首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The sterane and triterpane distributions of three bituminous chalks from the Upper Cretaceous Ghareb Formation (Israel) were investigated both in the original extractable bitumens and in extracts obtained after pyrolysis of whole rock and isolated kerogen samples at 450°C. Pyrolysis was performed in a closed system under hydrous (whole rock) and anhydrous conditions (isolated kerogens). The carbon number distributions of steranes and triterpanes differ significantly between original bitumen and pyrolyzates. Unlike the bitumens in which diasteranes were not detected, the anhydrous pyrolyzates contain small amounts of diasteranes. The presence of water during pyrolysis leads to an increase of sterane isomerization, the abundant formation of diasteranes and an increase of the 18α(H)-trisnorneohopane17α(H)-trisnorhopane ratio. Sterane isomerization maturation parameters show a closer match between original bitumen and pyrolyzates after pyrolysis in a closed system when compared with an open system.  相似文献   

2.
A non-colloidal fraction separated by physical means from an HFHCl-resistant residue of the Allende carbonaceous meteorite exhibits a ratio of isotopically “normal” (Q-type) xenon to “anomalous” xenon (X-type) that is ~4 times larger than usually observed. Coincidentally this fraction contains carbon that is isotopically heavier by ~10%. than bulk Allende residue samples. ESCA analyses of companion colloidal separates show that the major portion of the S contained in our HFHCl-residues is elemental rather than a sulfide. They also confirm earlier observations that no elementally distinct surface coating is present, in accord with the absence of a surface-sited sulfur-bearing gas carrier, and that the oxygen content is increased after etching with nitric acid. For these separates noble gas data coupled with the ESCA data for nitrogen and the isotopic data for carbon point to the existence of heterogeneities among the noble gas-, carbon- and nitrogen-bearing phases and, thus, preservation of discrete components from the variety of source regions (or production mechanisms, or both) sampled by the Allende parent body. In sharp contrast to the success of physical and chemical methods in yielding samples in which one of the major noble gas components predominates to an extraordinary degree over the other, carbon isotopic compositions that have been inferred for the respective carrier phases in these same samples are strongly contradictory. Mass and isotope balance considerations lead us to conclude that a major fraction of the carbonaceous matter in Allende is noble-gas-poor, a result that could be confirmed by direct isolation of a sample, the carbon in which is dominated by this variety; and for that reason no simple relationship is discernable yet between observed isotopic compositions and either major noble gas component. Similar ambiguities may exist for nitrogen. The possible relationship between carbon-rich phases in ureilites and carbonaceous chondrites is considered.  相似文献   

3.
Suspended matter from the surface waters of the Amazon Estuary were collected during May and June 1976 on the ‘R/V Alpha Helix’, and their major-element compositions (Al, Si, Ti, K, Mg, Ca, P, Fe and Mn) were measured.Between salinities of 0 and 10%. the suspended material, predominantly terrigenous in derivation, decreases in load from 500 to 3 mg/l, but has a chemical composition which remains essentially constant. With the onset of a large amount of biological productivity at approximately 10%. salinity, there are large increases in the ratios of SiAl, PAl, CaAl, MgAl, TiAl and MnAl which are maintained at higher salinities. Calculations of “excess” concentrations of elements held in the non-terrigenous components of the suspended material further support our main conclusion that Si, P, Ca, Mg, Ti and Mn are incorporated into the skeletal and organic phases of marine phytoplankton (predominately diatoms) of the Amazon Estuary. The data suggest, but with less certainty, that Fe and K follow the above elements.This study has demonstrated that the chemical composition of river-introduced suspended matter can be significantly altered by biological activity within estuarine waters as can be the geochemical cycle of inorganic elements.  相似文献   

4.
Cameronet al. (1981) proposed a “Free Line Model” for calculating formation ages for rock systems that have undergone local scale homogenization by 87Sr migration. This model is valid only if the variation in the 87Rb86Sr ratio is independent of the variation in Sr-content within the rock system. If Sr increases linearly with increasing 87Rb86Sr the calculated age will be too high. If Sr decreases linearly with increasing 87Rb86Sr, the calculated age will be systematically too low. If the rate of change in Sr with increasing 87Rb86Sr varies systematically through a rock system the “isochron” will be curved and the calculated ages will be younger or older than the real age, depending on the position of samples in relation to the curvature of the “isochron.” This problem with the “Free Line Model” is inherited in both the “Bulk Earth Model 1” and the “Bulk Earth Model 2.”  相似文献   

