首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Raindrop size,rainfall intensity and runoff discharge affect the detachment and transportation of soil particles.Among these three factors,the rainfall intensity seems to be more important because it can change other two factors.Storm patterns can be determined by changing the rainfall intensity during the storm.Therefore,the objective of this research is to test the influence of storm pattern on runoff,soil erosion and sediment concentration on a rangeland soil slope under field rainfall simulation.Four storm rainfall intensity patterns were selected for examining the effects of variations in storm event characteristics on soil erosion processes.The selected storm patterns were:I(45,55 and 70 mm h-1);II(45,70 and 55 mm h-1);III:(70,55 and 45 mm h-1);and IV(55,45 and 70 mm h1).The last pattern is a new one instead of the uniform pattern which has been sufficiently studied in previous researches.The experiments were conducted in field plots(in Kojour watershed,Mazandaran Province,Iran)with an area of one square meter and an constant slope gradient of 18%,surrounded by galvanised sheets.Following the nonuniform prioritization of the storm patterns for the studied variables,time to runoff(I>II>IV>III),runoff volume(III>IV>II>I),sediment concentration(IV>III>I>II)and soil erosion(III>IV>II>I)),it can be generally inferred that each pattern has specific effect on soil erosion processes during a storm.The results of the general linear model(GLM)test indicated that the effects of storm pattern on time to runoff,total runoff volume,runoff coefficient and soil erosion were significant at a level of 99%.The Duncan test showed that the storm patterns can be divided into three groups of III,IV;II;I(for time to runoff),I,II;IV,III(for runoff coefficient),and I;II;IV,III(for runoff volume and soil erosion).  相似文献   

2.
《山地科学学报》2020,17(2):423-434
Intercropping, as an overyielding system, can decrease soil erosion on sloping land through the presence of dense canopy covers. However, the structure mechanism in canopy is still unclear. We conducted a two-year field experiment on runoff plots, exploring whether the interaction between vegetation layers reduce soil erosion in maize and potato intercropping systems. The maize, potato, and weed layers in the intercropping system were removed by a single layer, two layers and three layers, respectively(total of 8 treatments including all layers removed as the control). Then, throughfall, runoff and sediment were measured at the plot and row scale on a weekly basis. Based on the difference between each treatment and the control, we calculated and found a relative reduction of runoff and sediment by any combination of the two vegetation layers greater than the sum of each single layer. In 2016 and 2017, the highest relative reduction of runoff reached 15.65% and 46.73%, respectively. Sediment loss decreased by 33.96% and 42.77%, respectively. Moreover, runoffand sediment reduced by the combination of all vegetation layers(no layers removed) was also larger than the sum of that by each single layer. In 2016 and 2017, the highest relative reduction of runoff reached 7.32% and 3.48%, respectively. So, there were synergistic effects among multi-level(two or three layers) vegetation layers in terms of decreasing soil erosion on sloping land. Maize redistributes more throughfall at the maize intra-specific row and the maize and potato inter-specific, which is favorable for the synergistic effect of reducing soil erosion. This finding shows an important mechanism of maize and potato intercropping for soil and water conservation, and may promote the application of diverse cropping systems for sustainable agriculture in mountainous areas.  相似文献   

3.
Purple soil is highly susceptible for overland flow and surface erosion, therefore understanding surface runoff and soil erosion processes in the purple soil region are important to mitigate flooding and erosion hazards. Slope angle is an important parameter that affects the magnitude of runoff and thus surface erosion in hilly landscapes or bare land area. However, the effect of slope on runoff generation remains unclear in many different soils including Chinese purple soil. The aim of this study was to investigate the relationship between different slope gradients and surface runoff for bare-fallow purple soil, using 5 m × 1.5 m experimental plots under natural rainfall conditions. Four experimental plots(10°, 16°, 20° and 26°) were established in theYanting Agro-ecological Experimental Station of Chinese Academy of Science in central Sichuan Basin. The plot was equipped with water storage tank to monitor water level change. Field monitoring from July 1 to October 31, 2012 observed 42 rainfall events which produced surface runoff from the experimental plots. These water level changes were converted to runoff. The representative eight rainfall events were selected for further analysis, the relationship between slope and runoff coefficient were determined using ANOVA, F-test, and z-score analysis. The results indicated a strong correlation between rainfall and runoff in cumulative amount basis. The mean value of the measured runoff coefficient for four experimental plots was around 0.1. However, no statistically significant relationship was found between slope and runoff coefficient. We reviewed the relationship between slope and runoff in many previous studiesand calculated z-score to compare with our experimental results. The results of z-score analysis indicated that both positive and negative effects of slope on runoff coefficient were obtained, however a moderate gradient(16°-20° in this study) could be a threshold of runoff generation for many different soils including the Chinese purple soil.  相似文献   

