首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 829 毫秒
1.
This study was conducted to explore the effects of topography and land use changes on particulate organic carbon(POC),particulate total nitrogen(PTN),organic carbon(OC) and total nitrogen(TN) associated with different size primary particle fractions in hilly regions of western Iran.Three popular land uses in the selected site including natural forest(NF),disturbed forest(DF) and cultivated land(CL) and three slope gradients(0-10 %,S1,10-30 %,S2,and 30-50%,S3) were employed as the basis of soil sampling.A total of 99 soil samples were taken from the 0-10 cm surface layer in the whole studied hilly region studied.The results showed that the POC in the forest land use in all slope gradients was considerably more than the deforested and cultivated lands and the highest value was observed at NF-S1 treatment with 9.13%.The values of PTN were significantly higher in the forest land use and in the down slopes(0.5%) than in the deforested and cultivated counterparts and steep slopes(0.09%) except for the CL land use.The C:N ratios in POC fraction were around 17-18 in the forest land and around 23 in the cultivated land.In forest land,the silt-associated OC was highest among the primary particles.The enrichment factor of SOC,EC,was the highest for POC.For the primary particles,EC of both primary fractions of silt and clay showed following trend for selected land uses and slope gradients:CL> DF> NF and S3 > S2> S1.Slope gradient of landscape significantly affected the OC and TN contents associated with the silt and clay particles,whereas higher OC and TN contents were observed in lower positions and the lowest value was measured in the steep slopes.Overall,the results showed that native forest land improves soil organic carbon storage and can reduce the carbon emission and soil erosion especially in the mountainous regions with high rainfall in west of Iran.  相似文献   

2.
The urban population and urbanized land in China have both increased markedly since the 1980s. Urban and suburban developments have grown at unprecedented rates with unknown consequences for ecosystem functions. In particular, the effect of rapid urbanization on the storage of soil carbon has not been studied extensively. In this study, we compared the soil carbon stocks of different land use types in Beijing Municipality. We collected 490 top-soil samples (top 20 cm) from urban and suburban sites within the Sixth Ring Road of Beijing, which cover approximately 2400 km2, and the densities of soil organic carbon (SOC), soil inorganic carbon (SIC), and total carbon (TC) were analyzed to determine the spatial distribution of urban and suburban soil carbon characteristics across seven land use types. The results revealed significant differences in soil carbon densities among land use types. Additionally, urban soil had significantly higher SOC and SIC densities than suburban soil did, and suburban shelterbelts and productive plantations had lower SIC densities than the other land use types. The comparison of coefficients of variance (CVs) showed that carbon content of urban topsoil had a lower variability than that of suburban topsoil. Further findings revealed that soil carbon storage increased with built-up age. Ur- ban soil built up for more than 20 years had higher densities of SOC, SIC and TC than both urban soil with less than 10 years and sub- urban soil. Correlation analyses indicated the existence of a significantly negative correlation between the SOC, SIC, and TC densities of urban soil and the distance to the urban core, and the distance variable alone explained 23.3% of the variation of SIC density and 13.8% of the variation of TC density. These results indicate that SOC and SIC accumulate in the urban topsoil under green space as a result of the conversion of agricultural land to urban land due to the urbanization in Beijing.  相似文献   

