首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NEW TRACE ELEMENT AND REE DATA IN THIRTEEN GSF REFERENCE SAMPLES BY ICP-MS   总被引:5,自引:0,他引:5  
Analytical data on 34 geochemically significant trace elements (Sc, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Cs, Ba, Hf, Ta, Pb, The, U and REE) by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS), for 13 reference rock samples obtained from the Geological Survey of Finland are presented. For many elements, especially most of the heavy-REE, concentrations are reported here for the first time.  相似文献   

2.
The geochemical behaviours of 26 elements in deep-sea drill core sediments from the Indian Ocean have been investigated with INAA, including Na, K, Ca, Sc, Cr, Fe, Co, Rb, Sr, Zr, Sb, Cs, Ba, La, Ce, Nd, Sm, Eu, Tb, Yb, Lu, Hf, Ta, Au, Th and U. Their distribution patterns with depth are also discussed. In terms of the enrichment factors of the respective elements, their residence times in the sea have been calculated by the least squares fitting and are compared with the previous results.  相似文献   

3.
Nine reference materials, recently distributed by the Geological Survey of Japan (JA-1, JB-la, JB-2, JB-3, JG-la, JGb-1, JP-1, JR-1 and JR-2) have been analysed by instrumental neutron activation analysis using well proven experimental techniques. Results for the twenty elements determined (selected rare earth elements, Fe, Ba, Co, Cr, Cs, Hf, Rb, Sc, Ta, Th and U) are assessed for accuracy and precision and show good agreement with previously published data.  相似文献   

4.
Robert Cullers 《Lithos》1988,21(4):301-314
A series of soil and stream sediments developed during intense weathering on the metaluminous Danburg granite, northeastern Georgia, U.S.A., have been analyzed mineralogically and chemically. The concentrations of Ba, Na, Rb and Cs in the silt and coarser fractions are controlled mainly by feldspars and biotite. Hf is controlled by zircon, and the REE (rare-earth elements) and Th are largely controlled by sphene. Variations in feldspar, sphene and zircon may produce small variations in Eu/Sm and La/Lu ratios. Ferromagnesian minerals control Ta, Fe, Co, Sc and Cr concentrations.

The mineralogical and chemical composition of the Danburg granite is more closely reflected in the silt than in the sand or gravel fractions of stream sediments. In the silt, the contents of Rb, REE, Th, Ta, Fe, Co and Sc and the ratios of La/Sc, Th/Sc, La/Co, Th/Co, Eu/Sm and La/Lu are similar to those in the unweathered granite. In contrast, these element contents or ratios in the sands and gravels are 0.05−3× the concentration in the unweathered granite. Ta and Ba contents are an exception to the above. The Ta and Ba contents of the sands and gravels are similar to those of the granite.

In the kaolinite-halloysite clays, the content of Na is depleted relative to the source. Rb, Cs, Ba, Hf and Ta are depleted or enriched in the clays relative to the source, while the REE, Th, Fe, Co, Sc and Cr are enriched. The Eu/Sm (Eu anomaly size) and La/Lu ratios, and the REE patterns of the clays are similar to those of the source.

Thus, the mineralogy and element contents of a siltstone developed from metaluminous, granitic sources during intense weathering would be expected to be more similar to the source rock than the sandstones and conglomerates. Claystones should contain similar REE patterns and Eu/Sm ratios as the source rock, but such fine-grained sediments might represent much larger areas of source rocks than the more locally derived sandstones or conglomerates.  相似文献   