4.
Soil erosion in hilly areas of the Sichuan Basin is a serious concern over sustainable crop production and sound ecosystem. A 3-year experiment was conducted using the method of runoff plots to examine the effects of terracing and agroforestry in farmland systems on soil and water conservation of slope fields in the hilly areas in Jianyang County, Sichuan Province, Southwestern China. A power function (Y = aX^b) can statistically describe the relationship between water runoff (Y) and rainfall (X). The regression equation for the treatment of sloping terraces with crops (Plot 2) is remarkably different from that for the treatment of sloping terraces with grasses and trees (Plot 1) and the conventional up- and down-slope crop system (Plot 3) regarding equation coefficients, while regression equations are similar between Plot 1 and Plot 3. Water runoff amount and runoff coefficient of slope fields increased by 21.5-41.0 % and 27.5 - 69.7 % respectively, compared to those of sloping terraces, suggesting that terracing notably reduced the water runoff in the field. In the case of sloping terraces, lower amount of water runoff was observed on sloping terraces with crops than on sloping terraces with grasses and trees. Sediment yields on the slope fields in the normal year of rainfall distribution were notably higher (34.41 - 331.67 % and 37.06-403.44 % for Plot 1 and Plot 2, respectively) than those on sloping terraces, implying that terracing also plays a significant role in the reduction in soil erosion. It is suggested that terracing with crops is significantly effective for soil and water conservation in cultivated farmland, while the conventional practice of up- and down- slope cultivation creates high rates of water runoff and soil sediment transport. Terracing with grasses and fruit trees shows a less reduction in water runoff than terracing with crops, which was observed in the 3-year experiments.  相似文献   

5.
Under global warming, storm events tend to intensify, particularly in monsoon-affected regions.As an important agricultural area in China, the purple soil region in the Sichuan Basin, where it has a prevailing monsoon climate, is threatened by serious soil erosion. Tillage operations alter runoff and soil erosion processes on croplands by changing the physical properties of the soil surface. To clarify the relationship between tillage and soil erosion in the purple soil region, three different tillage practices in this region were investigated at the plot scale over 4 years: bare land with minimum tillage(BL),conventional tillage(CT) and seasonal no-tillage ridges(SNTR) which was initially designed to prevent soil erosion by contoured ridges and no-tillage techniques. The results showed that although there were no significant differences in the surface runoff and soil erosion among the three practices, BL causedrelatively high surface runoff and soil erosion,followed by CT and SNTR. Classification and comparison of the rainfall events based on cluster analysis(CA) verified that the surface runoff was not significantly different between most intensive event and long intensive events but was significantly different between most intensive and short and medium-duration events. Only the rainfall events with the highest rainfall intensity could trigger serious soil erosion, up to 1000 kg ha-1 in the region. Further detailed investigations on the effects of tillage operations on the soil erosion in a subtropical region with a monsoon climate are needed to provide a basis for modeling catchments and designing better management practices.  相似文献   