3.
The dynamics of soil organic carbon(SOC)in cropland is one of the central issues related to both soil fertility and environmental safety. However, little information is available at county level regarding the spatiotemporal variability of SOC in the southwestern mountainous region of China. Thus, this study aimed to explore spatiotemporal changes of SOC in the cultivated soil layer of dry land in Mojiang County,Yunnan Province, China. Data were obtained from the second national soil survey(SNSS) of 1985 and soil tests for fertilizer application carried out by the Mojiang Agricultural Bureau in 2006. The ANOVA test was applied to determine any significant differences between the datasets, while semivariogram analysis was performed on geostatistics via an ordinary Kriging method in order to map spatial patterns of soil organic carbon density(SOCD). The results revealed that SOCD in the cultivated soil layer significantly decreased from 3.93 kg m~(-2) in 1985 to 2.89 kg m~(-2) in 2006, with a total soil organic carbon stock(SOCS) decrease of 41.54×10~4 t over the same period. SOCS levels fell most markedly in yellow-brown soil at a rate of51.52%, while an increase of 8.70% was found in the analysed latosol. Geostatistical analysis also showed that the recorded changes in SOCD between 1985 and2006 were spatially structured. The decreasing trend might be attributed to the combined action of intense cultivation, major crop residue removal without any protective tillage measures, unreasonable fertilization and natural climatic diversity inducing a large decrease in SOC in the studied cultivated dry land region of Mojiang County. Therefore, management measures such as protective tillage should be undertaken in order to enhance soil C sequestration.  相似文献   

4.
Rapid urbanization results in the conversion of natural soil to urban soil,and consequently,the storage and density of the soil carbon pools change.Taking Chongqing Municipality of China as a study case,this investigation attempts to better understand soil carbon pools in hilly cities.First,the vegetated areas in the study area were derived from QuickBird images.Then,topsoil data from 220 soil samples(0-20 cm) in the vegetated areas were collected and their soil organic carbon(SOC) densities were analyzed.Using the Kriging interpolation method,the spatial pattern of SOC was estimated.The results show that the SOC density exhibited high spatial variability in the urban topsoil of Chongqing.First,the SOC density in topsoil decreased according to slope in the order 2°-6° < 25°-90° < 0°-2° < 6°-15° < 15°-25°.Second,the newly developed areas during 2001-2010 had a lower SOC density than the areas built before 1988.Third,urban parks and gardens had a higher SOC density in topsoil,residential green land followed,and scattered street green land ranked last.For hilly cities,the variability of terrain affects the distribution of SOC.The Kriging results indicate that Kriging method combining slope with SOC density produced a high level of accuracy.The Kriging results show that the SOC density to the north of the Jialing River was higher than the south.The vegetated areas were estimated to amount to 73.5 km2 across the study area with an SOC storage of 0.192 Tg and an average density of 2.61 kg/m2.  相似文献   

5.
Alpine grassland soils on Qinghai-Tibet Plateau store approximately 33.5 Pg of organic carbon(C) at 0–0.75 m depth and play an important role in the global carbon cycle.We investigated soil organic C(SOC),water-soluble organic C(WSOC),easily oxidizable organic C(EOC),humic C fractions,aggregate-associated C,aggregate stability,and humic acid(HA) composition along an east-west transect across Qinghai-Tibet Plateau,and explored their spatial patterns and controlling factors.The contents of SOC,WSOC,EOC,humic C fractions and aggregate-associated C,the proportions of macroaggregates(2-0.25) and micro-aggregates(0.25-0.053 mm),and the aggregate stability indices all increased in the order alpine desert alpine steppe alpine meadow.The alkyl C,O-alkyl C,and aliphatic C/aromatic C ratio of HA increased as alpine desert alpine meadow alpine steppe,and the trends were reverse for the aromatic C and HB/HI ratio.Mean annual precipitation and aboveground biomass weresignificantly correlated with the contents of SOC and its fractions,the proportions of macro- and microaggregates,and the aggregate stability indices along this transect.Among all these C fractions,SOC content and aggregate stability were more closely associated with humic C and silt and clay sized C in comparison with WSOC,EOC,and macro- and microaggregate C.The results suggested that alpine meadow soils containing higher SOC exhibited high soil aggregation and aggregate stability.Mean annual precipitation should be the main climate factor controlling the spatial patterns of SOC,soil aggregation,and aggregate stability in this region.The resistant and stable C fractions rather than labile C fractions are the major determinant of SOC stocks and aggregate stability.  相似文献   

