首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Kerogen was isolated from a marine sediment from Tanner Basin, offshore California. Samples of the kerogen were heated under an inert atmosphere at various temperatures and times. The heated and unheated kerogens were subjected to alkaline potassium permanganate oxidation followed by GC/ MS analysis of the products. The kerogens yielded primarily aliphatic C2–C14 α,ω-dicarboxylic acids and benzene mono-to-pentacarboxylic acids. Yields of aliphatic dicarboxylic acids from kerogen decreased with increasing thermal alteration. Yields of benzenecarboxylic acids increased steadily with increasing thermal alteration. The data support the concept that thermal maturation during natural burial of this type of kerogen results in the generation of aliphatic hydrocarbons from an increasingly aromatic residue.  相似文献   

2.
Potassium permanganate oxidative degradations were conducted for kerogens isolated from Cretaceous black shales (DSDP Leg 41, Site 368), thermally altered during the Miocene by diabase intrusions and from unaltered samples heated under laboratory conditions (250–500°C).Degradation products of less altered kerogens are dominated by normal C4–C15 α,ω-dicarboxylic acids, with lesser amounts of n-C16 and n-C18 monocarboxylic acids, and benzene mono-to-tetracarboxylic acids. On the other hand, thermally altered kerogens show benzene di-to-tetracarboxylic acids as dominant degradation products, with lesser or no amounts (variable depending on the degree of thermal alteration) of α,ω-dicarboxylic acids. Essentially no differences between the oxidative degradation products of naturally- and artificially-altered kerogens are observed.As a result of this study, five indices of aromatization (total aromatic acids/kerogen; apparent aromaticity; benzenetetracarboxylic acids/total aromatic acids; benzene-1,2-dicarboxylic acid/benzenedicarboxylic acids; benzene-1,2,3-tricarboxylic acid/benzenetricarboxylic acids) and two indices of aliphatic character (Total aliphatic acids/kerogen; Aliphaticity) are proposed to characterize the degree of thermal alteration of kerogens.Furthermore, a good correlation is observed between apparent aromaticity estimated by the present KMnO4 oxidation method and that from the 13C NMR method (DENNIS et al., 1982).  相似文献   

3.
The unique KMnO4 degradation products of β-carotene, previously identified as 2,2-dimethyl succinic acid (C6) and 2,2-dimethyl glutaric acid (C7) have been found in the oxidation products of Green River shale (Eocene, 52 × 106yr) and Tasmanian Tasmanite (Permian, 220−274 × 106yr) kerogens. These two compounds were also detected in KMnO4 degradation products of young kerogens from lacustrine and marine sediments. The results indicate that kerogens incorporated carotenoids (possibly β-carotene) at the time of kerogen formation in surface sediments. Both acids are useful markers to obtain information on biological precursors contributing to the formation of fossil kerogens.  相似文献   

4.
The products of a 27-step alkaline permanganate degradation of a type II kerogen from a sample of Toarcian shale, Paris Basin, have been studied. The high yield of oxidation products consisted of 1.86% neutrals and bases, 24.48% ether-soluble acids, and 45.95% precipitated, ether-insoluble acids, based on weight of original kerogen. The ether-soluble acids and the soluble products of further permanganate degradation of precipitated acids were found to consist mostly of saturated unbranched C6–C22 α,ω-dicarboxylic and C9–C25 monocarboxylic acids. Significant amounts of aromatic monocarboxylic, dicarboxylic and tricarboxylic acids were also found. Alkane tri- and tetracarboxylic acids were obtained in small concentration.  相似文献   

5.
《Organic Geochemistry》1987,11(4):251-264
Particulate matter, sediment trap, and surface sediment samples collected in freshwater Lake Haruna were studied to understand early diageesis of organic materials in the water column and in bottom sediments. The samples were analyzed for biomarkers, including aliphatic and aromatic hydrocarbons, fatty alcohols, saturated and unsaturated fatty acids, β- and ω-hydroxyacids, and α,ω-dicar☐ylic acids. Decreases in concentrations of autochthonous saturated C12–C19 fatty acids and polyunsaturated C18 acids relative to TOC occured with the settling of organic matter ot the lake bottom, whereas the amounts of terrestial saturated C20–C30 acids remained almost constant. Conversely, the concentrations of monosaturated fatty acids, branched chain fatty acids, and β- and ω-hydroxyacids, which are probably produced by microbial activity, increased. These results indicate that preferential degradation of algal lipids accompanies microbial resynthesis of lipids during settling, however, terrigenous lipids are relatively stable.  相似文献   

