

8.
The Mt Isa Rift Event is a Palaeoproterozoic intracontinental extension event that defines the beginning of sedimentation into the Isa Superbasin in the Western Fold Belt, Mt Isa terrane. In the mildly deformed Fiery Creek Dome region, on the northwest flanks of the Mt Isa Rift, elements of the Mt Isa Rift Event rift architecture are preserved without being intensely overprinted by later deformation. In this region two discrete generations of northwest‐dipping normal faults have been identified. Early generation normal faults were active during the deposition of fluvial and immature conglomerate and sandstone of the Bigie Formation. Renewed rifting and the development of late‐generation normal faults occurred during deposition of shallow‐marine sandstone and siltstone of the lower Gunpowder Creek Formation. Differential uplift between tilt blocks formed an array of spatially and temporally discontinuous synrift unconformities on the crests of uplifted tilt blocks. Applying the domino model yields ~28% crustal extension for the entire Mt Isa Rift Event. Northwest‐striking transverse faults facilitated differential displacement along normal faults and formed boundaries to normal fault segments, creating smaller depositional compartments along half‐graben axes. Three large domes were formed during laccolith emplacement. These domes produced palaeogeographical highs that divided the region into sub‐basins and were a source for the coarse fluvial synrift sequences deposited during the early Mt Isa Rift Event. The basin architecture in the Fiery Creek Dome region is consistent with northwest‐southeast‐directed extension.  相似文献   

9.
Ordovician quartz turbidites of the Lachlan Fold Belt in southeastern Australia accumulated in a marginal sea and overlapped an adjoining island arc (Molong volcanic province) developed adjacent to eastern Gondwana. The turbidite succession in the Shoalhaven River Gorge, in the southern highlands of New South Wales, has abundant outcrop and graptolite sites. The succession consists of, from the base up, a unit of mainly thick‐bedded turbidites (undifferentiated Adaminaby Group), a unit with conspicuous bedded chert (Numeralla Chert), a unit with common thin‐bedded turbidites (Bumballa Formation (new name)) and a unit of black shale (Warbisco Shale). Coarse to very coarse sandstone in the Bumballa Formation is rich in quartz and similar to sandstone in the undifferentiated Adaminaby Group. Detrital zircons from sandstone in the Bumballa Formation, and from sandstone at a similar stratigraphic level from the upper Adaminaby Group of the Genoa River area in eastern Victoria, include grains as young as 453–473 Ma, slightly older than the stratigraphic ages.The dominant detrital ages are in the interval 500–700 Ma (Pacific Gondwana component) with a lessor concentration of Grenville ages (1000–1300 Ma). This pattern resembles other Ordovician sandstones from the Lachlan Fold Belt and also occurs in Triassic sandstones and Quaternary sands from eastern Australia. The Upper Ordovician succession is predominantly fine grained, which reflects reduced clastic inputs from the source in the Middle Cambrian to earliest Ordovician Ross‐Delamerian Fold Belts that developed along the eastern active margin of Gondwana. Development of subduction zones in the Late Ordovician marginal sea are considered to be mainly responsible for the diversion of sediment and the resulting reduction in the supply of terrigenous sand to the island arc and eastern part of the marginal sea.  相似文献   

10.
In the Eastern Lachlan Orogen, the mineralised Molong and Junee‐Narromine Volcanic Belts are two structural belts that once formed part of the Ordovician Macquarie Arc, but are now separated by younger Silurian‐Devonian strata as well as by Ordovician quartz‐rich turbidites. Interpretation of deep seismic reflection and refraction data across and along these belts provides answers to some of the key questions in understanding the evolution of the Eastern Lachlan Orogen—the relationship between coeval Ordovician volcanics and quartz‐rich turbidites, and the relationship between separate belts of Ordovician volcanics and the intervening strata. In particular, the data provide evidence for major thrust juxtaposition of the arc rocks and Ordovician quartz‐rich turbidites, with Wagga Belt rocks thrust eastward over the arc rocks of the Junee‐Narromine Volcanic Belt, and the Adaminaby Group thrust north over arc rocks in the southern part of the Molong Volcanic Belt. The seismic data also provide evidence for regional contraction, especially for crustal‐scale deformation in the western part of the Junee‐Narromine Volcanic Belt. The data further suggest that this belt and the Ordovician quartz‐rich turbidites to the east (Kirribilli Formation) were together thrust over ?Cambrian‐Ordovician rocks of the Jindalee Group and associated rocks along west‐dipping inferred faults that belong to a set that characterises the middle crust of the Eastern Lachlan Orogen. The Macquarie Arc was subsequently rifted apart in the Silurian‐Devonian, with Ordovician volcanics preserved under the younger troughs and shelves (e.g. Hill End Trough). The Molong Volcanic Belt, in particular, was reworked by major down‐to‐the‐east normal faults that were thrust‐reactivated with younger‐on‐older geometries in the late Early ‐ Middle Devonian and again in the Carboniferous.  相似文献   