5.
With the aim of better understanding geochemistry of coal, 71 Late Permian whole-seam coal channel samples from western Guizhou Province, Southwest China were studied and 57 elements in them were determined. The contents of Al, Ca, Co, Cr, Cu, Fe, Ga, Hf, K, Li, Mn, Mo, Nb, Ni, Sn, Ta, Ti, Th, U, V, Zr, and REEs in the Late Permian coals from western Guizhou Province are higher than the arithmetic means for the corresponding elements in the US coals, whereas As, Ba, Br, F, Hg, P, Se, and Tl are lower. Compared to common Chinese coals, the contents of Co, Cr, Cu, Ga, Hf, Li, Mn, Mo, Ni, Sc, Sn, Ti, U, V, Zn, and Zr in western Guizhou coals are higher, and As, F, Hg, Rb, Sb, Tl, and W are lower. Five groups of elements may be classified according to their mode of occurrence in coal: The first two, Group A, Tm–Yb–Lu–Y–Er–Ho–Dy–Tb–Ce–La–Nd–Pr–Gd–Sm, and Group B, As–Sr–K–Rb–Ba–F–Ash–Si–Sn–Ga–Hf–Al–Ta–Zr–Be–Th–Na, have high positive correlation coefficients with ash yield and they show mainly inorganic affinity. Some elements from Group B, such as Ba, Be, Ga, Hf, and Th, are also characterized by significant aluminosilicate affinity. In addition, arsenic also exhibits high sulfide affinity (rS–Fe>0.5). The elements, which have negative or lower positive correlation coefficients with ash yield (with exceptions of Bi, Cs, Nb, Mn, Se, and Ti), are grouped in other four associations: Group C, Cr–V–Mo–U–Cd–Tl; Group D, Hg–Li–Sc–Ti–Eu–Nb–Cs–W; Group E, Bi–Sb; and Group F, Co–Ni–Cu–Pb–Zn–Mg–Se–Ca–Mn–S–Fe. The correlation coefficients of some elements, including Co, Cr, Cu, Fe, Hg, Li, Mo, Ni, P, S, Sc, U, V, and Zn, with ash yield are below the statistically significant value. Only Cr and Cu are negatively correlated to ash yield (−0.07 and −0.01, respectively), showing intermediate (organic and inorganic) affinity. Manganese and Fe are characterized by carbonate affinity probably due to high content of epigenetic veined ankerite in some coals. Phosphorus has low correlation coefficients with any other elements and is not included in these six associations. There are five possible genetic types of enrichment of elements in coal from western Guizhou Province: source rock, volcanic ash, low-temperature hydrothermal fluid, groundwater, and magmatic hydrothermal inputs.  相似文献   

6.
Samples were collected f5rom the Selong-Xishan Permian/Triassic boundary strata,Nyalam County in southern Tibet and systematically analyzed for their rare-earth elements(REE) and trace elements such as U,Th,Sr,Ba,Sc,Ta,Hf,Rb,Cs,Co,Ni,Cr,As and others with emphasis put on the distribution patterns of rare-earth elements and the variation of trace element contents along the Permial/Triassic boundary section.On this basis a discussion will be made of the paleo-ocean depositional environment.  相似文献   

7.
为了解酸性矿山排水(AMD)影响下水库沉积物中微量元素的质量分数水平及其分布特征,对常年受酸性废水影响的贵州兴仁猫石头水库沉积物中26种微量元素的质量分数、相关性及控制因素进行了分析。结果表明:猫石头水库沉积物柱中Sr、Ba、Zr、V、Cr和As质量分数平均值超过了100 μg/g,其中As质量分数最高,平均值超过800 μg/g;Be、Ta、Co、Ag、Cd、Sn和Se质量分数的平均值都在5 μg/g以下;其他元素质量分数平均值则在10~60 μg/g之间。相较未受AMD影响的水系沉积物,研究区水库沉积物具有明显的As和Sb富集特征。水库沉积物中Li、Be、Rb、Sr、Cs、Ba、Sc、Y、Zr、Hf、Nb、Ta、Th之间存在显著正相关关系,而As与这些元素之间存在显著负相关关系。元素相关分析、因子分析及微量元素图解表明,Li、Be、Rb、Sr、Cs、Ba、Sc、Y、Zr、Hf、Nb、Ta、Th、Cr、Sb等元素受控于流域岩石化学风化和土壤物理侵蚀,这也是控制研究区元素分布最重要的因素,而Cu、Cd等重金属元素则与AMD对地层中元素的溶蚀析出和有机质等细颗粒物的吸附有关。另外,研究区重金属元素中,Cd、Cu、Pb、Cr、Zn的生态风险轻微,而As和Sb则具有很强的潜在生态风险。  相似文献   