6.
The Middle Mountains is one of the regions of Nepal most vulnerable to water erosion, where fragile geology, steep topography, anomalous climatic conditions, and intensive human activity have resulted in serious soil erosion and enhanced land degradation. Based on the 137Cs tracing method, spatial variations in soil erosion, organic carbon, and total nitrogen (TN) in terraced fields lacking field banks and forestland were determined. Soil samples were collected at approximately 5 m and 20 m intervals along terraced field series and forestland transects respectively. Mean 137Cs inventories of the four soil cores from the reference site was estimated at 574.33 ± 126.22 Bq m-2 (1 Bq (i.e., one Becquerel) is equal to 1 disintegration per second (1 dps)). For each terrace, the 137Cs inventory generally increased from upper to lower slope positions, accompanied by a decrease in the soil erosion rate. Along the entire terraced toposequence, 137Cs data showed that abrupt changes in soil erosion rates could occur between the lower part of the upper terrace and the upper part of the immediate terrace within a small distance. This result indicated that tillage erosion is also a dominant erosion type in the sloping farmland of this area. At the same time, we observed a fluctuant decrease in soil erosion rates for the whole terraced toposequence as well as a net deposition at the toe terrace. Although steep terraces (lacking banks and hedgerows) to some extent could act to limit soil sediment accumulation in catchments, soil erosion in the terraced field was determined to be serious. For forestland, with the exception of serious soil erosion that had taken place at the top of slopes due to concentrated flows from a country road situated above the forestland site, spatial variation in soil erosion was similar to the “standard” water erosion model. Soil organic carbon (SOC) and TN inventories showed similar spatial patterns to the 137Cs inventory for both toposequences investigated. However, due to the different dominant erosion processes between the two, we found similar patterns between the <0.002 mm soil particle size fraction (clay sized) and 137Cs inventories in terraced fields, while different patterns could be found between 137Cs inventories and the <0.002 mm soil particle size fraction in the forestland site. Such results confirm that 137Cs can successfully trace soil erosion, SOC and soil nitrogen dynamics in steep terraced fields and forestland in the Middle Mountains of Nepal.  相似文献   

7.
Accurate estimate of soil carbon storage is essential to reveal the role of soil in global carbon cycle. However, there is large uncertainty on the estimation of soil organic carbon (SOC) storage in grassland among previous studies, and the study on soil inorganic carbon (SIC) is still lack. We surveyed 153 sites during plant peak growing season and estimated SOC and SIC for temperate desert, temperate steppe, alpine steppe, steppe meadow, alpine meadow and swamp, which covered main grassland in the Qinghai Plateau during 2011 to 2012. The results showed that the vertical and spatial distributions of SOC and SIC varied by grassland types. The SOC amount mainly decreased from southeast to northwest, whereas the SIC amount increased from southeast to northwest. The magnitude of SOC amount in the top 50 cm across grassland types ranked by: swamp > alpine meadow > steppe meadow > temperate steppe > alpine steppe > temperate desert, while the SIC amount showed an opposite order. There was a great deal of variation in proportion of SOC and SIC among different grassland types (from 55.17 to 94.59 for SOC and 5.14 to 44.83 for SIC). The total SOC and SIC storage was 5.78 Pg and 1.37 Pg, respectively, in the top 50 cm of soil in Qinghai Province. The mixed linear model revealed that grassland types was the predominant factor in spatial variations of SOC amount while grassland types and soil pH accounted for those of SIC amount. Our results suggested that the community shift of alpine meadow towards alpine grassland induced by climate warming would decrease carbon sequestration capacity by 6.0 kg C m2.  相似文献   

8.
Li  Dong  Zhao  Jun  Liu  Chenggang  Sun  Chengjun  Chen  Jianfang  Pan  Jianming  Han  Zhengbing  Hu  Ji 《中国海洋湖沼学报》2020,38(3):619-633
Journal of Oceanology and Limnology - Knowledge about organic carbon loadings (ratio of sedimentary organic carbon (SOC) content to specific surface area (SSA)) and the fate of organic carbon (OC)...  相似文献   