5.
The U-Th-Pb isotope systematics of the eucrite “Juvinas” have been studied in whole rock fragments as well as in plagioclases and pyroxenes. The results show that this monomict breccia crystallized with a very high UPb initial ratio at T = 4.539 ± 0.004 AE ago. There is evidence for a less radiogenic Pb component (206Pb204Pb = 13.0; 207Pb204Pb = 13.5; 208Pb204Pb = 32.71) interpreted as “exotic lead” induced by a meteoritical impact at the surface of the Juvinas parent body, 1.92 ± 0.06 AE ago.  相似文献   

6.
To simulate trapping of meteoritic noble gases by solids, 18 samples of Fe3O4 were synthesized in a noble gas atmosphere at 350–720 K by the reactions: 3Fe + 4H2O → Fe3O4 + 4H2 (Ne, Ar, Kr, Xe) 3Fe + 4CO → Fe3O3 + 4C + carbides (Xe only) Phases were separated by selective solvents (HgCl2, HCl). Noble gas contents were analyzed by mass spectrometry, or, in runs where 36 d Xe127 tracer was used, by γ-counting. Surface areas, as measured by the BET method, ranged from 1 to 400 m2/g. Isotopic fractionations were below the detection limit of 0.5%/m.u.Sorption of Xe on Fe3O4 and C obeys Henry's Law between 1 × 10?8 and 4 × 10?5 atm, but shows only a slight temperature dependence between 650 and 720 K (ΔHsol = ?4 ± 2 kcal/mole). The mean distribution coefficient KXe is 0.28 ± 0.09 cc STP/g atm for Fe3O4 and only a factor of 1.2 ± 0.4 greater for C; such similarity for two cogenetic phases was predicted by Lewis et al. (1977). Stepped heating and etching experiments show that 20–50% of the total Xe is physically adsorbed and about 20% is trapped in the solid. The rest is chemisorbed with ΔHs ? ?13 kcal/mole. The desorption or exchange half-time for the last two components is >102 yr at room temperature.Etching experiments showed a possible analogy to “Phase Q” in meteorites. A typical carbon + carbide sample, when etched with HNO3, lost 47% of its Xe but only 0.9% of its mass, corresponding to a ~0.6 Å layer. Though this etchable, surficial gas component was more thermolabile than Q (release T below 1000°C, compared to 1200–1600°C), another experiment shows that the proportion of chemisorbed Xe increases upon moderate heating (1 hr at 450°C). Apparently adsorbed gases can become “fixed” to the crystal, by processes not involving volume diffusion (recrystallization, chemical reaction, migration to traps, etc.). Such mechanisms may have acted in the solar nebula, to strengthen the binding of adsorbed gases.Adsorbed atmospheric noble gases are present in all samples, and dominate whenever the noble gas partial pressure in the atmosphere is greater than that in the synthesis. Many of the results of Lancet and Anders (1973) seem to have been dominated by such an atmospheric component; others are suspect for other reasons, whereas still others seem reliable. When the doubtful samples of Lancet and Anders are eliminated or corrected, the fractionation pattern—as in our samples—no longer peaks at Ar, but rises monotonically from Ne to Xe. No clear evidence remains for the strong temperature dependence claimed by these authors.  相似文献   

7.
8.
Ammonia-ammonium leaching of samples of nodules from several different locations was carried out after reduction of the nodules under COCO2 gas mixtures at 400, 600, and 800°C. In accordance with thermodynamic analysis, nickel, copper and cobalt oxides in the nodules are preferentially reduced with a 6040 gas mixture of COCO2. After an initial reduction step with COCO2 at 600°C, leaching at room temperature and atmospheric pressure with aqueous ammonia-ammonium carbonate and ammonia-ammonium sulfate solutions yielded high extractions of copper and nickel (> 80%), and close to 50% for cobalt. The nature of the pores in nodules from different locations appears to affect the extraction process. A lower reduction temperature is required to obtain the same extraction of nickel, copper and cobalt in a sulfate system than is necessary in a carbonate system. However, a higher manganese content results in the sulfate leaching solutions as compared to the carbonate system, where essentially none of the manganese and iron are extracted.  相似文献   