6.
A 33 step alkaline permanganate degradation of the kerogen from Moroccan Timahdit oil shale (M-Zone) was carried out. A very high total yield of oxidation products was obtained (95.4% based on original kerogen). Detailed GC-MS analyses of ether-soluble acids, acids isolated from aqueous solutions and soluble products of further controlled permanganate dedradation of precipitated, ether-insoluble acids, served as a basis for the quantitative estimation of the participation of various types of products and for comparison with other kerogens. The most interesting finding was the observed uniquely high yield of aromatic oxidation products from an intermediate type I–II kerogen. Taking into account the almost equally dominant aliphatic (50.2%) and aromatic (43.2%) nature of the acidic oxidation products, the existence of an aliphatic cross-linked nucleus mixed with cross-linked aromatic units in the Timahdit shale kerogen is postulated. Uniform distribution of oxidation products throughout the degradation suggested a similar reactivity of the various kerogen constituents towards alkaline permanganate.  相似文献   

7.
The structural characteristics of humic acids (HAs) from two different depths of a sedimentary sequence representing the last 13 kyr in the valley of Guadiana river estuary (SW Portugal/Spain border) have been approached using a combination of spectroscopic techniques, wet chemical degradation methods (sequential oxidation with sodium persulfate followed by KMnO4, and oxidation with RuO4) and analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) in the presence and absence of tetramethylammonium hydroxyde (TMAH). The aim was to obtain complementary information on the sources and alteration of the organic matter (OM) provided by a previous study on the vertical distribution of terrestrial and phytoplankton biogeochemical markers in the sequence. Both the FT-IR (Fourier transformed infrared) and 13C NMR (nuclear magnetic resonance) spectra showed a close similarity with the structural characteristics of the HA samples. NMR signals in the alkyl region (0–45 ppm) as well as FT-IR band patterns typical for methoxyl-substituted aromatic rings pointed to the presence of an important aliphatic domain, as well as to lignin-derived compounds. This finding was confirmed using analytical pyrolysis. In addition, the main TMAH thermochemolysis products were typical lignin-derived methoxyphenols with both guaicyl and syringyl nuclei. The detection of methoxyphenol units with three to six carbon atom (C3–C6) side chains suggests that lignin and possibly suberin were only partially degraded. Compounds arising from proteins and polysaccharides were also detected, although in lesser and varying amount. The major products from persulfate oxidation were series of n-alkanes (C16–C33 with clear odd/even predominance) and n-fatty acids, both saturated (C10–C26 with strong even/odd predominance) and unsaturated, which may arise from the above aliphatic biomacromolecules. The major products from permanganate oxidation of the persulfate residue were α,ω-diacids (C6–C11) originating from oxidation of the ether bonds linking the building blocks constituting the core of the HA structure. Aromatic compounds (phenols, methoxy-dimethoxybenzene carboxylic acid and benzene di-, tri-, tetra- and pentacarboxylic acids), most probably derived from the aromatic backbone of the HAs, that may also include lignin moieties as well as other polyphenols (flavonoids and tannins) were also detected. The RuO4 oxidation also released series of n-alkanes (C16–C33), linear saturated fatty acids (C10–C28) and α,ω-diacids (C7–C25), as well as traces of benzene polycarboxylic acids. Regarding the usefulness of the various techniques used, they provide complementary information. Indeed, spectroscopic techniques and analytical pyrolysis provide information on the backbone of the HAs, and on their origin, whereas the oxidative degradations provide different information on the structural features of the HA, particularly the nature of the linking between the building blocks. In general, the data support the idea that the HAs still contain information about the signature of aliphatic and aromatic biomacromolecules contributing to the OM deposited. The presence of lignin-derived residues suggests a large input from terrestrial carbon throughout the core.  相似文献   