9.
Soil carbon and nutrient contents and their importance in advancing our understanding of biogeochemical cycling in terrestrial ecosystem, has motivated ecologists to find their spatial patterns in various geographical area. Few studies have focused on changes in the physical and chemical properties of soils at high altitudes. Our aim was to identify the spatial distribution of soil physical and chemical properties in cold and arid climatic region. We also tried to explore relationship between soil organic carbon (SOC) and total nitrogen (TN), total phosphorus (TP), available nitrogen (AN), available phosphorus (AP), soil particle size distribution (PSD). Samples were collected at 44 sites along a 300 km transect across the alpine grassland of northern Tibet. The study results showed that grassland type was the main factor influencing SOC, TN and TP distribution along the Gangdise Mountain-Shenzha-Shuanghu Transect. SOC, TN and TP contents were significantly higher in alpine meadow than alpine steppe ecosystems. SOC, TN, TP and AN contents in two soil layers (0-15 cm and 15-30 cm) showed no significant differences, while AP content in top soil (0-15 cm) was significantly higher than that in sub-top soil (15-30 cm). SOC content was correlated positively with TN and TP content (r = 0.901 and 0.510, respectively). No correlations were detected for clay content and fractal dimension of particle size distribution (D). Our study results indicated the effects of vegetation on soil C, N and P seem to be more important than that of rocks itself along latitude gradient on the northern Tibetan Plateau. However, we did not found similar impacts of vegetation on soil properties in depth. Inaddition, this study also provided an interesting contribution to the global data pool on soil carbon stocks.  相似文献   

10.
Soil organic carbon (SOC) plays an important role in global carbon cycles.Large spatial variations in SOC contents result in uncertain estimates of the SOC pool and its changes.In the present study,the key variables explaining the SOC contents of croplands (CPs) and non-croplands (NCPs) in Chinese provinces were investigated.Data on SOC and other soil properties (obtained from the Second National Soil Survey conducted in the late 1970s to the early 1990s),climate parameters,as well as the proportion of the CP to the total land area (Pcp) were used.SOC content variations within a province were larger than those among provinces.Soil clay and total phosphorus content,ratio of annual precipitation to mean temperature,as well as Pcp were able to explain 75% of the SOC content variations in whole soil samples.Soil pH,mean temperature during the growing season from May to October,and mean annual wind velocity were able to explain 63% of the SOC content variations in NCP soils.Compared with NCP soils,CP soils had lower SOC contents,with smaller variations within and among provinces and lower C/N ratios.Stepwise regression showed that the soil clay content was a unique factor significantly correlated with the SOC content of CP soils.However,this factor only explained 24% of the variations.This result suggested that variables related to human activities had greater effects on SOC content variations in CP soils than soil properties and climate parameters.Based on SOC contents directly averaged from soil samples and estimated by regression equations,the total SOC pool in the topsoil (0-20 cm) of China was estimated at 60.02 Pg and 57.6 Pg.Thousands of years of intensive cultivation in China resulted in CP topsoil SOC loss of 4.34-4.98 Pg.  相似文献   

11.
准确预测未采样区域SOC密度,是研究SOC演变趋势和探索土壤固碳作用对缓解全球气候变化的基础。采用泛克里格法(Universal Kriging,UK)和土壤类型法(pedological professional knowledge-based method,PKB),分别对长兴县水稻土有机碳密度进行了预测,其中,UK直接以长兴水稻土剖面资料为源数据、PKB以长兴水稻土剖面数据和长兴1∶5万数字土壤图为源数据进行预测。根据平均绝对误差(MAE)及均方根误差(RMSE)大小,评价了两种方法在县域尺度土壤有机碳密度空间预测效果。结果表明:UK的MAE(31.2)、RMSE(52.5)均大于PKB的MAE(24.7)、RMSE(43.1),说明PKB法的预测效果较好,UK法相对较差。研究表明,对土壤类型、土壤母质,以及剖面点位置等信息的综合考虑能使PKB法更好地表达土壤属性的空间特征,也更适于县域尺度土壤有机碳密度的空间预测。  相似文献   