9.
The dehydration of a natural goethite to hematite is accompanied by a systematic hydrogen isotope fractionation. Closed system dehydration at, and below, 250°C results in a significantly greater degree of isotopic fractionation than does open system dehydration. This relationship is apparently reversed at 300°C. Both processes produce a progressive decrease in the DH ratio of the mineral hydrogen with increasing degree of dehydration. At temperatures of 160°C to 250°C the closed system mineralvapor fractionation factor is independent of temperature, while above 250°C, it varies strongly with temperature. The mineral-vapor fractionation factor associated with open system dehydration appears to be independent of temperature over the interval 160°C to 300°C. The closed system DH fractionation suggests that natural goethite undergoing dehydration in the presence of water can isotopically exchange with that water.CO2 loss from goethite during dehydration is correlated with the loss of H2O. The CO3 is thought to be present in carbonates which exist as impurities in the goethite. Loss of both H2O and CO2 appears to be diffusion-controlled.  相似文献   

10.
Solubility product determinations suggest that the hydrous phosphates of the rare earths, REPO4 · xH2O, are important in controlling the sea water REE concentrations. Two of these solids, rhabdophane, (P6222) and “hydrous xenotime”, (141/amd), have been synthesized at 100°C via the acid hydrolysis of the respective REE pyrophosphate. The solubility products at infinite dilution were determined to be pK0 = 24.5, (La at 25°C); 26.0, (Pr at 100°C); 25.7, (Nd at 100°C): and 25.5, (Er at 100°C). On the basis of calculations involving the reaction of RE3+ with apatite to form the hydrous phosphate, the lanthanum concentration in sea water is predicted to be about 140 pmol/L. Laboratory experiments support the hypothesis that apatite is a substrate for reactions with dissolved REE.  相似文献   

11.
Twenty-four piston core sediment samples and 13 sediments and 3 basalts from DSDP Leg 78 Site 543 were analyzed for Sr, Nd and Pb isotopic compositions. The results show sediment with highly radiogenic Pb206Pb204Pb up to 19.8) and rather radiogenic Sr and unradiogenic Nd has been deposited in the region since the Cretaceous. The source of this sediment is probably the Archean Guiana Highland, which is drained by the Orinoco River. Pb and Sr isotopic compositions and sediment thickness decrease and143Nd144Nd increases northward due to a decrease in turbiditic component. This decrease is partly due to the damming action of basement ridges. Rare earth concentrations in the sediments are somewhat low, due to the abundance of detrital and biogenic components in the sediment and rapid sedimentation rates. Both positive and negative Ce anomalies occur in the surface sediments, but only positive Ce anomalies occur in the Site 543 sediments. It is unlikely that sediment subducted to the source region of Lesser Antilles arc magmas could be the cause of negative Ce anomalies in those magmas.Isotopic compositions of Site 543 basalts show some effect of contamination by seawater-basalt reaction products and sediments. Beyond this, however, they are typical of “normal” depleted MORB.  相似文献   

12.
Carbon isotope values of 260 Precambrian limestones and dolomites (most of them being substantially unaltered) have yielded an overall mean of δ 13C = +0.4 ± 2.7‰ vs. PDB; the corresponding oxygen values average at δ 13O = +20.0 ± 4.2‰ vs. SMOW. Like the overall mean, the δ 13C values furnished by individual carbonate occurrences are, as a rule, fairly “modern” and almost constant as from the very beginning of the sedimentary record. A remarkable exception are the “heavy” dolomites of the Middle Precambrian Lomagundi Group, Rhodesia, with δ 13C = +9.4 ± 2.0‰ vs. PDB. As a result of our measurements, the sporadic occurrence in the geological past of anomalously heavy carbonates seems to be established.The approximate constancy around zero per mill of the δ 13C values of marine carbonates through geologic time would imply a corresponding constancy of the relative proportion of organic carbon in the total sedimentary carbon reservoir since about 3.3 · 109 y ago (with Corg/Ctotal ? 0.2). Utilizing this ratio and current models for the accumulation of the sedimentary mass as a function of time, we get a reasonable approximation for the absolute quantity of organic carbon buried in sediments and, accordingly, of photosynthetic oxygen released. Within the constraints of our model (based on a terrestrial degassing constant λ = 1.16 · 10?9 y?1) close to 80% of the amount of oxygen contained in the present oxygen budget should have been released prior to 3 · 109 y ago. Since geological evidence indicates an O2-deficient environment during the Early and most parts of the Middle Precambrian, there is reason to believe that the distribution of this oxygen between the “bound” and the “molecular” reservoir was different from that of today (with effective O2-consuming reactions bringing about an instantaneous transfer to the crust of any molecular oxygen released). Accordingly, the amount of Corg in the ancient sedimentary reservoir as derived from our isotope data is just a measure of the gross amount of photosynthetic oxygen produced, withholding any information as to how this oxygen was partitioned between the principal geochemical reservoirs. As a whole, the carbon isotope data accrued provide evidence of an extremely early origin of life on Earth since the impact of organic carbon on the geochemical carbon cycle can be traced back to almost 3.5 · 109y.  相似文献   