8.
A 13-step alkaline permanganate degradation of Bulgarian oil shale kerogen concentrate at ambient temperature was carried out. A high yield of oxidation products (90.1%) and a low yield of gaseous products (2.79%) were obtained. IR and 1H NMR spectroscopic studies have shown that two significantly different types of high molecular products are present in kerogen. Further oxidation of these structures leads to the formation of low molecular aliphatic and aromatic acids, proven by gas chromotography (GC) and gas chromatography-mass spectrometry (GC-MS). The data obtained at these mild conditions allow us to acquire detailed information about the aromatic structures and polymethylene chain lengths in kerogen.The 5-step oxidation of the kerogen at 90 °C provides information about stable aromatic structures. Soluble and insoluble polyfunctional acids in acid medium have close molecular masses and spectral characteristics. The amount of benzene and naphthalene carboxylic acids is 11.3% of the organic matter of the oil shale.  相似文献   

9.
Lipid fraction and cell-wall materials have been separated from three types of algae (blue green, Microcystis sp.; green, Scenedesmus sp. and diatomaceous Diatoma sp.) and their KMnO4 oxidation products (aliphatic α,ω-C2-C12 dicarboxylic acids; aliphatic normal C14–C24 monocarboxylic acids; benzoic acid and C18 isoprenoidal ketone) examined by gas chromatography and gas chromatographymass spectrometry. The results suggest that the lipid material could make a greater contribution to polymethylene chains in kerogen than the cell-wall material, when the kerogens are mainly derived from algal components.  相似文献   

10.
Fatty acids (FAs), β- and ω-hydroxy acids, α,ω-dicarboxylic acids and n-alkanes were studied in a 200 m sediment core taken from Lake Biwa, Japan. FAs showed bimodal distribution with peaks at C16 and C22-C28. Their distribution patterns clearly changed with depth from lower molecular weight (C12-C19) predominance to higher molecular weight (C20-C32) predominance in the upper 20 m interval. Analyses of related compounds (β- and ω-hydroxy acids and α, ω-dicarboxylic acids) suggest that β- and ω-oxidative degradation of C12-C19 FAs has occurred in the sediments.The ratio of bound C12-C19 to unbound FAs increases with depth in the upper 0–1 m sediments, suggesting that unbound FAs are more labile. However, the ratio varies significantly in deeper sections and may be associated with water temperature.In the sediments deeper than 20 m in depth, C12-C19 FAs gradually decrease. On the other hand, higher molecular weight FAs (HFAs: C20-C32), which were probably derived from terrestrial plants, increase in concentration from 20 m to 100 m, suddenly decrease at 100 m and show progressively lower concentration in deeper sediments. These fluctuations are interpreted in relation to paleolimnological changes of the lake and the drainage basin. ω-Hydroxy C20-C30 acids and C20-C30α, ω-dicarboxylic acids show a distribution pattern similar to HFAs. Branched chain FAs, ω-hydroxy acids and C9-C19α,ω-dicarboxylic acids show a major peak around 3–15 m in depth. This peak is probably caused by increased bacterial activity in the water column and surface sediments in the past, which may be associated with an increase in primary production of the lake.  相似文献   

11.
A preliminary attempt to fractionate amorphous kerogens from terrigenous bulk kerogen by a benzene-water two phase partition method under acidic condition was made. Microscopic observation revealed that amorphous kerogens and structured kerogens were fractionated effectively by this method. Characteristics of the amorphous and structured kerogens fractionated by this method were examined by some chemical analyses and compared with those of the bulk kerogen and humic acid isolated from the same rock sample (Haizume Formation, Pleistocene, Japan). The elemental and infrared (IR) analyses showed that the amorphous kerogen fraction had the highest atomicHC ratio and the lowest atomic NC ratio and was the richest in aliphatic structures and carbonyl and carboxyl functional groups. Quantities of fatty acids from the saponification products of each geopolymer were in agreement with the results of elemental and IR analyses. Distribution of the fatty acids was suggestive that more animal lipids participate in the formation of amorphous kerogens because of the abundance of relatively lower molecular weight fatty acids (such as C16 and C18 acids) in saponification products of amorphous kerogens. On the other hand, although the amorphous kerogen fraction tends to be rich in aliphatic structures compared with bulk kerogen of the same rock samples, van Krevelen plots of elemental compositions of kerogens from the core samples (Nishiyama Oil Field, Tertiary, Japan) reveal that the amorphous kerogen fraction is not necessarily characterized by markedly high atomic HC ratio. This was attributed to the oxic environment of deposition and the abundance of biodegraded terrestrial amorphous organic matter in the amorphous kerogen fraction used in this work.  相似文献   