11.
The Neoproterozoic Jiangnan orogen plays an important role in the study of the Precambrian tectonic evolution of South China. The tectonic nature of the Neoproterozoic sedimentary basins is still controversial, due to poor understanding of the sedimentary sequences and the lack of geochronological data. Here, we present sedimentological, provenance and geochronological data from the Heshangzhen Group in the eastern Jiangnan orogen. Sedimentological analysis shows that the Luojiamen Formation was deposited in a submarine fan, and the overlying Hongchicun Formation was deposited in front of a fan delta. The youngest detrital zircons constrain the lower Luojiamen and Hongchicun formations with ages of 827.3 ± 8.4 Ma and 825 ± 12 Ma, respectively. The sandstones of the Luojiamen Formation are characterized by a large number of intermediate to felsic volcanic grains, suggesting a volcanic arc source. In contrast, quartz and sedimentary lithic grains increase in the Hongchicun Formation, showing a new input from a collisional orogenic source. Detrital zircon from six sandstone samples in the Luojiamen and Hongchicun formations yield similar age spectra of 930–820 Ma with a peak at ca. 845–860 Ma, with one main cluster at 930–820 Ma. Detrital zircons of 930–845 Ma show a positive value of εHf(t)(+2.4 to +11, mean +7.6), which is similar to the volcanic arc of the nearby Shuangxiwu Group. There are a minor group of zircons with U-Pb ages ranging from 820 Ma to 845 Ma from the middle part of the Luojiamen Formation and Hongchicun Formation, with εHf(t) values between-20 to +2.4, which are consistent with the characteristics of the Shuangqiaoshan Group. within light of the bidirectional paleocurrents in the Luojiamen Formation, it is speculated that the zircons of 820–845 Ma were recycled from the Shuangqiaoshan Group, which is derived from a continental arc to the northwest. Our data suggests that the Luojiamen Formation was formed in an inter-arc basin, while the Hongchicun Formation was formed in an accretionary wedge-top basin. When juxtaposed with the conglomeratic characteristics at the bottom of the Luojiamen Formation, it is believed that the unconformity represented by the ‘Shen Gong Movement' reflects the rapid erosion and accumulation process of island arc volcanic material. The disconformity between the Luojiamen and Hongchicun formations is the imprint of transition from inter-arc basin to accretionary wedge-top basin,which represents the collision between the Shuangxiwu arc and the Yangtze Plate.  相似文献   

12.
Many ophiolite complexes like those of Oman and New Caledonia represent fragments of ancient oceanic crust and upper mantle generated at supra‐subduction zone environments and have been obducted onto the adjacent rifted continental margin together with the accretionary complexes and intra‐oceanic arcs. The Lajishan ophiolite complexes in the Qilian orogenic belt along the NE edge of the Tibet‐Qinghai Plateau are one of several ophiolites situated to the south of the Central Qilian block. Our geological mapping and petrological investigations suggest that the Lajishankou ophiolite complex consists of serpentinite, wehrlite, pyroxenite, gabbro, dolerite, and pillow and massive basalts that occur in a series of elongate fault‐bounded slices. An accretionary complex composed mainly of basalt, radiolarian chert, sandstone, mudstone, and mélange lies structurally beneath the ophiolite complex. The Lajishankou ophiolite complex and accretionary complex were emplaced onto the Qingshipo Formation of the Central Qilian block which shows features typical of turbidites deposited in a deep‐water environment of passive continental margin. Our geochemical and geochronological studies indicate that the mafic rocks in the Lajishankou ophiolite complex can be categorized into three distinct groups: massive island arc tholeiites, 509 Ma back‐arc dolerite dykes, and 491 Ma pillow basaltic and dolerite slices that are of seamount origin in a back‐arc basin. The ophiolite and accretionary complex constitute a Cambrian‐early Ordovician trench‐arc system within the South Qilian belt during the early Paleozoic southward subduction of the South Qilian Ocean prior to Early Ordovician obduction of this system onto the Central Qilian block.  相似文献   