8.
To evaluate trace element soil contamination, geochemical baseline contents and reference values need to be established. Pedo-geochemical baseline levels of trace elements in 72 soil samples of 24 soil profiles from the Mediterranean, Castilla La Mancha, are assessed and soil quality reference values are calculated. Reference value contents (in mg kg?1) were: Sc 50.8; V 123.2; Cr 113.4; Co 20.8; Ni 42.6; Cu 27.0; Zn 86.5; Ga 26.7; Ge 1.3; As 16.7; Se 1.4; Br 20.1; Rb 234.7; Sr 1868.4; Y 38.3; Zr 413.1; Nb 18.7; Mo 2.0; Ag 7.8; Cd 4.4; Sn 8.7; Sb 5.7; I 25.4; Cs 14.2; Ba 1049.3; La 348.4; Ce 97.9; Nd 40.1; Sm 10.7; Yb 4.2; Hf 10.0; Ta 4.0; W 5.5; Tl 2.3; Pb 44.2; Bi 2.2; Th 21.6; U 10.3. The contents obtained for some elements are below or close to the detection limit: Co, Ge, Se, Mo, Ag, Cd, Sb, Yb, Hf, Ta, W, Tl and Bi. The element content ranges (the maximum value minus the minimum value) are: Sc 55.0, V 196.0, Cr 346.0, Co 64.4, Ni 188.7, Cu 49.5, Zn 102.3, Ga 28.7, Ge 1.5, As 26.4, Se 0.9, Br 33.0 Rb 432.7, Sr 3372.6, Y 39.8, Zr 523.2, Nb 59.7, Mo 3.9, Ag 10.1, Cd 1.8, Sn 75.2, Sb 9.9, I 68.0, Cs 17.6, Ba 1394.9, La 51.3, Ce 93.5, Nd 52.5, Sm 11.2, Yb 4.2, Hf 11.3, Ta 6.3, W 5.2, Tl 2.1, Pb 96.4, Bi 3.0, Th 24.4, U 16.4 (in mg kg?1). The spatial distribution of the elements was affected mainly by the nature of the bedrock and by pedological processes. The upper limit of expected background variation for each trace element in the soil is documented, as is its range as a criterion for evaluating which sites may require decontamination.  相似文献   

9.
Chemistry of Aerosols over Chukchi Sea and Bering Sea   总被引:2,自引:0,他引:2  
The contents of elements in aerosols sampled during the First Chinese Arctic Research Expedition (CHINARE-1) show great differences from one element to another. Na, K,Ca, Mg, A1, F, and Cl are the major components in the aerosols, whose contents are larger than 30 ng/m^3. The chemical elements whose contents vary between 0.1 - 30 ng/m^3 are Br,Sr, Cr, Ni, and Zn. The chemical elements whose contents are close to or slightly higher than 0.1 ng/m^3 are Rb, Ba, Zr, Th, and Pb. The contents of As, Sb, W, Mo, Au, La, Ce, Nd,Sin, Eu, Tb, Yb, Lu, Sc, Co, Hf, Ta, and Cd are less than 0.1 ng/m^3. The mass concentration data for the same element, as observed during CHINARE-1, are almost accordant, but much lower than what is observed in the China‘ s seas or the coasts of China. The enrichment factor and electron microscopic analyses and lead isotope tracing were used to distinguish their sources.Four groups of sources can be classified as follows: anthropogenic: As, Sb, W, F, Mo, Au,Cu, Pb, Cd, V; crustal: La, Ce, Nd, Sm, Eu, Tb, Yb, Lu, Fe, Sc, Cr, Co, Ba, Zr, Hf,Ta, Cs, Mn, Th, U; oceanic:Na, K, Ca, and Mg; and mixing: Rb, Sr, Ca, and Mg.  相似文献   

10.
Instrumental neutron activation analysis results for 20 trace elements (Sc, Cr, Co, Ni, Rb, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, Tm, Yb, Lu, Hf, Ta, Th) and for two major elements (Na and Fe) in two geochemical reference samples issued by the "Centre de Recherches Pétrographiques et Géochimiques" are reported and compared with available literature values. In general our results agree well with recommended or proposed values.  相似文献   

11.
Major and trace element analyses have been obtained by wavelength dispersive X-ray fluorescence for the Geological Survey of Japan Igneous rock series and selected samples from the Sedimentary rock series reference samples. Additional trace element data for the Igneous rock series were obtained by instrumental neutron activation analysis. Samples were analyzed multiple times for 10 major elements (with loss-on-ignition) and the following trace elements; As, Ba, Ce, Co, Cr, Cs, Cu, Eu, Ga, Hf, La, Lu, Nb, Nd, Ni, Pb, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, U, V, W, Y, Yb, Zn and Zr.  相似文献   

