首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Chinese Camp mining district in the western Sierra Nevada of California,USA,contains a serpentinized,ultramafic dunite intrusion with podiform chromite deposits.Serpentine soils have developed over this intrusion,creating a unique ecosystem of endemic vegetation and soils characterized by low Ca/Mg ratios and high Ni and Cr contents.The vegetation and red coloration make it easy to visually distinguish between soils developed over intruded,serpentinized bedrock and unmineralized,adjacent andesite bedrock(Fig.1).The purpose of our study was to compare soil chemistry and vegetative parameters among 3 study-design levels:1)undisturbed serpentine soil,2)undisturbed background soil(non-serpentine,developed over andesite),and 3)serpentine soil disturbed by mining activities.Within each of these l e v*e ls,3 random locations were chosen where weestablished 3,30-m transects(spaced 120-degrees apart).One soil sample was collected at a random location along each transect(0-15 cm depth after removing litter/O horizon).This scheme resulted in the collection of 9replicate soil samples per study-design level.Samples were analyzed for total metal content by ICP-AES/MS(inductively coupled plasma atomic emission spectroscopy/mass spectroscopy),p H,electrical conductivity,and total C/N/S.The vegetative parameter of%canopy cover was measured with a line-point intercept survey along each transect,using 0.6m intervals.Above-ground net primary productivity(ANPP)was estimated by harvesting all aboveground living plant material within a 0.5 m quadrant at 3 random locations along each transect,drying,and weighting the material.Significant differences among design levels were observed for ANPP,canopy cover,total P,total N,and Ca/Mg,where the median values for these parameters decreased in the order undisturbed backgroundundisturbed serpentinemining-disturbed serpentine.The highest concentrations of Cr and Ni were found in undisturbed serpentine(medians of 1960 ppm and 2529ppm,respectively)followed by mining-disturbed serpentine(medians of 420 and 2120,respectively)then undisturbed non-serpentine(medians 47.0 and 32.2 ppm,respectively).Soil p H varied significantly among the design levels with a median 5.74 in undisturbed background,median 6.25 in undisturbed serpentine,and median of 7.17 in mining-disturbed serpentine.These data document the distinct differences in soil chemistry and vegetation parameters between undisturbed serpentine soil and adjacent,undisturbed background soil.Efforts toward mining reclamation must recognize these differences and include the correct baseline conditions in the reclamation plan.  相似文献   

2.
Serpentinite rocks, high in Mg and trace elements including Ni, Cr, Cd, Co, Cu, and Mn and low in nutrients such as Ca, K, and P, form serpentine soils with similar chemical properties resulting in chemically extreme environments for the biota that grow upon them. The impact of parent material on soil characteristics is most important in young soils, and therefore the incipient weathering of serpentinite rock likely has a strong effect on the development of serpentine soils and ecosystems. Additionally, porosity generation is a crucial process in converting rock into a soil that can support vegetation. Here, the important factors affecting the incipient weathering of serpentinite rock are examined at two sites in the Klamath Mountains, California. Serpentinite-derived soils and serpentinite rock cores were collected in depth profiles from each sampling location. Mineral dissolution in weathered serpentinite samples, determined by scanning electron microscopy, energy dispersive spectrometry, electron microprobe analyses, and synchrotron microXRD, is consistent with the order, from most weathered to least weathered: Fe-rich pyroxene > antigorite > Mg-rich lizardite > Al-rich lizardite. These results suggest that the initial porosity formation within serpentinite rock, impacting the formation of serpentine soil on which vegetation can exist, is strongly affected both by the presence of non-serpentine primary minerals as well as the composition of the serpentine minerals. In particular, the presence of ferrous Fe appears to contribute to greater dissolution, whereas the presence of Al within the parent rock appears to contribute to greater stability. Iron-oxidizing bacteria present at the soil–rock interface have been shown in previous studies to contribute to the transition from rock to soil, and soils and rock cores in this study were therefore tested for iron-oxidizing bacteria. The detection of biological iron oxidation in this study indicates that the early alteration of these Fe-rich minerals may be mediated by iron-oxidizing bacteria. These findings help provide insight into the incipient processes affecting serpentinite rock weathering, important to the development of extreme serpentine soils and the biota that grow on them.  相似文献   