13.
Comparison of biological marker alkanes in the kerogen pyrolyzate and bitumen from a sediment is a useful test for the indigenous nature of sediment extracts. For the pyrolysis conditions used, the bulk of the hydrocarbons is released from the kerogen matrix between 375° and 550°C; and its steriochemistry is almost the same as that observed in the extractable bitumen in a genuine source rock. Examples are given to demonstrate that, during pyrolysis, the sterane/terpane ratio decreases and secondary terpanes are generated at the expense of primary ones.The mechanism of artificial petroleum generation by pyrolysis differs from ‘natural’ diagenesis during geological time and is reflected in the composition of certain C27-C29 steranes, as demonstrated by simulation experiments and C29-C30 moretanes and hopanes. The -sterane ratios, jointly with 17α(H)-hopane17β(H)-moretane ratios, tricyclic terpane concentrations and 17α(H)17β(H)-trisnorhopane ratios, allow the differentiation of kerogens from adjacent stratigraphies.  相似文献   

14.
Two simple approximating equations are given for the calculation of the upper particle size of floatability under the turbulent hydrodynamic conditions in a flotation machine (apparatus). They comprise solid density ?p, fluid density ?fl, surface tension σ, contact angle θ and a parameter depending on energy dissipation, the vortex acceleration, which we call “machine acceleration” bm. Some diagrams are shown for practical purposes. A dimensionless characteristic number analogous to the bond number is introduced in order to characterize the stability of aggregates.  相似文献   

15.
Pb isotopic abundances and U-Th-Pb concentrations are reported for feldspar megacrysts from the 3.59 AE old Amîtsoq gneisses, Godthaab District, West Greenland. The distinctive Pb in the feldspars is the most primitive terrestrial Pb so far observed. It is observed in feldspars which are from different geographic localities and which exhibit varying degrees of deformation and recrystallization. This appear to be either the initial Pb in the Amîtsoq gneiss or the initial Pb only slightly modified by subsequent metamorphism in a low 238U204Pb environment. 238U204Pb in the feldspars is low and the corrections for in situ produced Pb are only 0.4% for 207Pb206Pb and 0.6% for 204Pb206Pb. The mean corrected isotopic abundances are 204Pb206Pb = 0.08720, 207Pb206Pb = 1.1513, and 208Pb206Pb = 2.7350. The feldspars contain a very small amount of easily leachable radiogenic Pb which is correlated with U and which indicates the formation of U-rich phases at about 2.7 AE. The matrix surrounding the feldspar megacrysts contains Pb which is much evolved relative to the megacrysts and this matrix does not appear to have behaved as a simple closed system. Element redistribution and open system behavior at about 2.7 AE is also suggested by Pb in feldspar from a dike cutting across the gneiss. Assuming that the Amîtsoq gneiss feldspar Pb corrected for in situ U decay was the initial Pb in the gneiss at 3.59 AE (Baadsgaard, 1973), a single-stage “age of the earth” is determined as 4.47 ± 0.05 AE and μ is 8.5. This is indistinguishable from the single-stage age for modern rocks and is distinctly younger than the 4.55 AE age of some meteorites. If the feldspar Pb was modified by metamorphism at 2.7 AE the model age of the earth is calculated as 4.53 AE which is similar to the 4.55 AE age of some meteorites. Two-stage models using the nominal 3.59 AE initial Pb indicate that if the earth is ~4.55 AE old then μ values were low in the early Earth's history and differentiation occurred within a few hundred million years after the planet formed.  相似文献   