6.
Post-fire field measurements of sediment and run off yield were undertaken in natural rainfall event-basis during five rainy months in Korea on a total of 15 small plots: four replica burned unseeded plots, six replica burned seeded plots, and five replica unburned plots. The main aim was to evaluate the effects of vegetation recovery and spatial distribution patterns on sediment and runoff response between and within the treatment replica erosion plots. Six-years after the wildfire, total sediment and runoff yield in the burned unseeded plots with 20%-30% vegetation cover was still 120.8 and 20.6 times higher than in the unburned treatment plots with 100% ground cover, 8.3 and 6.7 times higher than in the burned seeded plots with 70%-80% vegetation cover, while only 1.6 and 2.0 times higher than in the burned seeded plots with 50%-60% vegetation cover, respectively. The differences in sediment and runoff yield between the treatment plots was proportional to total vegetation cover, distance of bare soil to vegetation cover, magnitude of rainfall characteristics and changes in soil properties, but not slope gradient. Three out of the six within-treatment pairs of two replica plots showed large differences in sediment and runoff yield of up to 6.0 and 4.2 times and mean CV of up to 99.1% and 62.2%, respectively. This was due to differences in the spatial distribution patterns of surface cover features, including aggregation of vegetation and litter covers, the distance of bare soil exposed to vegetation cover closer to the plot sediment collector and micro topographic mounds and sinks between pairs of replica plots. Small differences in sediment and runoff of only 0.9-1.4 folds and mean CV of 8.6%-25% were observed where the within-treatment pairs of replica plots had similar slope, total surface cover components and comparable spatial distribution pattern of vegetation and bare soil exposed surface covers. The results indicated that post-fire hillslopes undergoing effective vegetation recovery have the potential to reduce sediment and runoff production nearer to unburned levels within 6-years after burning while wildfire impacts could last more than 6-years on burned unseeded ridge slopes undergoing slow vegetation recovery.  相似文献   

7.
Xichou County of Wenshan Zhuang and Miao Autonomous Prefecture in southeast Yunnan is one of the karst mountainous areas in southwest China showing typical rock desertification. During this study, we set up three soil erosion contrast test spots at Muzhe Village, Benggu Township, Xichou County, which was the birthplace of the Xichou rock-desertified land consolidation mode. The three spots included the terrace land spot (already consolidated land), sloping land spot (unconsolidated sloping land under rock desertification), and standard runoff spot (bare land spot). In 2007, a whole-year complete observation was conducted during the rainy season and "rainfall-erosion" data were obtained for 32 times. Our analysis showed that during the entire observation period, the number of the rainfalls that led to soil erosion accounted for 34.04% of the number of all rainfalls and the amount of the rainfalls that led to soil erosion accounted for 84.17% of the total amount of all rainfalls. The average erosive rainfall standard in the three test spots was 11.0 mm, slightly higher than the 10 mm standard that has been adopted all over China, but lower than the 12.7 mm standard of the US and the 13.0 mm standard of Japan. According to single-factor analysis, the soil loss in the sloping land spot (L2) and that in the bare land spot (L3) are correlated to certain extent to many other factors, including the single precipitation (P), rainfall intensity during the maximum ten minutes (I10), rainfall intensity during the maximum 20 minutes (I20), rainfall intensity during the maximum 30 minutes (I30), rainfall intensity during the maximum 40 minutes (I40), and rainfall intensity during the maximum 60 minutes (I60). Among these factors, they are of the highest relativity with I60. According to double-factor analysis, both L2 and L3 are of good relativity with P and I60. According to multi-factor analysis, L2 and L3 are also of good relativity with seven rainfall indexes, namely, P, Ia (average rainfall intensity), I10, I20, I30, I40, and I60, with their related coefficient R reaching 0.906 and 0.914, respectively. The annual soil losses in the three test spots are widely different: 1030.70 t/km2·a in the terrace land spot, which indicates a low-level erosion; 12913.22 t/km2·a in the sloping land spot (unconsolidated spot), some 12.5 times than that in the terrace land spot, which indicates an ultra-high-level erosion; and 19511.67 t/km2·a in the bare land spot, some 18.9 times than that in terrace land spot, indicating an acute erosion. These figures fully show that the Xichou rock-desertified land consolidation mode plays a significant role in soil conservation.  相似文献   