3.
The chemical analysis of plants and soils is a frequently used approach in understanding a serpentine ecosystem. Studies on vegetation growth in serpentine soils focused on various plant species for remediation purposes of soil contamination with heavy metals, emphasizing their role in the metal extraction or stabilization in the soil. The aims of this study were to measure the concentrations of Cr, Mn, and Ni in the soils and plants and to elucidate the phytoremediation potential of the studied plants. This study was performed at an abandoned site of serpentine mining in eastern Taiwan. Seven plant species were collected for analysis of Cr, Mn, and Ni, including Crotalaria micans, Miscanthus floridulus, Leucaena leucocephala, Bidens pilosa, Pueraria lobata, Melilotus indicus, and Conyza canadensis. The Cr and Ni concentrations in all studied plants were higher than those in general plants. In all species, the mean concentrations of Cr, Mn, and Ni in the shoots were lower than those in the root. None of the collected specimens exhibited hyperaccumulation of Cr, Mn, and Ni. All studied species may be used to remediate contaminated soils through phytostabilization of Cr and Mn, whereas M. floridulus and M. indicus are appropriate plants for phytostabilization of Ni. However, C. micans, L. leucocephala, B. pilosa, P. lobata, and C. canadensis have the potential to remove Ni from contaminated soils for the purpose of phytoextraction.  相似文献   

4.
Concentrations of the elements N, P, K, Ca, Mg, S, Fe, Mn, Cu, Zn, Ni, Cr, Co, Mo, Cd and Pb were measured in serpentine and granite soils and in the fern Pteridium aquilinum sampled from the Ślęża Massif in Lower Silesia, Poland. The serpentine soils were typical for serpentine soils in general with deficiency of K and Ca and excess of Mg, Ni and Cr. The principal component analysis (PCA) ordination based on the matrix of concentrations of elements in plants growing on serpentine and granite soils enabled the identification of the parent material from which ferns in this study were collected. This method indicated that the ferns from granite soils were distinguished by higher concentrations of Mo and Pb, while those from serpentine soils were distinguished by higher concentrations of Mg, Ni, Cr and Co. These differences in bioaccumulation reflect the higher concentrations of total and plant-available forms of Mg, Ni, Cr, Co in serpentinite and the higher concentrations of total Mo and total and plant-available Pb in granites as reported in literature. The different parent material types in the Ślęża Massif on which the investigated soils were developed influence the concentration and type of elements accumulated in P. aquilinum.  相似文献   

5.
《Applied Geochemistry》2002,17(8):1003-1016
Concentrations of major and trace elements in soils and grass are determined at Shimba Hills National Reserve in Kenya using geochemical mapping techniques. The study investigates the influence of soil and vegetation type on the concentrations of Na, K, Mg, Ca, Mn, P, Co, Cu, Zn, Mo, Ni and Se in soils and grass. The implications are assessed for the nutrition of the sable antelope, of which the Reserve supports the last remaining viable population in Kenya. Low concentrations in surface soils of a number of major and minor elements are attributed to the geochemical nature of the underlying parent materials of sands, sandstone and grits. Within the Reserve, variations in the element status of surface soils are related to the vegetation and soil types. Elevated element concentrations in surface soils in natural forest areas are attributed to the influence of litterfall whilst in grassland areas, soil element status is controlled by soil type and decreases in the order ferralsols > acrisols > arenosols. The general depletion of major and minor elements in soils at Shimba Hills is not reflected as fully in grasses in which nutrient concentrations were of similar magnitude to those reported from other Kenyan conservation areas. Burning of grassland areas leads to elevated concentrations of K, P, Co, Cu and Mo in grasses, elevated soil-plant uptake ratios for P and K and elevated soil pH. It is suggested that increased availability of P in soils at elevated soil pH levels contributes to its enhanced uptake into grass. A tentative assessment of the mineral status of grass at the Reserve using guidelines developed for domestic ruminants indicates deficiencies of Na, K, P and Zn and that the Ca:P ratio exceeds the tolerable range for animals. In addition, the low concentrations of Cu, Co and Zn in surface soils in the Reserve indicate that the potential supply of these elements to plants is limited.  相似文献   