12.
Major and trace element and modal analyses are presented for unaltered, epidotized, and carbonated tholeiite flows from the Barberton greenstone belt. Au, As, Sb, Sr, Fe+3, Ca, Br, Ga, and U are enriched and H2O, Na, Mg, Fe+2, K, Rb, Ba, Si, Ti, P, Ni, Cs, Zn, Nb, Cu, Zr, and Co are depleted during epidotization. CO2, H2O, Fe+2, Ti, Zn, Y, Nb, Ga, Ta, and light REE are enriched and Na, Sr, Cr, Ba, Fe+3, Ca, Cs, Sb, Au, Mn, and U are depleted during carbonization-chloritization. The elements least affected by epidotization are Hf, Ta, Sc, Cr, Th, and REE; those least affected by carbonization-chloritization are Hf, Ni, Co, Zr, Th, and heavy REE. Both alteration processes can significantly change major element concentrations (and ratios) and hence caution should be used in distinguishing tholeiites from komatiites based on major elements alone. The amount of variation of many of the least mobile trace elements in the altered flows is approximately the same as allowed by magma model calculations. Hence, up to about 10% carbonization and 60% epidotization of tholeiite do not appreciably affect the interpretation of trace-element models for magma generation.  相似文献   

13.
Ca-type bentonite deposits of economic interest occur associated with rhyolitic rocks in the Lebombo volcanics. From previous geological studies on the deposits, besides the economic aspects, little is known about the main formation mechanism of beds of bentonite that can be more than 15 m thick, in some places. Chemical analyses of bentonite samples indicate that elements such as Ca, Mg, Sr, Zn, Cu and Sc are markedly enriched in bentonite in comparison to the parent rock. Other elements such as K, Na, Rb and Ba are depleted in bentonite. HREE (Yb, Lu) and Y are depleted in the bentonite samples, as well as Cs, Rb, Ta, U, Ba, Co, Cr and Pb. Concentrations of the LREE (La, Ce, Nd, Sm, Eu), Sc and Ga are slightly higher in the bentonites than in the parent rocks. The chondrite-normalized REE patterns show identical trends both in the rhyolites and bentonites samples. Alteration of the parent rocks to bentonite is associated with leaching and subsequent removal of, principally, K and Na in open-system conditions.  相似文献   

14.
利用电子探针、激光剥蚀-电感耦合等离子体质谱测试技术,对赤峰东南部建平群斜长角闪岩中黑云母的常量元素、微量(稀土)元素进行了测试分析。研究表明:赤峰东南部建平群斜长角闪岩中的黑云母主量元素以富Fe、Mg为特征,为高铁镁云母;黑云母稀土元素含量低,轻重稀土分馏较强,δEu、δCe均值为正,为选择Ce、Nd的配分型矿物;黑云母中Rb、Ba、Pb和Cs等大离子亲石元素富集,特别是Cs、Ba明显富集,而Sr略有亏损;高场强元素Zr、Hf、Sc等亏损,较富集的元素为U、Th、Nb、Ta元素;亏损的亲铁元素为Cr、Ni,而显著富集的元素为V、Ti;亲硫元素Cu亏损而Zn明显富集;分散元素Ga有明显的富集。  相似文献   

15.
Elemental concentrations of Al, Ba, Ca, Ce, Co, Cr, Cs, Dy, Eu, Fe, Hf, Mn, Na, Rb, Sb, Sc, Ta, Th, Ti and V have been measured in 11 USGS, 6 CCRMP and 2 NBS reference materials by instrumental thermal neutron activation analysis. The results are compared with recent consensus and agency values.  相似文献   