8.
Improved understanding of the effect of shrub cover on soil erosion process will provide valuable information for soil and water conservation programs.Laboratory rainfall simulations were conducted to determine the effects of shrubs on runoff and soil erosion and to ascertain the relationship between the rate of soil loss and the runoff hydrodynamic characteristics.In these simulations a 20° slope was subjected to rainfall intensities of 45,87,and 127 mm/h.The average runoff rates ranged from 0.51 to 1.26 mm/min for bare soil plots and 0.15 to 0.96 mm/min for shrub plots.Average soil loss rates varied from 44.19 to 114.61 g/(min·m~2) for bare soil plots and from 5.61 to 84.58 g/(min·m~2) for shrub plots.There was a positive correlation between runoff and soil loss for the bare soil plots,and soil loss increased with increased runoff for shrub plots only when rainfall intensity is 127 mm/h.Runoff and soil erosion processes were strongly influenced by soil surface conditions because of the formation of erosion pits and rills.The unit stream power was the optimal hydrodynamic parameter to characterize the soil erosion mechanisms.The soil loss rate increased linearly with the unit stream power on both shrub and bare soil plots.Critical unit stream power values were 0.004 m/s for bare soil plots and 0.017 m/s for shrub plots.  相似文献   

9.
Subsurface flow processes in sloping cropland of purple soil   总被引:3,自引:1,他引:2  
Subsurface flow is a prominent runoff process in sloping lands of purple soil in the upper Yangtze River basin.However,it remains difficult to identify and quantify.In this study,in situ runoff experimental plots were used to measure soil moisture dynamics using an array of time domain reflectometry(TDR) together with overland flow and subsurface flow using isolated collecting troughs.Frequency of preferential flow during rainfall events and the controls of subsurface flow processes were investigated through combined analysis of soil properties,topography,rainfall intensity,initial wetness,and tillage.Results showed that subsurface flow was ubiquitous in purple soil profiles due to welldeveloped macropores,especially in surface soils while frequency of preferential flow occurrence was very low(only 2 cases in plot C) during all 22 rainfall events.Dry antecedent moisture conditions promoted the occurrence of preferential flow.However,consecutive real-time monitoring of soil moisture at different depths and various slope positions implied the possible occurrence of multiple subsurface lateral flows during intensive storms.Rainfall intensity,tillage operation,and soil properties were recognized as main controls of subsurface flow in the study area,which allows the optimization of management practices for alleviating adverse environmental effects of subsurface flow in the region.  相似文献   

10.
The water erosion prediction project(WEPP) model is a popular water erosion prediction tool developed on the basis of the physical processes of water erosion.Although WEPP has been widely used around the world,its application in China is still insufficient.In this study,the performance of WEPP used to estimate the runoff and soil loss on purple soil(Calcaric Regosols in FAO taxonomy) sloping cropland was assessed with the data from runoff plots under simulated rainfall conditions.Based on measured soil properties,runoff and erosion parameters,namely effective hydraulic conductivity,inter-rill erodibility,rill erodibility,and critical shear stress were determined to be 2.68 mm h-1,5.54 × 106 kg s-1 m 4,0.027 s m 1 and 3.5 Pa,respectively,by using the recommended equations in the WEPP user manual.The simulated results were not good due to the low Nash efficiency of 0.41 for runoff and negative Nash efficiency for soil loss.After the four parameters were calibrated,WEPP performed better for soil loss prediction with a Nash efficiency of 0.76.The different results indicated that the equations recommended by WEPP to calculate parameters such as erodiblity and critical shear stress are not suitable for the purple soil areas,Sichuan Province,China.Although the predicted results can be accepted by optimizing the runoff and erosion parameters,more research related to the determination of erodibility and critical sheer stress must be conducted to improve the application of WEPP in the purple soil areas.  相似文献   

11.
In order to understand the process of surface erosion and acquire basic data of conditions on hillslope without vege tation, a sprinkling experiment is conducted on a bare slope in Mt. Tanakami in the central part of Japan. Based on the mea surements of runoff, mean soil erosion depth, and sediment yield, etc. , the results suggest the following characteristics in the process of surface erosion in the experimental area. (1) The occurrence of sediment discharge is interrupted; (2) Surface runoff is a saturated overland flow; (3) The mean soil erosion depth is thick compared with other areas in Mt. Tanakami;(4) Sediment discharge process is detachment- limited.  相似文献   