6.
Soil and stream sediment sampling have been the primary geochemical exploration tools in the Appalachian piedmont to date. However, the great thicknesses of soil and saprolite found in the region coupled with the dense vegetation frequently encountered favor biogeochemistry as an alternative or supplemental method since deep-rooted plants sample closer to bedrock. To evaluate this method, an orientation survey was performed in which soils and vegetation at 17 sites north of Mineral, Virginia, were sampled and analyzed for Ag, Cd, Cu, Pb and Zn. The traverse included stations over the host rocks of massive sulfide mineralization, as well as over apparent “barren” country rock. Samples were analyzed by atomic absorption spectrophotometry using standard digestion and analytical techniques.Both A- and B-horizon soil metals generally appear to be reliable indicators of mineralization, with soils developed over sulfides showing up to three-fold enrichment in metal content relative to the average soils developed on the country rock. Correlation of metal concentrations in vegetation to soil metal concentrations reveal plant concentrations expressed on a dry-weight basis correlate stronger and more frequently to soil metals than do ash-weight concentrations. Copper shows some promise in selected organs and species, Ag appears fair but data are limited to one organ of one species, and plant Pb seems totally unresponsive to soil metal concentrations perhaps because foliar absorption is an important plant uptake mechanism here. However, Zn and Cd in organs of the oak group, especially mature leaves and twigs of the current year's growth show the greatest promise as prospecting tools. They correlate well with soil metals and when compared directly to the geology they reliably reflect mineralization. Although results using White oak were slightly less profound than those obtained from the Black-Red oak group, White oak may be preferred as it is a single, more widespread, easily-identifiable species. Copper and especially Zn although essential elements to plants, do not appear to be “difficult” elements for biogeochemical prospecting in the Appalachian piedmont.  相似文献   

7.
Fluoride uptake by serpentine depends on a number of parameters, viz. the chemical composition of serpentine, its particle size, pH of the medium, etc. Exchangeable (OH)? in serpentine minerals is essential for fluoride uptake. Data are also presented indicating the existence of an equilibrium between the fluoride concentrations in the solution and that taken up by serpentine over a wide range of experimental conditions. The available evidence strongly suggests the proxy of F? for (OH)? group as contributing to the principal mechanism of the process.  相似文献   

8.
Nannorrhops ritchiana (Mazari Palm) is a distinctive flora growing in the Saharo-Sindian region. It is well distributed on the ultramafic soil, derived from the Bela Ophiolite in the Khuzdar District, Balochistan, Pakistan. Quantitative estimation of Ca, Mg, Fe and Ni in soil and plant ash has been carried out. The constituents of plant ash have been discussed in relation to soil chemistry, pH, climate, mobility, average abundance in plant ash and exclusion mechanism of the flora. Relationship among Ca, Mg, Fe and Ni has been established using scattergrams to evaluate the biogeochemistry of the plant. High contents of Mg and high coefficient of biological absorption allow it to be classed as Mg-flora. Both Ca and Fe appeared to be antagonistic to Mg. The metal assemblage ofN. ritchiana nicely reflected the nature of the bed rock as being serpentinized ultramafic, and its corresponding soils. Good exclusion mechanism ofN. ritchiana did not allow it to absorb high Ni from the soil. Relatively high concentrations of Ni inN. ritchiana from the Baran Lak area can be used to localize Ni-mineralization in the study area. Statistical analyses, such as minimum, maximum, mean, mode, median, standard deviations, and coefficient of correlation, were also made to improve raw geochemical data and interpretations.  相似文献   