12.
Previous studies of the Green River kerogen only provide apparently contradictory conclusions about the size of the straight-chain aliphatic structures as well as the manner in which these structures form part of the kerogen matrix.The present investigation is an attempt to resolve this contradiction. A mild stepwise oxidation procedure was followed so that extensive degradation of kerogen-derived intermediates could be prevented. Products isolated from each oxidation step were analyzed by conventional GLC techniques, GC-MS, and proton-NMR measurements in order to ascertain the significance of the straight-chain aliphatic structures present in the Green River kerogen.The following results were obtained: (a) Green River kerogen contains a substantial portion (ca 2–4 carbons out of every 10) of straight-chain aliphatic structures which are longer than C4, (b) the kerogen matrix forms a three-dimensional network of non-straight-chain clusters interconnected by long polymethylene cross-links, (c) the ‘core’, in comparison with the ‘periphery’ of the kerogen matrix, contains a greater proportion of straight-chain and branched aliphatic structures which are attached to the kerogen matrix at one terminus, (d) some of the straight-chain structures may exist as physically entrapped components in the kerogen matrix.  相似文献   

13.
Tightly bound geolipids were separated from a 200 m sediment core of Lake Biwa by a second saponification of sediments from which unbound and bound lipids had been extracted. Tightly bound fatty acids, β-hydroxy acids, ω-hydroxy acids and α,ω-dicarboxylic acids were released; their concentrations ranged from 4.7–31.5, 5.6–60.5, 3.4–9.5 and 0.2–5.4 μg/g dry sediment, respectively. These geolipids were considered to be incorporated in humic substances.Tightly bound fatty acids showed a unimodal distriution with a peak at C16, suggesting that they originate from algae and bacteria and that they are more stable than unbound and bound fatty acids in the sediments. Most of the total β-hydroxy acids, which probably originate from bacteria, were found in the tightly bound fraction. This suggests that a large portion of tightly bound geolipids are formed in the water column and in surface sediments as a result of microbial alteration dead algae. Each class of tightly bound lipids showed higher concentrations between depths of 3 and 15 m in the sediments, where primary production was thought to be enhanced in the past.  相似文献   

14.
Long-chain fatty acids (C10-C32), as well as C14-C21 isoprenoid acids (except for C18), have been identified in anhydrous and hydrous pyrolyses products of Green River kerogen (200–400°C, 2–1000 hr). These kerogen-released fatty acids are characterized by a strong even/odd predominance (CPI: 4.8-10.2) with a maximum at C16 followed by lesser amounts of C18 and C22 acids. This distribution is different from that of unbound and bound geolipids extracted from Green River shale. The unbound fatty acids show a weak even/odd predominance (CPI: 1.64) with a maximum at C14, and bound fatty acids display an even/odd predominance (CPI: 2.8) with maxima at C18 and C30. These results suggest that fatty acids were incorporated into kerogen during sedimentation and early diagenesis and were protected from microbial and chemical changes over geological periods of time. Total quantities of fatty acids produced during heating of the kerogen ranged from 0.71 to 3.2 mg/g kerogen. Highest concentrations were obtained when kerogen was heated with water for 100 hr at 300°C. Generally, their amounts did not decrease under hydrous conditions with increase in temperature or heating time, suggesting that significant decarboxylation did not occur under the pyrolysis conditions used, although hydrocarbons were extensively generated.  相似文献   

15.
Examination of the pyrolysis products of sporopollenins from Pinus montana, Picea canadensis and Fagus sylvatica pollen, a spore coal and the Green River shale kerogen has shown the presence of typical carotenoid degradation products, including especially ionene and various naphthalenes and hydro naphthalenes. The products are compared with similar materials obtained from β-carotene and its oxidative co-polymer and the mechanism of formation of the compounds is discussed.  相似文献   

16.
A detailed study has been made of the solvent extractable monocarboxylic, dicarboxylic and hydroxylated fatty acids and n-alkanes in a surface intertidal sediment, and the distributions compared to microorganisms cultured from the sediment. Diatoms are shown to contribute most of the monocarboxylic acids, particularly the significant amounts of polyunsaturated acids present, and a small proportion of the n-alkanes. Bacteria contribute between 11 and 14% of the monocarboxylic acids and markers for this, including trans-monounsaturated acids, are proposed. Detritus from the sea-grass Zostera muelleri is a major source of the α-hydroxy-, ω-hydroxy and α,ω-dicarboxylic acids in the sediment and a minor contributor of n-alkanes and long-chain fatty acids.  相似文献   