12.
A field experiment was conducted in Jungar Banner, Inner Mongolia, China to study the effects of plant types on the physical structure and chemical properties of open-cast mining soils reclaimed for 15 years, and to analyze the triggering factors of the soil formation. Results indicate that plant types affect soil-forming process especially in the upper layer (0–20 cm), and the spatial structure of reclaimed plant is the main reason for variability of the soil-forming process. In the upper soil layer at the site reclaimed with mixed plants, the concentrations of soil organic matter (SOM) and soil organic carbon (SOC) are the highest, and they were significantly higher at the sites reclaimed with Leymus chinensis, Caragana sinica, which is mainly due to a large amount of litter fall and root exudation in herbages and shrubs. However, the concentrations of SOM and SOC in the soils at the reclaimed sites are quite low comparing with those in local primary soil, which indicates the importance of using organic amendments during the ecological restoration in the study area.  相似文献   

13.
Labile organic carbon(LOC) and carbon management index(CMI), which are sensitive factors to the changes of environment, can improve evaluating the effect of land management practices changes on soil quality. The objective of this study was to investigate the effects of land use types and landscape positions on soil quality as a function of LOC and CMI. A field study in a small watershed in the red soil hilly region of southern China was conducted, and soil samples were collected from four typical lands(pine forest(PF) on slope land, barren hill(BH) on slope land, citrus orchard(CO) on terrace land and Cinnarnornum Camphora(CC) on terrace land) at a sampling depth of 20 cm. Soil nutrients, soil organic carbon(SOC), LOC and CMI were measured. Results showed that the LOC and CMI correlated to not only soil carbon but also soil nutrients, and the values of LOC and CMI in different land use types followed the order CC PF CO BH at the upperslope, while CO CC BH PF at mid-slope and down-slope. With respect to slope positions, the values of LOC and CMI in all the lands were followed the order: upper-slope down-slope midslope. As whole, the mean values of LOC and CMI in different lands followed the order CC CO PF BH. High CMI and LOC content were found in the terrace lands with broadleaf vegetations. These results indicated that the terracing and appropriate vegetations can increase the carbon input and lability and decrease soil erosion. However, the carbon pools and CMI in these lands were significantly lower than that in reference site. This suggested that it may require a long time for the soil to return to a highquality. Consequently, it is an efficient way to adopt the measures of terracing and appropriate vegetations planting in improving the content of LOC and CMI and controlling water and soil loss in fragile ecosystems.  相似文献   

14.
The net effect of tillage erosion on soil properties would be associated with the spatial variation in soil constituents,and therefore plays an important role in ecological agriculture.We conducted a consecutive tillage by hoeing 15 times during a period with no rainfall in the two slope landscapes(a linear slope and complex slope) of the Yangtze Three Gorges reservoir areas,to examine the relationship between soil erosion rates and the variations in soil chemical properties and compare the effects of soil redistribution on SOC and nutrients between the linear and complex slopes.After the simulated tillage,notable changes in 137 Cs inventories of the soil occurred in the summit and toeslope positions on the linear slope,while there were significant changes in 137 Cs inventories at convex and concave positions on the complex slope.Soil profile disappeared at the summit slope boundary,with the exposure area of 16.0% and 7.6% of the experimental plot,respectively,for the linear and complex slopes due to no soil replacement.Soil organic C and nutrients were completely depleted with the disappearance of soil profiles at soil eroding zones,whereas a remarkable increase in SOC,total N and available nutrient concentrations of the post-tillage surface soil and a decrease in total nutrient concentrations(P and K) were found at depositional zones on the linear slope.For the complex slope,however,changes in SOC and nutrient concentrations of the post-tillage surface soil exhibited a patterndifferent from that on the linear slope,which showed a remarkable decrease in SOC and total nutrient concentrations but a slight increase in available nutrient concentrations after tillage in the toeslope position.Due to the gradual increase in soil depth from top to bottom of the slope,SOC and nutrient inventories in the soil profiles were significantly correlated with soil redistribution rates on both the linear and complex slopes.Tillage causes remarkable changes of soil chemical properties in the surface soil layer and soil profile,and increases SOC and nutrient inventories for the soil profile downslope in steeply sloping landscapes.  相似文献   