9.
A soil and vegetation survey was undertaken in NW Euboea Island, Greece. The objectives of the study were to establish the geochemical baseline of soil and identify the impact of local geology on threshold values of potentially harmful elements. The studied area is characterized by complex geology comprising metamorphic and ultramafic rocks as well as active hot springs. A total of 117 soil samples were collected from 89 sites at depths of 0–25 cm and 25–50 cm. Eighteen vegetation samples were also collected representing prevalent indigenous perennial species in the region. Soil samples from the present study were enriched in As, Ca, Cu, Mg, Ni with concentrations reaching 233 mg/kg, 38%, 336 mg/kg, 10.8%, 1560 mg/kg respectively. Factor analysis revealed three main factors controlling the chemical composition of soil reflecting the influence of ultramafic rocks (Cr, Ca, Mg, Ni), hot spring deposits (Ca, S, Sr, As) and paedogenesis processes (Fe, Co, V, Mn, Al). The first two of these factors showed significant spatial correlation with the geological features within the study area. Subsequently, baseline concentrations based on statistical and spatial data were estimated within sub-areas reflecting the influence of local geology in soil composition. Concentrations of potentially harmful elements in the plant tissues of indigenous perennial vegetation species showed a wide range of variation from below the detection limit up to 1700 mg/kg for Ni in the hyperaccumulator Alyssum chalcidicum demonstrating that plant species have adapted to the stressful conditions caused by high elemental concentrations in soil. The results of this study can be utilized in future studies at areas of similar geology by providing an objective basis for setting realistic threshold values for pollution assessment and remediation.  相似文献   

10.
Reports of large Ca isotope fractionations between trees and soils prompted this study of a Boreal forest ecosystem near La Ronge, Saskatchewan, to improve understanding of this phenomenon. The results on five tree species (black spruce, trembling aspen, white spruce, jack pine, balsam poplar) confirm that nutrient Ca uptake by plants favors the light isotopes, thus driving residual Ca in plant available soil pools towards enrichment in the heavy isotopes. Substantial within-tree fraction occurs in tissues formed along the transpiration stream, with low δ44Ca values in fine roots (2 mm), intermediate values in stemwood, and high values in foliage. Separation factors between different plant tissues are similar between species, but the initial fractionation step in the tips of the fine roots is species specific, and/or sensitive to the local soil environment. Soil water δ44Ca values appear to increase with depth to at least 35 cm below the top of the forest floor, which is close to the deepest level of fine roots. The heavy plant fractionated signature of Ca in the finely rooted upper soils filters downward where it is retained on ion exchange sites, leached into groundwater, and discharged into surface waters.The relationship between Ca uptake by tree fine roots and the pattern of δ44Ca enrichment with soil depth was modeled for two Ca pools: the forest floor (litter) and the underlying (upper B) mineral soil. Six study plots were investigated along two hillside toposequences trending upwards from a first order stream. We used allometric equations describing the Ca distribution in boreal tree species to calculate weighted average δ44Ca values for the stands in each plot and estimate Ca uptake rates. The δ44Ca value of precipitation was measured, and soil weathering signatures deduced, by acid leaching of lower B mineral soils. Steady state equations were used to derive a set of model Ca fluxes and fractionation factors for each plot. The model reproduces the increase in δ44Ca with depth found in forest floor and upper B soil waters. Transient model runs show that the forest Ca cycle is sensitive to changes in plant Ca uptake rate, such as would occur during ontogeny or disturbance. Accordingly, secular records of δ44Ca in tree ring cellulose have the potential to monitor changes in the forest Ca cycle through time, thus providing a new tool for evaluating natural and anthropogenic impacts on forest health. Another model run shows that by changing the size of the isotope fractionation factor and adjusting for differences in forest productivity, that the range in Ca isotope fractionation in forested ecosystems reported in the literature, thus far, is reproduced. As a quantitative tool, the Ca cycling model produces a reasonable set of relative Ca fluxes for the La Ronge site, consistent with Environment Canada’s measurements for wet deposition in the region and simulated Ca release from soil mineral weathering using the PROFILE model. But the sensitivity of the model is limited by the small range of fractionation observed in this boreal shield setting of ∼1‰, which limits accuracy. If the model were applied to a site with a greater range in δ44Ca values among the principal Ca fluxes, it is capable of producing robust and reliable estimations of Ca fluxes that are otherwise difficult to measure in forested ecosystems.  相似文献   