17.
A detailed investigation of kerogen oxidation products remaining in aqueous solutions after the usual isolation of degradation products by extraction with ether or precipitation, was carried out for the first time in kerogen structural studies. Three shale samples were investigated: Green River shale (type I kerogen), Toarcian shale, Paris Basin (type II), and Mannville shale, Canada (type III). The yields of acids from aqueous solutions were noticeable: 12.98, 15.32 and 22.32%, respectively, based on initial kerogens. Qualitative and quantitative capillary GC/MS analysis showed that the ratios of different kinds of identified acids depended much on the type of precursor kerogen. Some of the acids identified in aqueous solutions have not been found earlier among the degradation products of the same kerogen samples, or were obtained in different ranges and yields. Consequently, slight modifications were suggested of the image on the nature of various types of kerogens based on examination of ether-soluble acids only. Namely, slightly higher proportions of aromatic and alkane-polycarboxylic acids in the total oxidation products of both type I and type II kerogens indicated larger participation of aromatic and alicyclic and/or heterocyclic structures in these two kerogens. On the other hand, for type III Mannville shale kerogen, a somewhat larger share of aliphatic type structures was demonstrated.  相似文献   

18.
The degradation and preservation affecting the biomarker record of ancient metazoa are not fully understood. We report on a five month experiment on the fate of fatty acids (FAs) during the degradation of recent whale vertebrae (Phocoena phocoena). Whale bones were analysed for extractable FAs and macromolecularly bound n-acyl compounds. Fresh bone showed extractable FAs dominated by 16:1ω7c, 16:0, 18:1ω9c and 18:0. Calculated degradation rate constant (k) values showed a rapid decrease in FA concentration, with k values higher for unsaturated than for saturated compounds (0.08/day for 18:1ω9c, 0.05/day for 16:0). The appearance or increased abundance of distinctive methyl branched (e.g. i/ai-15:0 and -17:0, 10Me-16:0) and hydroxy FAs (e.g. 10OH-16:0 and 10OH-18:0) were observed, providing clear evidence for the microbial degradation of bone organic matter and an input of lipids from specialised bacteria. Catalytic hydropyrolysis (HyPy) of demineralised extraction residues released up to 0.13% of the total n-C16 and n-C18 moieties in the degraded bones. This revealed that only a small, yet sizeable, portion of bone-derived fatty acyl units was sequestered into (proto)kerogen during the earliest stages of degradation.  相似文献   

19.
The chemical composition of Cretaceous leaf remains showing exceptionally well preserved cuticles was investigated using pyrolysis gas chromatography–mass spectrometry (Py-GC–MS) and thermally assisted hydrolysis methylation (THM)-GC–MS. Samples of Coniferales (Frenelopsis) and Ginkgoales (Nehvizdya penalveri) leaf remains were collected from freshwater and coastal marine depositional environments. Material for pyrolysis included (i) untreated leaves and cuticles obtained after extraction from mineral rock matrix and bleaching, (ii) kerogen fraction from both materials, (iii) non-hydrolysable fraction from kerogen. The THM-GC–MS data from untreated leaves and bleached cuticles show that the fossil cuticle geopolymer essentially released aliphatic components upon thermal treatment, with a dominance of fatty acids (FAs) and n-alkanes/n-alkenes. The FAs are essentially resistant to bleaching and remain after solvent extraction. They occur mainly as short chain compounds ranging from C6 to C16 and with maximum abundance at C8–C9. The n-alkanes/n-alkenes from kerogen and the non-hydrolysable residue occur mainly as short chain compounds in the range C10–C16, with the highest abundance at C9–C12. The THM-GC–MS pyrograms of the fossil cuticles differ from those of cutan from fresh living plants. They support the preservation model via polymerization of monomers derived from cutin or from unsaturated cell FAs.  相似文献   

20.
Gas chromatography-mass spectrometry-computer assisted analysis of the acidic fraction of Miocene Aleksinac shale bitumen (26 million years old) has shown a great variety of organic compounds. Samples obtained from both benzene and benzene-methanol extracts were investigated and found to contain a homologous series of γ-lactones (C7-C15). These lactones possibly represent the only indication of unsaturated acids present during the shales deposition. In addition to the γ-lactones, straight chain aliphatic monocarboxylic acids (C6-C12), dicarboxylie acids (C6-C19), as well as many aromatic acids have been detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号