16.
The spatial analysis of geochemical data has several environmental and geological applications. The present study investigated the regional distribution of Al, Ba, Ca, Ce, Co, Cr, Cu, Fe, K, La, Li, Mg, Mn, Na, Ni, Pb, Sc, Th, Ti, U, V, and Zn elements in stream sediment samples from New Mexico State. These elements were studied in order to integrate them with geological and environmental characteristics of the area. Data are used from 27,798 samples that were originally collected during the national uranium resource evaluation (NURE) Hydrogeochemical and stream sediment reconnaissance (HSSR) program in the 1970s. The original data are available as U.S. Geological Survey Open-File Report 97-492. The study used a variety of data processing and filtering techniques that included univariate, bivariate, factor analyses and spatial analyses to transform the data into a useable format. Principal component analysis and GIS techniques are applied to classify the elements and to identify geochemical signatures, either natural or anthropogenic. The study found that the distribution of the investigated elements is mainly controlled by the bed rock chemistry. For example, along the Rio Grande rift and Jemez lineament a strong association between Co, Cr, Cu, Fe, Ni, Sc, Ti, V and Zn was observed and indicates that elements distribution in the area controlled by the mafic factor. The rare earth elements (REE) factor which is consists of Ce, La and U, also has strong, localized, clusters in the felsic centers in New Mexico.  相似文献   

17.
In order to investigate the factors influencing the distribution of 32 potentially toxic elements in the Ptolemais–Kozani basin, northwestern Greece, 38 soil samples were collected and analyzed. Concentrations of Al, Ca, Fe, K, Mg, Mn, Na, P, Ti, Ba, Co, Cr, Cu, La, Li, Ni, Pb, Sc, Sr, V, Y, and Zn were determined by ICP-AES and concentrations of As, Bi, Cd, Cs, Mo, Rb, Sb, Th, Tl, and U by ICP-MS. Bivariate analysis, principal component analysis, and geostatistical analysis were employed to investigate the factors influencing the distribution of the elements determined in the study area. The results indicate that the distribution of the majority of elements determined, especially for Cr, Ni, and associated elements, is greatly influenced by the geology and geomorphology of the study area. Principal component analysis has yielded four factors that explain over 77% of the total variance in the data. These factors are as follows: lithophilic elements that are associated with Al silicates minerals of K (factor I: 29.4%), ultramafic rocks (factor II: 20.5%), elements that are coprecipitated with Fe and Mn oxides (factor III: 18.0%), and anthropogenic activities (factor IV: 9.3%). The anthropogenic activities that influence the distribution of several potentially toxic elements (i.e., Cd, Cu, Pb, Zn) are agricultural practices and the deposition of fly ash in the vicinity of the local power stations.  相似文献   

18.
This paper reports data, including new analyses, on the contents of Ni, Co, V, Mo, Fe, Mn, Zn, Ba, Sc, Y, Cd, Rb, Cs, and W in the sediments of the Deryugin Basin. The features of the distribution of chemical elements in the bottom area were identified, and the zones of maximum accumulation of the major and trace elements were allocated. A correlation between the elements was shown.  相似文献   

19.
周汉文  李献华 《地球化学》1997,26(5):25-33,T001
在南大别花凉亭地区冷榴辉岩退变为斜长角闪岩的过程中,Fe、Mg、Mn、Dy、Ho、Er、Tm、Yb、Lu、Y、Li、Sc、Cr、Co、Zr、HfNb、Ta逐渐降低,而Si、Ca、Na、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Sr、Sn、Pb、Th、U逐渐升高。这一变异特征受折返减压退变过程中矿物相转变和流体的作用控制。多硅白云母和黑云母是制约退变冷榴辉岩元素Rb、Cs、Ba、Sr、K的主要矿物相.  相似文献   

20.
The geochemistry of Sepetiba Bay was studied in four sediment cores using a multi-element approach. Two cores were sampled in the more contaminated eastern part of the bay and two cores were sampled in the western region. The aim was to determine whether less common elements like the rare earths or the actinides are associated with contaminant metals like zinc in the Bay. Samples were analysed by instrumental neutron activation analysis that permits the quantification of total concentrations of metals (Ba, Co, Cr, Cs, Fe, Hf, Rb, Sc, Zn), rare earth elements (Ce, Eu, La, Lu, Sm and Yb), actinides (Th, U), non-metals and semi-metals (As, Br). Organic carbon and total sulphur were also analysed. The results show very strong zinc contamination in the top layers (more than 1000 μg g−1) and background concentrations in the bottom (15 μg g−1). Elements like chromium which would be expected to be released by the heavy industries of Sepetiba Bay, did not show a contamination profile, and concentrations remained close to those of natural environments. No evidence of any association between the zinc and other potential contaminant elements could be identified in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号