11.
《Geochimica et cosmochimica acta》1999,63(23-24):4013-4035
The effect of organic matter during soil/water interaction is still a debated issue on the controls of chemical weathering in a tropical environment. In order to study this effect in detail, we focused on the weathering processes occurring in a small tropical watershed (Nsimi-Zoetélé, South Cameroon). This site offers an unique opportunity to study weathering mechanisms in a lateritic system within a small basin by coupling soil and water chemistry.The lateritic cover in this site can reach up to 40 m in depth and show two pedological distinct zones: unsaturated slope soils on the hills and/or elevated areas; and water-saturated soils in the swamp zone which represent 20% of the basin surface. The study present chemical analysis performed on water samples collected monthly from different localities between 1994–1997 and on soil samples taken during a well drilling in December 1997. The results suggest the existence of chemical and spatial heterogeneities of waters in the basin: colored waters flooding the swamp zone have much higher concentrations of both organic matter (i.e., DOC) and inorganic ions (e.g., Ca, Mg, Al, Fe, Th, Zr) than those from springs and groundwater from the hills. Nevertheless, these organic-rich waters present cation concentrations (Na, Ca, Mg, K) which are among the lowest compared to that of most world rivers. The main minerals in the soils are secondary kaolinite, iron oxi-hydroxides, quartz, and accessory minerals (e.g., zircon, rutile). We mainly focused on the mineralogical and geochemical study of the swamp zone soils and showed through SEM observations the textural characterization of weathered minerals such as kaolinite, zircon, rutile, and the secondary recrystallization of kaolinite microcrystals within the soil profile. Water chemistry and mineralogical observations suggest that hydromorphic soils of the swamp zone are responsible for almost all chemical weathering in the basin. Thus, in order to explain the increase of element concentration in the organic-rich waters, we suggest that organic acids enhance dissolution of minerals such as kaolinite, goethite, and zircon and also favors the transport of insoluble elements such as Al, Fe, Ti, Zr, and REE by chemical complexation. SiO2(aq) concentrations in these waters are above saturation with respect to quartz. Dissolution of phytholithes (amorphous silica) may be responsible for this relatively high SiO2(aq.) concentration. Al/Mg ratios obtained for the soil and the Mengong river waters show that a significant amount of Al does not leave the system due to kaolinite recrystallisation in the swamp zone soils. Geochemical data obtained for this watershed show the important contribution of vegetation and organic matter on chemical weathering in the swamp zone. Quantitatively we propose that the increasing amount in total dissolved solid (TDS) due to organic matter and vegetation effect is about 35%. In summary, this interaction between soils and waters occurs mostly in soils that are very depleted in soluble elements. Thus, the low concentration of major elements in these water is a direct consequence of the depleted nature of the soils.  相似文献   

12.
National- and continental-scale soil geochemical datasets are likely to move our understanding of broad soil geochemistry patterns forward significantly. Patterns of chemistry and mineralogy delineated from these datasets are strongly influenced by the composition of the soil parent material, which itself is largely a function of lithology and particle size sorting. Such controls present a challenge by obscuring subtler patterns arising from subsequent pedogenic processes. Here the effect of quartz concentration is examined in moist-climate soils from a pilot dataset of the North American Soil Geochemical Landscapes Project. Due to variable and high quartz contents (6.2–81.7 wt.%), and its residual and inert nature in soil, quartz is demonstrated to influence broad patterns in soil chemistry. A dilution effect is observed whereby concentrations of various elements are significantly and strongly negatively correlated with quartz. Quartz content drives artificial positive correlations between concentrations of some elements and obscures negative correlations between others. Unadjusted soil data show the highly mobile base cations Ca, Mg, and Na to be often strongly positively correlated with intermediately mobile Al or Fe, and generally uncorrelated with the relatively immobile high-field-strength elements (HFS) Ti and Nb. Both patterns are contrary to broad expectations for soils being weathered and leached. After transforming bulk soil chemistry to a quartz-free basis, the base cations are generally uncorrelated with Al and Fe, and negative correlations generally emerge with the HFS elements. Quartz-free element data may be a useful tool for elucidating patterns of weathering or parent-material chemistry in large soil datasets.  相似文献   

