首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HD 23194, a member of the Pleiades, was found to pulsate with a period of about 30 min. The literature on the star is reviewed, and it is concluded that it may be a marginal Am star in a binary system. HD 95321 is an evolved Am ( ρ Puppis) star with a 5.1-h periodicity. Mode identification of its pulsation, based on multicolour photometry, suggests that the oscillation is probably non-radial with ℓ=2. We also report on the discovery of six other new δ Scuti stars, some of which may be pulsating in gravity modes.  相似文献   

2.
We carried out a multicolour time-series photometric study of six stars claimed as 'hybrid' p and g mode pulsators in the literature. γ Peg was confirmed to show short-period oscillations of the β Cep type and simultaneous long-period pulsations typical of Slowly Pulsating B (SPB) stars. From the measured amplitude ratios in the Strömgren uvy passbands, the stronger of the two short period pulsation modes was identified as radial; the second is  ℓ= 1  . Three of the four SPB-type modes are most likely  ℓ= 1  or 2. Comparison with theoretical model calculations suggests that γ Peg is either a  ∼8.5 M  radial fundamental mode pulsator or a  ∼9.6 M  first radial overtone pulsator. HD 8801 was corroborated as a 'hybrid'δ Sct/γ Dor star; four pulsation modes of the γ Dor type were detected, and two modes of the δ Sct type were confirmed. Two pulsational signals between the frequency domains of these two known classes of variables were confirmed and another was newly detected. These are either previously unknown types of pulsation or do not originate from HD 8801. The O-type star HD 13745 showed small-amplitude slow variability on a time-scale of 3.2 d. This object may be related to the suspected new type of supergiant SPB stars, but a rotational origin of its light variations cannot be ruled out at this point. 53 Psc is an SPB star for which two pulsation frequencies were determined and identified with low spherical degree. Small-amplitude variability was formally detected for 53 Ari but is suspected not to be intrinsic. The behaviour of ι Her is consistent with non-variability during our observations, and we could not confirm light variations of the comparison star 34 Psc previously suspected. The use of signal-to-noise criteria in the analysis of data sets with strong aliasing is critically discussed.  相似文献   

3.
The Praesepe cluster contains a number of δ Sct and γ Dor pulsators. Asteroseismology of cluster stars is simplified by the common distance, age and stellar abundances. Since asteroseismology requires a large number of known frequencies, the small pulsation amplitudes of these stars require space satellite campaigns. The present study utilizes photometric MOST satellite measurements in order to determine the pulsation frequencies of two evolved (EP Cnc, BT Cnc) and two main‐sequence (BS Cnc, HD 73872) δ Sct stars in the Praesepe cluster. The frequency analysis of the 2008 and 2009 data detected up to 34 frequencies per star with most amplitudes in the submillimag range. In BS Cnc, two modes showed strong amplitude variability between 2008 and 2009. The frequencies ranged from 0.76 to 41.7 cd–1. After considering the different evolutionary states and mean stellar densities of these four stars, the differences and large ranges in frequency remain (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
A global analysis of the surface trapping of low-frequency non-radial g modes in rotating early-type stars is undertaken within the Cowling, adiabatic and traditional approximations. The dimensionless pulsation equations governing these modes are reviewed, and the boundary conditions necessary for solution of the equations are considered; in particular, an outer mechanical boundary condition, which does not enforce complete wave trapping at the stellar surface, is derived and discussed in detail. The pulsation equations are solved for a 7-M model star over a range of rotation rates, using a numerical approach.
The results of the calculations confirm the findings of the preceding paper in the series: modes with eigenfrequencies below a cut-off cannot be fully trapped within the star, and exhibit leakage in the form of outwardly propagating waves at the surface. The damping rates resulting from leakage are calculated for such 'virtual' modes, and found to be appreciably larger than typical growth rates associated with opacity-driven pulsation. Furthermore, it is demonstrated that the surface perturbations generated by virtual modes are significantly changed from those caused by fully trapped modes; the latter result suggests differences in the line-profile variations exhibited by these two types of mode.
The findings are discussed in the context of the 53 Per, SPB and pulsating Be classes of variable star. Whilst wave leakage will probably not occur for overstable g modes in the 53 Per and slowly rotating SPB stars, the adoption of the new outer mechanical boundary condition may still affect the pulsational stability of these systems. Wave leakage for overstable modes remains a possibility in Be stars and the more rapidly rotating SPB stars.  相似文献   