16.
Potential solubility controls on phosphorus in Yellowstone National Park geothermal waters were investigated using the analytical phosphate estimates of Stauffer and Thompson (1978), the computer program, WATEQF, and adopting the equilibrium constant: log K25° = ?61.4 for fluorapatite (FAP = Ca5(PO4)3F) dissolution. The near-boiling high-Cl geyser and spring effluents are at or near saturation with respect to (with) FAP. The sixteen representative springs in this category had FAP saturation indices (S.I. = log IAP/Kr) ranging from ? 3.2 to +4.9 and averaging +0.9. The strongly positive indices were all associated with the highly alkaline conditions resulting from adiabatic cooling in the near surface environment. Hot spring waters indicating extensive dilution (reduced Cl) by meteoric water have lower pH's, and despite PO4 and Ca concentrations an order of magnitude higher than the geysers, are still frequently undersaturated with FAP. The travertine-depositing “Mixed-water” springs are invariably supersaturated with FAP at ground surface and at or near saturation with hydroxylapatite. Supersaturation may result from kinetic inhibition of apatite crystallization by the elevated Mg2+, HCO3?, and lower temperatures in these springs. The phosphates may be residuals of the meteoric dilution water.Separately, if Strübel's temperature-dependent estimates of fluorite (CaF2) solubility are adopted, the high-Cl geysers and springs on “Geyser Hill” and at Norris are consistently undersaturated with CaF2 at the 90–100° orifice temperatures. The apparent disequilibrium may reflect fluorite equilibration at the much higher temperatures (> 200°C) in the deeper enthalpy reservoirs.  相似文献   

17.
The isotopic composition of Ag and the concentration of Ag and Pd have been determined in Canyon Diablo (IA), Grant (IIIB), Hoba, Santa Clara, Tlacotepec and Warburton Range (IVB), Piñon and Deep Springs (anom.). Troilite from Grant and Santa Clara have also been analyzed. All of these meteorites, with the exception of Canyon Diablo, give 107Ag109Ag in the metal phase that is greater than the terrestrial value with the enrichments of 107Ag ranging from ~2% to 212%. These data show that Ag of anomalous isotopic composition is common to all IVB and anomalous meteorites. The results on Grant suggest that the anomalies may be widespread including more common meteorite groups. There is a general correlation of 107Ag109Ag with PdAg except for the data from FeS of Santa Clara. It is concluded that the excess 107Ag is the result of decay of 107Pd, a nuclide that is extinct at present with an abundance of 107Pd108Pd of about 3 × 10?5. The troilite in Grant exhibits normal 107Ag109Ag to within errors, a high Ag concentration and a low ratio of 108Pd109Ag ~0.17. Grant metal has 107Ag109Ag that is ~2% greater than normal and a high ratio of 108Pd109Ag ~ 103. The data from Grant appear to represent a 107Pd-107Ag isochron and indicate that the cooling rate at elevated temperatures was sufficiently rapid to preserve substantial isotopic differences between metal and troilite. Troilite in Santa Clara was found to contain Ag with a very high 107Ag109Ag ratio (108% above normal), an Ag concentration only a factor of three above the metal and a high value of 108Pd109Ag ~1.3 × 104. The troilite has a higher 107Ag109Ag than the metal. These data are not compatible with a simple model of in situ decay and subsequent local Ag redistribution between metal and troilite during cooling. These data suggest that Ag in Santa Clara and possibly other IVB meteorites is made up of almost pure 107Ag produced from 107Pd decay and 109Ag produced by nuclear reactions with only a small amount of “normal” Ag. This indicates an intense energetic particle bombardment history in the early solar system (~1020 p/m2) which occurred after the formation of small planetary bodies. We infer that a T-Tauri activity by the early sun contributed to some late stage “nucleosynthesis” and the heating of a dust cloud. In addition, implications on the early thermal evolution of iron meteorites are presented based on 107Pd decay and models of the cooling history.  相似文献   

18.
Forty-nine samples from Mesozoic rocks of Northern Bulgaria and from recent marine muds of the Black Sea have been analyzed for fatty acids (FA), using extraction, treatment with ion exchange resin and gas chromatography. There is a higher concentration of normal (n) FA in the recent marine sediments, as well as in their bitumen extracts than in the rocks as a whole. There is twice as much n-FA in the rocks containing dispersed organic matter (DOM) formed mainly by benthonic organisms as compared to ancient sediments with planktonic DOM. The content of n-FA has decreased nine and five times, respectively in planktonic DOM in the sequence: limestones-marls-argillites and clayey siltstones, while the amount of organic carbon has risen four and two times. The n-FA are chiefly represented by C16 and C18 and in the recent sediments also by C22 molecules. However when the level of maturity of DOM corresponds to the katagenetic degrees of MK3 and MK4, maximum is in n-FA with 19 and 20 carbon atoms. A gradual decrease in the amount of the n-FA with even-numbered carbon atoms was noted as maturity of the planktonic DOM increases from early diagenesis in recent marine sediments to the katagenetic degrees of MK3 and MK4 in ancient rocks. The ratios FAHC and FAHC + FA have also decreased when the katagenetic maturity of DOM changes from PK3 degree to MK4 degree. These geochemical features may be used as an additional criterion in determining the principal phase of oil formation.  相似文献   