13.
Partially serpentinized dunites containing small amounts of Chlorine (< 0.5%) from Dumont, Quebec, and Horoman, Hokkaido, Japan, and one containing less than 0.05% Chlorine from Higashi-Akaishi-Yama, Ehime, Japan have been examined using the electron probe microanalyzer and scanning transmission electron microscope with X-ray analytical capabilities. Chlorine was found together with Si, Mg, Ca and Fe in the serpentine minerals of the Dumont and Hokkaido dunites but not in the Ehime dunite. Chlorine is found associated only with the most finely crystalline facies of the serpentine (grain size less than 10 nm). The Ehime dunite contained no such fine grained serpentine, and was thus effectively chlorine-free, as are the coarser grained serpentines of the other samples. The finegrained chlorine-bearing serpentine also has a much higher concentration of Fe, and can contain smaller amounts of Ca, Ni and Mn than the coarse-grained variety as well as minute awaruite (FeNi3) grains. This fine-grained serpentine probably represents an early stage in the transformation of olivine to serpentine, with chlorine from hydrothermal solutions assisting the necessary chemical changes. The Cl increases the reaction rate by lowering the activation barrier to reaction by the introduction of reaction steps.On leave of absence from Department of Mineralogical Sciences and Geology, Yamaguchi University, Yamaguchi 753, Japan  相似文献   

14.
Drinking water treatment residuals (alum) are waste products of water purification that have potential for environmental remediation as a soil amendment and a potential plant growth medium. In this study, the influence of added Drinking water treatment residuals on the extractability and availability of phosphorus to plants; determination of the agronomic rate of alum to different agricultural soils and evaluation of the alum as ameliorating material for soil conditions and plant growth were investigated. In all studied soils, increasing drinking water treatment residuals rate up to 30 g/kg significantly increased dry matter yield. Application of 10, 20 and 30 g/kg alum significantly increased plant P concentrations in the plant materials (shoots and roots) taken from clay, sandy and calcareous soils. Further increase in alum application rate has resulted in negative significant impact on plants P concentration, especially in clay and calcareous soils, but in sandy soils the increase in phosphorusconcentration extended to 40 g/kg alum rate. Application of alum at rates up to 30 g/kg significantly increased available phosphorus concentrations of the three studied soils. However, application of alum at a rate of 40 g/kg to clay and calcareous soils significantly decreased available phosphorus concentrations. Combined analyses of all soils and alum rates studied clearly indicated significant relationship between available phosphorus concentration and phosphorus uptake (r = 0.87, P < 0.001). Based on our experiment results, the rate of 30 g/kg is considered the best application rate of alum because of its positive effects on plant dry matter. Our study clearly demonstrates that alum has potential as a soil amendment to increase plant growth; however, more research is needed to determine beneficial and / or detrimental aspects of this practice under field conditions.  相似文献   

15.
16.
《Applied Geochemistry》2004,19(4):633-643
Banana plants (Musa spp.) are very sensitive to Al, which is mobilized in acid soil conditions. These plants may, however, contribute to their own intoxication because their roots can excrete protons in large quantities. The authors studied the mobilization of Al by banana roots from clay minerals in experimental designs exacerbating the root–mineral contact. The plants were grown on agarose-gel or sand substrates previously mixed with smectite (montmorillonite) and kaolinite as sole source of Al. The pH and the ion concentrations in the aqueous and exchangeable phases of the substrates were determined as concentrations of Al, Ca, Mg and K in plants. In both agarose and sand substrates, pH significantly decreased in the close vicinity of roots, relative to the bulk substrate. This root-induced acidification involved a preferential mobilization of Al in kaolinite substrates and of Mg in smectite substrates, and thereby a significant plant uptake of Al and Mg from these respective substrates. Root-induced weathering of kaolinite and montmorillonite thus suggests that the mobilization of, respectively, Al and Mg are the limiting steps in the dissolution of these respective minerals, just as demonstrated in previous chemical weathering studies.  相似文献   