13.
Shallow marine deposits comprising the Silurian Gray Sandstone Formation (GSF) exhibit pronounced process regime changes through time. The formation was deposited on the southern shelf of the Lower Palaeozoic Welsh Basin (UK), and conformably overlies the Coralliferous Formation. The basal Lithofacies Assemblage A (of Sheinwoodian age) is dominated by a storm‐dominated process regime, comprising shoreface and offshore shelf facies associations. The overlying Lithofacies Assemblage B records a mixed process regime, with units being deposited under both storm‐ and tide‐influenced conditions. Tidal‐influence prevailed during deposition of the overlying Lithofacies Assemblage C, with proximal to distal facies variations across a significant tide‐influenced river delta being observed. A return to storm‐dominated shoreface conditions is seen in the succeeding Lithofacies Assemblage D. Lithofacies Assemblage E (Homerian age) records the return of a tide‐influenced river delta to the area, prior to the conformable transition into the overlying Old Red Sandstone (ORS) Red Cliff Formation (of Ludlow age). Northward thickening of the formation across southern Pembrokeshire into the Musselwick Fault indicates a tectonic control on sedimentation, the formation infilling accommodation space developed in an intra‐shelf half‐graben. Recurring changes in process regime from storm‐ to tide‐influenced sedimentation may be related to the onset and subsequent cessation of tidal resonance in sub‐basins across the shelf area which itself was probably controlled by episodic tectonism. It is proposed that the Coralliferous and Gray Sandstone formations comprise the newly erected Marloes Group. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Among the Caledonides exposed in the western part of the Kyrgyz Range the Lower Ordovician volcanogenic-sedimentary, plutonic, and tuffaceous-terrigenous complexes were distinguished. Volcanogenic-sedimentary sequences are the Kentash Formation, composed of volcanic rocks, tuffs and subvolcanic bodies of dacitic, andesitic and basaltic composition, sandstones and tuffites with interlayers and lenses of limestone. On the basis of conodonts and U-Pb dating of zircon grains the age of this Formation is in the age interval between Late Tremadocian Stage and Early Darriwilian Stage. Differentiated volcanites are associated with ultramafic-gabbro massifs of the Kokkiya Complex of the Late Darriwilian age (U-Pb zirconology). Features of the chemical composition of rocks of the Kentash Formation and the Kokkiya Complex indicate that they formed in suprasubduction settings within the island arc with a thick heterogeneous basement. Tuffaceous-terrigenous deposits are presented by the olistostrome formation, and coarse-grained deposits of the Taldybulak and Kyzylkainar Formations. The formation of olistostrome formation is associated with the over-thrusting of Cambrian melanocratic complexes on terrigenous-carbonate and shale strata of the Upper Precambrian-Cambrian age. Deposits of the Taldybulak and Kyzylkainar Formations accumulated in the back-arc basin and on the island arc slope, made of rocks of the Kentash Formation.  相似文献   