12.
Accurate assessment of soil erosion is an important prerequisite for controlling soil erosion.The engineering-control(E)and tillage(T)factors are the keys for Chinese Soil Loss Equation(CSLE)to accurately evaluate water erosion in China.Besides,the E and T factors can reflect the water and soil conservation effects of engineering-control and tillage practices.But in the current full coverage of soil erosion surveys in China(such as soil erosion dynamic monitoring),for the same practice,the E or T factors are assigned the same value across the country.We selected 469 E and T factors data based on runoff plots from 73 publications,and they came from six soil and water conservation regions.Correlation analysis,regression analysis,and nonparametric tests were used to determine the comparability of the data,and it was proved that the runoff plots dimensions are consistent with the local topography.The results of one-way ANOVA and nonparametric tests for E and T factors in different regions showed that the engineering-control practices have good soil and water conservation effects and weaken the regional differences of other environmental factors,so there were no significant differences in E factors between different regions.However,there were significant differences in T factors between different regions,and the geodetector was applied to explore the intrinsic driving force of the spatial distribution of T factors.The results of the geodetector showed that the dominant driving forces of the spatial distribution of different types of tillage practices were not completely the same.When using CSLE to calculate water erosion,the E factor of the same practice can be used uniformly throughout the country,and the T factor needs to be considered and selected according to regional differences.At the same time,when choosing tillage practices in each water and soil conservation region,practices with better sediment reduction benefits should also be selected according to the regional environmental conditions.  相似文献   

13.
Rainfall and runoff energy results in soil erosion. This paper presents new the concepts of rainfall and runoff energy and analyzes the relationship of rainfall energy and runoff energy with sediment transport based on the conversion theory of kinetic and potential energy using artificial rainfall and mechanical calculation. The results show that the ratio of sediment detachment in sloping fallow overland flow increases with the slope gradient, rainfall energy and runoff energy, while the sediment detachment ratio under raindrop impact are significantly higher than those under no raindrop impact. The sediment concentration increases with the slope gradient and rainfall energy; when the slope gradient and rainfall energy are constant, the sediment concentration decreases as the runoff energy increases. Rainfall disturbance coefficients have a logarithmic correlation with the rate of rainfall energy and runoff energy. On the same slope gradient, when the rainfall energy is constant, the disturbance coefficient decreases as the runoff energy increases, while when the runoff energy is constant, the disturbance coefficient increases as the rainfall energy increases. Rainfall energy results in sediment detachment, and runoff energy is the transportation for erosion sediment. This showed that rainfall energy and runoff energy are important in the sediment detachment and transportation of shallow overland flow.  相似文献   

14.
The Middle Mountains is one of the regions of Nepal most vulnerable to water erosion, where fragile geology, steep topography, anomalous climatic conditions, and intensive human activity have resulted in serious soil erosion and enhanced land degradation. Based on the 137Cs tracing method, spatial variations in soil erosion, organic carbon, and total nitrogen (TN) in terraced fields lacking field banks and forestland were determined. Soil samples were collected at approximately 5 m and 20 m intervals along terraced field series and forestland transects respectively. Mean 137Cs inventories of the four soil cores from the reference site was estimated at 574.33 ± 126.22 Bq m-2 (1 Bq (i.e., one Becquerel) is equal to 1 disintegration per second (1 dps)). For each terrace, the 137Cs inventory generally increased from upper to lower slope positions, accompanied by a decrease in the soil erosion rate. Along the entire terraced toposequence, 137Cs data showed that abrupt changes in soil erosion rates could occur between the lower part of the upper terrace and the upper part of the immediate terrace within a small distance. This result indicated that tillage erosion is also a dominant erosion type in the sloping farmland of this area. At the same time, we observed a fluctuant decrease in soil erosion rates for the whole terraced toposequence as well as a net deposition at the toe terrace. Although steep terraces (lacking banks and hedgerows) to some extent could act to limit soil sediment accumulation in catchments, soil erosion in the terraced field was determined to be serious. For forestland, with the exception of serious soil erosion that had taken place at the top of slopes due to concentrated flows from a country road situated above the forestland site, spatial variation in soil erosion was similar to the “standard” water erosion model. Soil organic carbon (SOC) and TN inventories showed similar spatial patterns to the 137Cs inventory for both toposequences investigated. However, due to the different dominant erosion processes between the two, we found similar patterns between the <0.002 mm soil particle size fraction (clay sized) and 137Cs inventories in terraced fields, while different patterns could be found between 137Cs inventories and the <0.002 mm soil particle size fraction in the forestland site. Such results confirm that 137Cs can successfully trace soil erosion, SOC and soil nitrogen dynamics in steep terraced fields and forestland in the Middle Mountains of Nepal.  相似文献   