5.
To try to understand the behavior of helium variability in Chemically Peculiar stars, we continued our on‐going observational campaign started by Catanzaro, Leone & Catalano (1999). In this paper we present a new set of time resolved spectroscopic observations of the HeI5876 Å line for a sample of 10 stars in the spectral range B3 ‐ A2 and characterized by different overabundances. This line does not show variability in two stars: HD77350 and HD175156. It shows instead an equivalent width variation in phase with the Hipparcos light curve for two stars: HD79158 and HD196502. Antiphase variations have been found in 4 stars of our sample, namely: HD35502, HD124224, HD129174 and HD142990. Nothing we can say about HD115735 because of the constancy of Hipparcos photometric data, while no phase relation has been observed for HD90044. In the text we discuss the case of HD175156, according to photometric calibration and our spectroscopic observations we rule out the membership of this star to the main sequence chemically peculiar stars. We confirm the results obtained in the previous paper for which phase relations between light, spectral and magnetic variations are not dependent on stellar spectral type or peculiarity subclass.  相似文献   

6.
The increasing number of pulsating modes in a star leads to the increase of the amount of information derived from the pulsation. Probing the invisible interior of stars is a dream come true. In this review, I summarize the fundamental properties of stellar pulsations and the excitation mechanisms, emphasizing several cases of recent progress.  相似文献   

7.
It is essential for the understanding of stellar structure models of high mass stars to explain why constant stars, nonpulsating chemically peculiar hot Bp stars and pulsating stars co‐exist in the slowly pulsating B stars and β Cephei instability strips. We have conducted a search for magnetic fields in the four Bp stars HD55522, HD105382, HD131120, and HD138769 which previously have been wrongly identified as slowly pulsating B stars. A recent study of these stars using the Doppler Imaging technique revealed that the elements He and Si are inhomogeneously distributed on the stellar surface, causing the periodic variability. Using FORS 1 in spectropolarimetric mode at the VLT, we have acquired circular polarisation spectra to test the presence of a magnetic field in these stars. A variable magnetic field is clearly detected in HD55522 and HD105382, but no evidence for the existence of a magnetic field was found in HD131120. The presence of a magnetic field in HD138769 is suggested by one measurement at 3σ level. We discuss the occurrence of magnetic B stars among the confirmed pulsating B stars and find strong magnetic fields of order kG and oscillations to be mutually exclusive. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We present the results of the continuation of our magnetic survey with FORS 1 at the VLT of a sample of B‐type stars consisting of confirmed or candidate β Cephei stars and Slowly Pulsating B (hereafter SPB) stars, along with a small number of normal B‐type stars. A weak mean longitudinal magnetic field of the order of a few hundred Gauss was detected in three β Cephei stars and two stars suspected to be β Cephei stars, in five SPB stars and eight stars suspected to be SPB stars. Additionally, a longitudinal magnetic field at a level larger than 3σ has been diagnosed in two normal B‐type stars, the nitrogen‐rich early B‐type star HD 52089 and in the B5 IV star HD 153716. Roughly one third of β Cephei stars have detected magnetic fields: Out of 13 β Cephei stars studied to date with FORS 1, four stars possess weak magnetic fields, and out of the sample of six suspected β Cephei stars two show a weak magnetic field. The fraction of magnetic SPBs and candidate SPBs is found to be higher: Roughly half of the 34 SPB stars have been found to be magnetic and among the 16 candidate SPBs eight stars possess magnetic fields. In an attempt to understand why only a fraction of pulsating stars exhibit magnetic fields, we studied the position of magnetic and non‐magnetic pulsating stars in the H‐R diagram. We find that their domains in the H‐R diagram largely overlap, and no clear picture emerges as to the possible evolution of the magnetic field across the main sequence. It is possible that stronger fields tend to be found in stars with lower pulsating frequencies and smaller pulsating amplitudes. A somewhat similar trend is found if we consider a correlation between the field strength and the v sin i ‐values, i.e. stronger magnetic fields tend to be found in more slowly rotating stars (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We undertook two time-series photometric multisite campaigns for the rapidly oscillating Ap star HD 122970. The first one, conducted in 1998, resulted in 119 h of data and in the detection of three pulsation frequencies. The presence of possible further modes which held the promise of deriving a mode identification motivated a second worldwide campaign in the year 2001. This second campaign resulted in 203 h of measurement, but did not reveal further modes. Rather, one of the previously detected signals disappeared. The two modes common to both data sets have different spherical degree. They also showed slight frequency modulation, and one of them varied in amplitude as well. Possible causes of the latter behaviour include intrinsic instability of the pulsation spectrum or precession of the pulsational axis and orbital motion in a binary system. Frequency analysis of the Hipparcos observations of the star did not allow us to determine the stellar rotation period. The amplitude and phase behaviour of the two modes of HD 122970 in the Strömgren uvby bands is quite similar to that observed for other roAp stars.  相似文献   