15.
The Ordovician mafic volcanic rocks in the Parkes region of New South Wales occur as three distinct packages of volcaniclastic and coherent volcanic rocks and minor limestone that formed part of an oceanic island arc succession. The oldest package is the Early Ordovician Nelungaloo Volcanics and overlying Yarrimbah Formation. These formations consist of volcanic siltstone, sandstone, polymictic breccia, conglomerate facies interpreted as moderately deep-water turbidites and coarser grained debris-flow deposits emplaced in the medial to distal part of a subaqueous volcaniclastic apron flanking an active volcanic centre(s). Broadly conformable massive to brecciated andesites in the apron deposits are interpreted as synsedimentary sills and/or lava flows. A hiatus in volcanism occurred between the Bendigonian and early Darriwilian (ca 476 – 466 Ma). Deposition of the second package, which produced the Middle to Late Ordovician Goonumbla Volcanics, Billabong Creek Limestone and Gunningbland Formation, commenced with shallow-water limestones and minor volcaniclastic rocks. During an approximately 15 million years period, a thick sequence of bedded volcanic sandstone, limestone and minor siltstone and volcanic breccia were deposited in very shallow to moderate water depths. The top of this package is marked by thick volcanic conglomerate and sandstone mass-flow deposits and approximately coeval basaltic andesite lavas and sills sourced from a nearby volcano. The upper age limit of this package is constrained as approximately 450 Ma by Ea3/4 fossils and monzodiorite that intrudes the Goonumbla Volcanics. The lower limit of the third package, which constitutes the Wombin Volcanics, is poorly constrained and the duration of the hiatus that separates the Goonumbla and Wombin Volcanics is unknown but may be as long as 10 million years. The Wombin Volcanics record development of a thick, proximal volcaniclastic apron flanking a compositionally more evolved volcanic edifice in the immediate Parkes area. Thick crystal-rich turbiditic sandstones of mafic provenance are intercalated with polymictic volcanic breccias and megablock breccias that are interpreted as proximal subaqueous debris-flow and debris-avalanche deposits, respectively. The sequence also includes numerous trachyandesite bodies, many of which were emplaced within the volcaniclastic apron as synsedimentary sills. No evidence was found at Parkes to support the existence of a previously proposed 22 km diameter collapse caldera and the source volcanoes for the Ordovician are envisaged as complex stratovolcanoes.  相似文献   

16.
本文根据岩性组合、剖面结构及与下伏地层接触关系等特征,认为贵州地区上白垩统茅台组是炎热干燥气候条件下,于燕山构造运动后未曾夷平基面上沉积的河湖相红色磨拉石建造,沉积盆地性质为山间盆地。茅台组现今的大范围零星散布,主要是喜马拉雅运动后遭受长期侵蚀剥蚀造成的。  相似文献   

17.
A large database of structural, geochronological and petrological data combined with a Bouguer anomaly map is used to develop a two‐stage exhumation model of deep‐seated rocks in the eastern sector of the Variscan belt. An early sub‐vertical fabric developed in the orogenic lower and middle crust during intracrustal folding followed by the vertical extrusion of the lower crustal rocks. These events were responsible for exhumation of the orogenic lower crust from depths equivalent to 18?20 kbar to depths equivalent to 8?10 kbar, and for coeval burial of upper crustal rocks to depths equivalent to 8–9 kbar. Following the folding and vertical extrusion event, sub‐horizontal fabrics developed at medium to low pressure in the orogenic lower and middle crust during vertical shortening. Fabrics that record the early vertical extrusion originated between 350 and 340 Ma, during building of an orogenic root in response to SE‐directed Saxothuringian continental subduction. Fabrics that record the later sub‐horizontal exhumation event relate to an eastern promontory of the Brunia continent indenting into the rheologically weaker rocks of the orogenic root. Indentation initiated thrusting or flow of the orogenic crust over the Brunia continent in a north‐directed sub‐horizontal channel. This sub‐horizontal flow operated between 330 and 325 Ma, and was responsible for a heterogeneous mixing of blocks and boudins of lower and middle crustal rocks and for their progressive thermal re‐equilibration. The erosion depth as well as the degree of reworking decreases from south to north, pointing to an outflow of lower crustal material to the surface, which was subsequently eroded and deposited in a foreland basin. Indentation by the Brunia continental promontory was highly noncoaxial with respect to the SE‐oriented Saxothuringian continental subduction in the Early Visean, suggesting a major switch of plate configuration during the Middle to Late Visean.  相似文献   

18.
The Xinlin ophiolite in NE China is generally considered to mark the suture between the Erguna and Xing'an blocks. Compared with the Maihantewula ophiolite and Jifeng‐Gaxian ophiolite in the southern and central parts of the Xinlin–Xiguitu suture zone, the Xinlin ophiolite in the northern part of the suture has not been as thoroughly investigated. Many studies acknowledge the indicators of the Xinlin ophiolite as a suture, but detailed studies of this unit are scarce. In the present work, we provide the geochemical data to constrain the origin of the gabbros in Xinlin ophiolites. The gabbros from the Xinlin ophiolites are texturally heterogeneous, ranging from fine‐grained aplitic to coarse‐grained pegmatitic. The fine‐grained gabbros have flat to slightly enriched LREE patterns, which are geochemically comparable to transitional (T‐MORB) and enriched mid‐ocean ridge basalt (E‐MORB). The pegmatite gabbros exhibit slightly LREE‐depleted patterns, similar to typical N‐MORB that derived from a depleted mantle source. Generally, gabbros from the Xinlin ophiolites are MORB‐like, but also have some arc characteristics such as high Th and low Ta concentrations. Such features is typical in Supra‐subduction zone (SSZ) type ophiolites. Our data, combined with other regional results, suggest that the geochemical signatures of the Xinlin gabbros that vary between arc‐like and MORB‐like were possibly indicative of their derivation from a subduction‐modified depleted mantle.  相似文献   