15.
The purpose of this study was to assess the effect of long-term cultivation and water erosion on the soil organic carbon (OC) in particle-size fractions. The study site is located at Nihegou Watershed in the Southern Loess Plateau, China. The soil at this site is loess with loose and silty structure, and contains macropores. The results showed that the OC concentrations in sediments and in the particle-size fractions of sediments were higher than those in soils and in the particle-size fractions of soils. The OC concentration was highest in the clay particles and was lowest in the sand particles. Clay particles possessed higher OC enrichment ability than silt and sand particles. The proportions of OC in the silt fractions of soil and sediment were the highest (mean value of 53.87% and 58.48%, respectively), and the total proportion of OC in the clay and silt fractions accounted for 96% and 98% of the total OC in the soil and sediment, respectively. The loss of OC was highest in silt particles, with an average value of 0.16 Mg ha^-1 y^-1, and was lowest in the sand (0.003 Mg ha^-1 y^-l). This result suggests that the fine particle-size fraction in the removed sediment may be an important indicator to assess soil OC losses.  相似文献   

16.
Plant invasion alters the fundamental structure and function of native ecosystems by affecting the biogeochemical pools and fluxes of materials and energy. Native (Suaeda salsa) and invasive (Spartina alterniflora) salt marshes were selected to study the effects of Spartina alterniflora invasion on soil organic carbon (SOC) contents and stocks in the Yellow River Delta. Results showed that the SOC contents (g/kg) and stocks (kg/m2) were significantly increased (P < 0.05) after Spartina alterniflora invasion of seven years, especially for the surface soil layer (0–20 cm). The SOC contents exhibited an even distribution along the soil profiles in native salt marshes, while the SOC contents were gradually decreased with depth after Spartina alterniflora invasion of seven years. The natural ln response ratios (LnRR) were applied to identify the effects of short-term Spartina alterniflora invasion on the SOC stocks. We also found that Spartina alterniflora invasion might cause soil organic carbon losses in a short-term phase (2–4 years in this study) due to the negative LnRR values, especially for 20–60 cm depth. And the SOCD in surface layer (0–20 cm) do not increase linearly with the invasive age. Spearman correlation analysis revealed that silt + clay content was exponentially related with SOC in surface layer (Adjusted R2 = 0.43, P < 0.001), suggesting that soil texture could play a key role in SOC sequestration of coastal salt marshes.  相似文献   

17.
通过测定雷州半岛南部845个耕地土壤样品pH、有机质、全氮、有效磷、速效钾、碱解氮的含量,采用层次分析法确定各肥力评价指标权重,应用模糊数学法对该区域耕地土壤肥力进行综合评价,并利用ArcGIS 9.2软件对土壤肥力空间变异进行分析.结果表明:雷州半岛南部土壤有机质、全氮、有效磷、速效钾、碱解氮平均值分别为26.18 g/kg、1.48 g/kg 、34.63 mg/kg、158.57 mg/kg、133.17 mg/kg;土壤速效磷的变异系数最高,为103.14%,属强变异性,有机质、速效钾、碱解氮、全氮的变异系数属中等变异性,pH值的变异系数最小.土壤肥力总体水平处于中等偏低;从空间分布来看,土壤肥力中部高,东北、西南部相对较低  相似文献   