10.
The stellar surface imaging technique is used for studying stellar non‐radial pulsations on the basis of inversions of time series of variable line profiles without making assumptions on the specific shape of the pulsations. The inversion results in an image of the stellar surface in which sectoral and tesseral modes can be distinguished in many cases and the pulsational degree and the azimuthal order can be determined. The capability of the technique is studied with simulated data. Then, the surface imaging technique is applied to high‐resolution spectra of the rapidly rotating Beta Cep‐type star ω1 Sco, which shows strong line‐profile variations. Stellar surface imaging is concluded to be a useful technique for pulsation‐mode identification. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
We separate and analyse the component spectra of the composite‐spectrum binary HD 208253. We find that the cool primary is an evolving star of spectral type G7 III, while its hot secondary is an early‐A dwarf. The giant is currently near the lowest point of the red‐giant branch and is slightly less luminous than its dwarf companion. We provide a set of precise radial‐velocity measurements for both stars. The double‐lined orbit which we derive from them shows that the component mass ratio is close to unity (q = 1.05 ± 0.01). We deduce the physical properties of both stars, determine their respective masses to be 2.75 ± 0.07 Me (giant) and 2.62 ± 0.07 Me (dwarf), and show that the orbit's inclination is within a degree or two of 68°. The spectrum of the A‐type component has quite component has quite narrow lines (we infer a rotational velocity of 18 km s–1), though since the period of the orbit is well over 1 year that component cannot be in synchronous rotation. An intriguing property of the dwarf is its enhanced Sr and Ba, though it does not exhibit the other spectral peculiarities that would signal a classical Am star. While by no means unique amongst the multitude of oddities exhibited by A and early‐F stars, this dwarf which we have uncovered in a long‐period binary offers valuable constraints and challenges to stellar‐evolution theory. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We present optical time series spectroscopy of the pulsating white dwarf star G 29-38 taken at the Very Large Telescope (VLT). By measuring the variations in brightness, Doppler shift and line shape of each spectrum, we explore the physics of pulsation and measure the spherical degree (ℓ) of each stellar pulsation mode. We measure the physical motion of the g modes correlated with the brightness variations for three of the eight pulsation modes in this data set. The varying line shape reveals the spherical degree of the pulsations, an important quantity for properly modelling the interior of the star with asteroseismology. Performing fits to the Hβ, Hγ and Hδ lines, we quantify the changing shape of the line and compare them to models and previous time series spectroscopy of G 29-38. These VLT data confirm several ℓ identifications and add four new values, including an additional ℓ= 2 and a possible ℓ= 4. In total, from both sets of spectroscopy of G 29-38, eleven modes now have known spherical degrees.  相似文献   

13.
We undertook a time-series photometric multisite campaign for the rapidly oscillating Ap (roAp) star HD 99563 and also acquired mean light observations over four seasons. The pulsations of the star, which show flatter light maxima than minima, can be described with a frequency quintuplet centred on 1557.653 μHz and some first harmonics of it. The amplitude of the pulsation is modulated with the rotation period of the star that we determine with 2.91179 ± 0.00007 d from the analysis of the stellar pulsation spectrum and of the mean light data. We break up the distorted oscillation mode into its pure spherical harmonic components and find it is dominated by the ℓ= 1 pulsation, and also has a notable ℓ= 3 contribution, with weak ℓ= 0 and 2 components. The geometrical configuration of the star allows us to see both pulsation poles for about the same amount of time; HD 99563 is only the fourth roAp star for which both pulsation poles are seen and only the third where the distortion of the pulsation modes has been modelled. We point out that HD 99563 is very similar to the well-studied roAp star HR 3831. Finally, we note that the visual companion of HD 99563 is located in the δ Scuti instability strip and may thus show pulsation. We show that if the companion was physical, the roAp star would be a 2.03-M, object, seen at a rotational inclination of 44°, which then predicts a magnetic obliquity     .  相似文献   