19.
扬子板块北缘大巴山地区上奥陶统-下志留统地层中斑脱岩较发育。笔者对大巴山西段陕西紫阳麻柳和四川万源皮窝乡上奥陶统五峰组-下志留统龙马溪组剖面的斑脱岩进行采样,开展了高精度锆石U-Pb测年,首次在该地区获得了445.1±3.5Ma和446.1±7.2Ma的锆石U-Pb年龄,限定了五峰组-龙马溪组地层沉积年龄,为扬子板块北缘大巴山地区奥陶系-志留系界线附近火山喷发事件、地层年代学研究提供了依据。本文所获得的年龄数据与秦岭-大别山造山带奥陶纪岩浆弧形成时间同步,略晚于华北克拉通西南缘奥陶系斑脱岩(449.0~465.8Ma),其火山活动可能与古秦岭洋壳向北的俯冲有关,火山凝灰质可能源自沿古秦岭洋盆北缘的火山弧喷发。中奥陶世晚期至早志留世早期,多幕次的高频火山喷发事件影响了当时海洋化学条件、碳循环波动、气候变冷和生物辐射脉动,造成了晚奥陶世末期的冰川启动和生物集群绝灭。  相似文献   

20.
The Salar de Atacama basin, the largest “pre-Andean” basin in Northern Chile, was formed in the early Late Cretaceous as a consequence of the tectonic closure and inversion of the Jurassic–Early Cretaceous Tarapacá back arc basin. Inversion led to uplift of the Cordillera de Domeyko (CD), a thick-skinned basement range bounded by a system of reverse faults and blind thrusts with alternating vergence along strike. The almost 6000-m-thick, upper Cretaceous to lower Paleocene sequences (Purilactis Group) infilling the Salar de Atacama basin reflects rapid local subsidence to the east of the CD. Its oldest outcropping unit (Tonel Formation) comprises more than 1000 m of continental red sandstones and evaporites, which began to accumulate as syntectonic growth strata during the initial stages of CD uplift. Tonel strata are capped by almost 3000 m of sandstones and conglomerates of western provenance, representing the sedimentary response to renewed pulses of tectonic shortening, which were deposited in alluvial fan, fluvial and eolian settings together with minor lacustrine mudstone (Purilactis Formation). These are covered by 500 m of coarse, proximal alluvial fan conglomerates (Barros Arana Formation). The top of the Purilactis Group consists of Maastrichtian-Danian alkaline lava and minor welded tuffs and red beds (Cerro Totola Formation: 70–64 Ma K/Ar) deposited during an interval of tectonic quiescence when the El Molino–Yacoraite Late Cretaceous sea covered large tracts of the nearby Altiplano-Puna domain. Limestones interbedded with the Totola volcanics indicate that this marine incursion advanced westwards to reach the eastern CD slope. CD shortening in the Late Cretaceous was accompanied by volcanism and continental sedimentation in fault bounded basins associated to strike slip along the north Chilean magmatic arc to the west of the CD domain, indicating that oblique plate convergence prevailed during the Late Cretaceous. Oblique convergence seems to have been resolved into a highly partitioned strain system where margin-parallel displacements along the thermally weakened arc coexisted with margin-orthogonal shortening associated with syntectonic sedimentation in the Salar de Atacama basin. A regionally important Early Paleocene compressional event is echoed, in the Salar de Atacama basin by a, distinctive, angular unconformity which separates Paleocene continental sediments from Purilactis Group strata. The basin also records the Eocene–Early Oligocene Incaic transpressional episode, which produced, renewed uplift in the Cordillera de Domeyko and triggered the accumulation of a thick blanket of syntectonic gravels (Loma Amarilla Formation).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号