17.
Understanding how nutrient absorption processes in plants are related to arbuscular mycorrhizal (AM) association is critical for predicting the effects of AM symbiosis on elemental cycling for plants. Both mulberry (Morus alba) and Chinese prickly ash (Zanthoxylum bungeanum) are AM-associated plants, widely distributed in southwest China. It was hypothesized that if the nutrient absorption processes were efficiently associated with AM symbiosis in both mulberry and Chinese prickly ash, foliar nutrient concentrations—especially calcium (Ca)—would be primarily determined by the soil conditions in different regions. To investigate this, AM colonization levels of soils, nutrient levels in soils and leaves, and δ13C values of leaves were analyzed for mulberry and Chinese prickly ash. In this study, spore density in soils with low pH was higher than that in soils with high pH. The average concentrations of sugar delivered to roots in both mulberry and Chinese prickly ash in soil with relatively low pH and soil extractable cations were higher than those in other areas. The values of foliar δ13C in both mulberry and Chinese prickly ash in low soil-pH and soil extractable cations were lower than those in contrast areas, indicating that water availability was impacted by soil characteristics. The efficiency in AM-mediated processes might play an important role in translocation between soil nutrients and plant tissue. The results suggest uptake and translocation of nutrients, especially Ca, in AM-associated plants may be affected by an efficiency of AM-mediated processes. Since Sr does not appear to be similarly affected, expressing Ca and other nutrient concentrations relative to Sr could be used to evaluate whether the uptake and translocation of Ca and other nutrients are affected by AM-mediated processes.  相似文献   

18.
For decades, repeated and widespread use of arsenical pesticides has significantly contributed to arsenic contamination in soils. Residues from the overuse of these arsenicals may result in phytotoxicity to crops, which will depend on soil types, plant species and the toxicity of arsenical pesticides. A greenhouse column study was conducted to evaluate the effect of two pesticides, i.e. one organic (dimethylarsinic acid) and one inorganic (sodium arsenate), on the vegetative response of rice as a function of soil properties. Four soils with varying arsenic retention capabilities at two different pesticide amendment rates (675 and 1500 mg/kg) representing the worst case scenarios in superfund sites were used. Results showed that arsenic availability to rice was mainly influenced by soil physicochemical properties. The soil with the lowest arsenic retention capacity had the highest arsenic concentration in the leachate as well as in the plant tissue. In contrast, for soils with higher arsenic retention capacity, higher concentrations of arsenic were found in the surface soil which resulted in the inhibition of plant growth. There was no significant difference between labile arsenic / plant-available arsenic irrespective of the form of arsenical pesticide used. Plant growth parameters such as biomass, shoot height, root length decreased with increased arsenic concentrations in all soils. A significant negative correlation (P<0.05) was observed between the phytoavailable arsenic and plant growth response. Interestingly, the form of arsenical pesticide used did not impact arsenic uptake or shoot growth but significantly impacted root growth.  相似文献   

19.
Nannorrhops ritchiana ( Mazari Palm) is a distinctive flora growing in the Saharo-Sindian region. It is well distributed on the ultramafic soil, derived from the Bela Ophiolite in the Khuzdar District, Balochistan, Pakistan. Quantitative estimation of Ca, Mg, Fe and Ni in soil and plant ash has been carried out. The constituents of plant ash have been discussed in relation to soil chemistry, pH, climate, mobility, average abundance in plant ash and exclusion mechanism of the flora. Relationship among Ca, Mg, Fe and Ni has been established using scattergrams to evaluate the biogeochemistry of the plant. High contents of Mg and high coefficient of biological absorption allow it to be classed as Mg-flora. Both Ca and Fe appeared to be antagonistic to Mg. The metal assemblage of N. ritchiana nicely reflected the nature of the bed rock as being serpentinized ultramafic, and its corresponding soils. Good exclusion mechanism of N. ritchiana did not allow it to absorb high Ni from the soil. Relatively high concentrations of Ni in N. ritchiana from the Baran Lak area can be used to localize Ni-mineralization in the study area. Statistical analyses, such as minimum, maximum, mean, mode, median, standard deviations, and coefficient of correlation, were also made to improve raw geochemical data and interpretations.  相似文献   

20.
Vicia villosa is an annual legume plant. Field-growing experiments were performed on six plots under different soil conditions. Variations in the concentrations of Zn and Cd in tissues were investigated. Differences in distribution patterns between Zn and Cd appeared during growing: the concentrations of Zn in roots in sandstone-derived soils were relatively higher than those in limestone-derived soils, and the uptake patterns of Zn by roots should be similar to those of iron (Fe). However, the concentrations of Cd in roots in limestone-derived soils were higher than those in sandstone-derived soils, and the uptake patterns of Cd by roots should be similar to those of manganese (Mn). On the contrast, the distribution patterns of Zn were similar to those of Mn, while the distribution patterns of Cd were similar to those of Fe in tissues, indicating that the uptake patterns of Zn and Cd were different from distribution patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号