15.
Earthen structures such as shore protection dikes and river embankments easily suffer from erosion under surface water runoff.This study made experimental efforts to explore the enzyme-induced carbonate precipitation(EICP)method for slope erosion control under surface runoff for earthen structures.The sandy soils were treated by the EICP method for various rounds.Surface characteristics were evaluated by the surface penetration resistance,calcium carbonate content,and surface hard crust thickness of EICP-treated soils.Slope runoff erosion experiments were carried out to evaluate the erosion control performances of the EICP treatment.The surface penetration resistance,calcium carbonate content,and surface hard crust thickness were found to significantly increase with the treatment rounds.In the erosion experiments,it was observed that the level of damages decreased and the water flow volume required to trigger the damage increased with more treatments.The increase in the soil slope angle led to more serious surface damages.The amount and rate that the soil particles were eroded from the slope surfaces declined with more EICP treatments,which was consistent with those of visual observations.The preliminary investigations presented in this study have shown the potential of the EICP method for slope erosion control under surface runoff for earthen structures.  相似文献   

16.
The impact of land-use on surface runoff and soil erosion is still poorly understood at basin scale. Thus in the Western Jilin Ecosystem (WJE), surface runoff and soil erosion were measured against identified land-use types in the basin. Due to the spatial nature of the analysis, GIS ArcMap version 9.1 and the WetSpass model were used in the simulation process. In the study, the WetSpass model was extended with the Dynamic Sediment Balance Equation (Ziegler et al., 1997), to simulate and quantify soil erosion. A hypothetical natural grassland scenario was developed for the study area and compared with the present land-use management conditions. The results indicate significant differences in runoff and soil erosion across the different land-use types both within and between the two scenarios. Calculated averages of surface runoff and soil erosion for the present land-use management were 48.03 mm/a and 83.43 kg/(m2·a) respectively. Those for the hypothetical natural grassland scenario were 24.70 mm/a and 78.36 kg/m2·a) . Thus an overall decrease in runoff and soil erosion was observed as the conditions changed from the present land-use management to the hypothetical natural grassland state. Under the present land-use management, urban settlements exhibited the highest surface runoff but one of the least soil erosions, while bare-lands showed the highest soil erosion. It was more generally observed that runoff and erosion varies with vegetation type/density. It was concluded based on the research findings that the present land-use management might not be the best scenario for the ecosystem as it showed increased basin runoff and soil erosion in comparison with the natural grassland vegetation. Since no best scenario was simulated for or advanced in the study, further research to develop a more balanced land management system is thus required. The findings of the study can assist in the identification of vulnerable/fragile ecosystems in the basin and to guide sustainable future planning and development of the basin.  相似文献   

17.
Soil erosion on sloping field has led to a lot of environmental problems. In order to reveal the seriousnessof the damage of soil erosion on sloping fields 137^Cs tracer method was used to estimate soil erosion rate. 137^Cs referenceinventory of 2200Bq/m^2 in Yixing, southern Jiangsu Province, was estimated and a model for estimating erosion of cultivat-od soil was established in order to avoid overestimating soil erosion rates. Then based on the soil erosion rates and mea-sured soil physical and chemical properties, direct and indirect impacts of soil erosion on environment were further dis-cussed. Direct impacts of erosion on environment included on-site and off-site impacts. The on-site impacts were thatsoil layer became thin, soil structure was deteriorated and soil nutrients decreased. The off-site impacts were that waterbodies were polluted. The indirect impacts of soil erosion on environment were the increase of fertilizer application andenergy consumption, and change of adaptability of land uses. Although erosion intensity was not serious in the studyarea, its environmental impacts should not be ignored because of great soil nutrient loss and coazseness of soil particles.  相似文献   