18.
Limited information is available about factors of soil organic carbon(SOC) preservation in soils along a climo-biosequence. The objective of this study was to evaluate the role of soil texture and mineralogy on preservation of SOC in the topsoil and subsoil along a climo-biosequence in the Main Range of Peninsular Malaysia. Soil samples from the A and B-horizons of four representative soil profiles were subjected to particle-size fractionation and mineralogical analyses including X-ray diffraction and selective dissolution. The proportion of SOC in the 250-2000 μm fraction(SOC associated with coarse sand) decreased while the proportion of SOC in the 53 μm fraction(SOC associated with clay and silt)increased with depth. This reflected the importance of the fine mineral fractions of the soil matrix for SOC storage in the subsoil. Close relationships between the content of SOC in the 53 μm fraction and the content of poorly crystalline Fe oxides [oxalate-extractable Fe(Fe_o) – pyrophosphate-extractable Fe(Fe_p)] and poorly crystalline inorganic forms of Al [oxalateextractable Al(Al_o) – pyrophosphate-extractable Al(Al_p)] in the B-horizon indicated the importance of poorly crystalline Fe oxides and poorly crystalline aluminosilicates for the preservation of SOC in the Bhorizon. The increasing trend of Fe_o-Fe_p and Al_o-Al_p over elevation suggest that the importance of poorly crystalline Fe oxides and poorly crystalline aluminosilicates for the preservation of SOC in the Bhorizon increased with increasing elevation. This study demonstrates that regardless of differences in climate and vegetation along the studied climobiosequence, preservation of SOC in the subsoil depends on clay mineralogy.  相似文献   

19.
基于流域过程模型的BMP情景分析是当前流域管理措施评价、非点源污染控制等研究应用中广泛采用的方法,但其通常采用的BMP空间配置单元(地块、农场、水文响应单元或子流域)与坡面上的地形部位关系较弱,难以有效地根据坡面过程特点表达坡面上多种BMP之间的空间配置关系,影响了BMP情景优化效率和结果的合理性。为此,本文提出以坡位单元作为BMP空间配置单元,将各种BMP在不同坡位间合理的空间配置关系显式表达为基于坡位的空间配置规则,通过结合NSGA-II优化算法建立了一套基于坡位单元的BMP空间配置优化方法。应用案例表明,本文构建的基于坡位单元的BMP情景优化方法可有效利用基于坡位的空间配置规则进行BMP情景优化,优化所得的BMP空间配置方案更为合理,优化效率较高。  相似文献   

20.
Assessing and managing the spatial variability of hydropedological properties are important in environmental,agricultural,and geological sciences.The spatial variability of soil apparent electrical conductivity(ECa) measured by electromagnetic induction(EMI) techniques has been widely used to infer the spatial variability of hydrological and pedological properties.In this study,temporal stability analysis was conducted for measuring repeatedly soil ECa in an agricultural landscape in 2008.Such temporal stability was statistically compared with the soil moisture,terrain indices(slope,topographic wetness index(TWI),and profile curvature),and soil properties(particle size distribution,depth to bedrock,Mn mottle content,and soil type).Locations with great and temporally unstable soil ECa were also associated with great and unstable soil moisture,respectively.Soil ECa were greater and more unstable in the areas with great TWI(TWI 〉 8),gentle and concave slope(slope 〈 3%; profile curvature 〉 0.2).Soil ECa exponentially increased with depth to bedrock,and soil profile silt and Mn mottle contents(R2= 0.57),quadratically(R2 = 0.47),and linearly(R 2 = 0.47),respectively.Soil ECa was greater and more unstable in Gleysol and Nitosol soils,which were distributed in areas with low elevation(〈 380 m),thick soil solum(〉 3 m),and fluctuated water table(shallow in winter and spring but deep in summer and fall).In contrast,Acrisol,Luvisol,and Cambisol soils,which are distributed in the upper slope areas,had lower and more stable soil ECa.Through these observations,we concluded that the temporal stability of soil ECa can be used to interpret the spatial and temporal variability of these hydropedological properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号