19.
Calibration of five gas geothermometers is presented, three of which used CO2, H2S and H2 concentrations in fumarole steam, respectively. The remaining two use CO2H2 and H2SH2 ratios. The calibration is based on the relation between gas content of drillhole discharges and measured aquifer temperatures. After establishing the gas content in the aquifer, gas concentrations were calculated in steam formed by adiabatic boiling of this water to atmospheric pressure to obtain the gas geothermometry functions. It is shown that the concentrations of CO2, H2S and H2 in geothermal reservoir waters are fixed through equilibria with mineral buffers. At temperatures above 230°C epidote + prehnite + calcite + quartz are considered to buffer CO2. Two buffers are involved for H2S and H2 and two functions are, therefore, presented for the geothermometers involving these gases. For waters containing less than about 500 ppm chloride and in the range 230–300°C pyrite + pyrrholite + epidote + prehnite seem to be involved, but pyrite + epidote + prehnite + magnetite or chlorite for waters above 300°C and waters in the range 230–300°C, if containing over about 500 ppm.The gas geothermometers are useful for predicting subsurface temperatures in high-temperature geothermal systems. They are applicable to systems in basaltic to acidic rocks and in sediments with similar composition, but should be used with reservation for systems located in rocks which differ much in composition from the basaltic to acidic ones. The geothermometry results may be used to obtain information on steam condensation in upflow zones, or phase separation at elevated pressures.Measured aquifer temperatures in drillholes and gas geothermometry temperatures, based on data from nearby fumaroles, compare well in the five fields in Iceland considered specifically for the present study as well as in several fields in other countries for which data were inspected. The results of the gas geothermometers also compare well with the results of solute geothermometers and mixing models in three undrilled Icelandic fields.  相似文献   

20.
An end member of the tourmaline series with a structural formula □(Mg2Al)Al6(BO3)3[Si6O18](OH)4 has been synthesized in the system MgO-Al2O3-B2O3-SiO2-H2O where it represents the only phase with a tourmaline structure. Our experiments provide no evidence for the substitutions Al → Mg + H, Mg → 2H, B + H → Si, and AlAl → MgSi and we were not able to synthesize a phase “Mg-aluminobuergerite” characterized by Mg in the (3a)-site and a strong (OH)-deficiency reported by Rosenberg and Foit (1975). The alkali-free tourmaline has a vacant (3a)-site and is related to dravite by the □ + Al for Na + Mg substitution. It is stable from at least 300°C to about 800°C at low fluid pressures and 100% excess B2O3, and can be synthesized up to a pressure of 20 kbars. At higher temperatures the tourmaline decomposes into grandidierite or a boron-bearing phase possibly related to mullite (“B-mullite”), quartz, and unidentified solid phases, or the tourmaline melts incongruently into corundum + liquid, depending on pressure. In the absence of excess B2O3 tourmaline stability is lowered by about 60°C. Tourmaline may coexist with the other MgO-Al2O3-B2O3-SiO2-H2O phases forsterite, enstatite, chlorite, talc, quartz, grandidierite, corundum, spinel, “B-mullite,” cordierite, and sinhalite depending on the prevailing PTX-conditions.The (3a)-vacant tourmaline has the space group R3m with a =15.90 A?, c = 7.115 A?, and V = 1557.0 A?3. However, these values vary at room temperature with the pressure-temperature conditions of synthesis by ±0.015 A? in a, ±0.010 A? in c, and ±4.0 A?3 in V, probably as a result of MgAl order/disorder relations in the octahedral positions. Despite these variations intensity calculations support the assumed structural formula. Refractive indices are no = 1.631(2), nE = 1.610(2), Δn = 0.021. The infrared spectrum is intermediate between those of dravite and elbaite. The common alkali and calcium deficiencies of natural tourmalines may at least partly be explained by miscibilities towards (3a)-vacant end members. The apparent absence of (3a)-vacant tourmaline in nature is probably due to the lack of fluids that carry boron but no Na or Ca.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号