18.
Soil conservation practices can greatly affect the soil erosion process, but limited information is available about its influence on the particle size distribution(PSD) of eroded sediment, especially under natural rainfall. In this study, the runoff, sediment yields, and effective/ultimate PSD were measured under two conventional tillage practices, downhill ridge tillage(DT) and plat tillage(PT) and three soil conservation practices, contour ridge tillage(CT), mulching with downhill ridge tillage(MDT), and mulching with contour ridge tillage(MCT) during 21 natural rainfall events in the lower Jinsha River. The results showed that(1) soil conservation practices had a significant effect on soil erosion. The conventional tillage of DT caused highest runoff depth(0.58 to 29.13 mm) and sediment yield(0.01 to 3.19 t hm-2). Compared with DT, the annual runoff depths and sediment yields of CT, MDT and MCT decreased by 12.24%-49.75% and 40.79%-88.30%, respectively.(2) Soil conservation practices can reduce the decomposition of aggregates in sediments. The ratios of effective and ultimate particle size(E/U) of siltand sand-sized particles of DT and PT plots were close to 1, indicating that they were transported as primary particles, however, values lower/greater than 1 subject to CT, MDT and MCT plots indicated they were transported as aggregates. The ratios of E/U of claysized particles were all less than 1 independently of tillage practices.(3) The sediments of soil conservation practices were more selective than those of conventional tillage practices. For CT, MDT and MCT plots, the average enrichment ratios(ERs) of clay, silt and sand were 1.99, 1.93 and 0.42, respectively, with enrichment of clay and silt and depletion of sand in sediments. However, the compositions of the eroded sediments of DT and PT plots were similar to that of the original soil. These findings support the use of both effective and ultimate particle size distributions for studying the size selectivity of eroded sediment, and provide a scientific basis for revealing the erosion mechanism in the purple soil area of China.  相似文献   

19.
Soilerosionisoneofthemostseriousenvironmentalproblemsinthepresentworld.Itnotonlyrestrictstheproductionofagriculturebadly,butalsothreatensthenaturalenvironmentonwhichhumanbeinglive.Andthismakethemankindconfrontedwithtremendouschallenge.OntheLoessPlateau,soilandwaterlossisterrible,environmentisweak,anditshighsandyieldmakestheriverwayinthelowerreachesoftheHuanghe(Yellow)Riverfilledup,riverbeddrivenup,floodthreatprickedup,andresultsingreathiddentroublestothecontrollingoffloodandtherunningofirrig…  相似文献   

20.
Labile organic carbon (LOC) is a fraction of soil organic carbon (SOC) with rapid turnover time and is affected by soil fertilization. This investigation characterized the SOC content, LOC content and LOC distribution in the treatment plots of surface soil erosion at five levels (0-, 5-, 10-, 20- and 30-cm erosion). The soil had received contrasting fertilizer treatments (i.e., chemical fertilizer or chemical fertilizer + manure) for 6 years. This study demonstrated that both SOC and various LOC fractions contents were higher in the plots with fertilizer + manure than in those with fertilizer alone under the same erosion conditions. The SOC and LOC contents de- creased as the erosion depth increased. Light fraction organic carbon, particulate organic carbon, easily oxidizable organic carbon (KMnO4-oxydizable organic carbon), and microbial biomass carbon were 27% 57%, 37%-7%, 20%-25%, and 29%-33% higher respectively in the fertilizer + manure plots, than in the fertilizer alone plots. Positive correlations (p 〈 0.05) between SOC content and different fractions contents were observed in all plots except the correlation between total SOC content and water-soluble organic carbon content in the different fertilization treatments. Obviously, fertilizer + manure treatments would be conducive to the accumulation of LOC and SOC in the Black soil of Northeast China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号