14.
Elemental abundances of the moderately rotating B9–A3 stars λ UMa, 59 Her, 14 Cyg and 29 Cyg have been derived in a consistent manner with previous studies of this series from spectrograms obtained with Reticon and CCD detectors. The derived elemental abundances show that λ UMa is a mild Am star, while 59 Her is slightly metal-rich. Although 14 Cyg has values closer to solar than these stars, its subsolar Ca and Sc abundances indicate that it might be the hottest known hot-Am star. 29 Cyg is a metal-poor λ Boo star.  相似文献   

15.
We present a detailed analysis of seven young stars observed with the spectrograph SOPHIE at the Observatoire de Haute‐Provence for which the chemical composition was incomplete or absent in the literature. For five stars, we derived the stellar parameters and chemical compositions using our automatic pipeline optimized for F, G, and K stars, while for the other two stars with high rotational velocity, we derived the stellar parameters by using other information (parallax), and performed a line‐by‐line analysis. Chromospheric emission‐line fluxes from Caii are obtained for all targets. The stellar parameters we derive are generally in good agreement with what is available in the literature. We provide a chemical analysis of two of the stars for the first time. The star HIP 80124 shows a strong Li feature at 670.8 nm implying a high lithium abundance. Its chemical pattern is not consistent with it being a solar sibling, as has been suggested. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We analyse a series of line profile observations of the He  i 6678 line in ζ Oph. A period analysis on these data using the mode and moments of the line profile confirms the two previously known periods. We describe a new method of mode identification for pulsating stars in which the calculated profiles are directly fitted to observed profiles. The method yields the full set of pulsational parameters including the spherical harmonic degree, ℓ, and azimuthal number, m . Application of the method to these data confirms the mode identifications previously suggested for the two periodicities. We find that the derived pulsational parameters are physically realistic and conclude that non-radial pulsation is the most likely explanation for the travelling subfeatures. However, a unique mode identification is still not possible – several non-sectorial modes fit the data as well as the usually adopted sectorial identifications. The predicted photometric amplitudes are in good accord with upper limits derived from photometric observations. We conclude that ζ Oph is a star in the β Cep instability strip in which two modes of high degree (probably ℓ=4 and ℓ=8) are excited. We present an interpretation of these findings in which the cause of the low-order line profile and light variations in periodic Be stars is corotating photospheric clouds, while the travelling subfeatures are incidental to the Be phenomenon and are a result of non-radial pulsation.  相似文献   

17.
Hitherto unstudied objects from Stephenson's list of Hα emission line objects at high galactic latitude were observed spectroscopically to prove their nature. 9 out of 11 objects show Hα in emission. Spectroscopy combined with photometric information indicates most of them being classical Be stars, while one object is a Post‐AGB star and one a T‐Tauri star. The classification of two objects, which are showing Hα in emission, is unclear. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Elemental abundances of the early A stars ε Ser, 29 Vul and σ Aqr are derived consistently with previous studies of this series using spectrograms obtained with Reticon and CCD detectors. The derived abundances confirm that ε Ser is a definite Am star. 29 Vul shows evidence for a weakly operating Am star phenomenon. σ Aqr, a hot Am star prototype, has abundances similar to those of o Peg, another class prototype.  相似文献   

19.
Asteroseismology of pre-main-sequence δ Scuti stars has the potential not only to provide unprecedented constraints on models of these stars, but also to allow for the possibility of detecting evolutionary period changes, thus providing a direct measure of the pre-main-sequence evolutionary time-scale. In the last two years, the published number of such stars known has doubled from four to eight. Searches are now being conducted amongst the Herbig Ae stars, which are considered to be excellent candidates. We announce the discovery of δ Scuti pulsation in one Herbig Ae star, HD 142666, which lies within Marconi & Palla's theoretically predicted instability strip for pre-main-sequence stars, making this the ninth known pre-main-sequence δ Scuti star. We also demonstrate a lack of δ Scuti pulsation in another such star, HD 142527.  相似文献   

20.
We search for stellar and substellar companions of young nearby stars to investigate stellar multiplicity and formation of stellar and substellar companions. We detect common proper‐motion companions of stars via multi‐epoch imaging. Their companionship is finally confirmed with photometry and spectroscopy. Here we report the discovery of a new co‐moving (13 σ) stellar companion ∼17.8 arcsec (350AU in projected separation) north of the nearby star HD141272 (21 pc).With EMMI/NTT optical spectroscopy we determined the spectral type of the companion to be M3±0.5V. The derived spectral type as well as the near infrared photometry of the companion are both fully consistent with a M dwarf located at the distance of HD141272 (21 pc). Furthermore the photometry data rules out the pre‐main sequence status, since the system is consistent with the ZAMS of the Pleiades. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号