首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The petroporphyrins of a Cretaceous crude oil, La Paz, from western Venezuela are shown to be a mixture of etio and DPEP homologues (C27-C39) maximising at C30 and C31, respectively. Minor amounts of rhodoporphyrins (C30-C39) are also present. Thin-layer chromatography afforded fractions which have been shown by mass spectrometry to contain up to 80% of a single-molecular-weight species. Oxidative degradation of La Paz petroporphyrins to maleimides and mass-spectrometric study of t.l.c. fractions indicate that some of these porphyrins are to a great extent incompletely substituted. Dealkylation reactions have presumably played an important role in their geologic history. Furthermore, the relative simplicity of the alkyl substitution pattern of the La Paz petroporphyrins suggests that transalkylation reactions have not taken place to any significant extent.The fraction of petroporphyrins isolated from the asphaltenes contains a higher proportion of the DPEP homologues than do the total petroporphyrins isolated from the original crude oil.  相似文献   

2.
Comparison of biological marker alkanes in the kerogen pyrolyzate and bitumen from a sediment is a useful test for the indigenous nature of sediment extracts. For the pyrolysis conditions used, the bulk of the hydrocarbons is released from the kerogen matrix between 375° and 550°C; and its steriochemistry is almost the same as that observed in the extractable bitumen in a genuine source rock. Examples are given to demonstrate that, during pyrolysis, the sterane/terpane ratio decreases and secondary terpanes are generated at the expense of primary ones.The mechanism of artificial petroleum generation by pyrolysis differs from ‘natural’ diagenesis during geological time and is reflected in the composition of certain C27-C29 steranes, as demonstrated by simulation experiments and C29-C30 moretanes and hopanes. The -sterane ratios, jointly with 17α(H)-hopane17β(H)-moretane ratios, tricyclic terpane concentrations and 17α(H)17β(H)-trisnorhopane ratios, allow the differentiation of kerogens from adjacent stratigraphies.  相似文献   

3.
Gel permeation chromatography (GPC) using a high performance liquid chromatography (HPLC) system was studied for the separation and enrichment of steroid and hopanoid hydrocarbons from crude oil for stable carbon isotope analysis. A crude oil sample was pretreated using silica gel chromatography and 5A molecular sieve to remove polycyclic aromatic hydrocarbons and n-alkanes. The GPC behavior of both the pretreated saturated hydrocarbon fraction of the oil and standard steroid [5α(H), 14α(H), 17α(H) C27–C29 steranes], hopanoid [17α(H) C27 trisnorhopane, 17α(H), 21β(H) C29–C32 hopanes] and triterpenoid [18α(H)-oleanane, gammacerane] mixtures were examined. The results indicate that 17α(H), 21β(H) hopanes as well as steranes could be enriched efficiently using GPC and that they could be obtained without removing n-alkanes from the oil saturated hydrocarbon fraction. The GPC behavior of steroid and triterpenoid hydrocarbons was controlled by molecular size and shape.  相似文献   

4.
Sediment from Tanner Basin, located at the outer continental shelf off southern California, was analyzed for photosynthetic pigments and their derivatives, namely carotenes and chlorins. Samples of the sediment were also exposed to raised temperatures (65°, 100°, 150°C) for various periods of time (1 week, 1 month, 2 months). Analysis of the heat-treated sediment revealed the presence of α-ionene and 2,6-dimethylnaphthalene, thermal-degradation products of β-carotene. Chlorins were converted to nickel porphyrins of both DPEP and etio series. Possible mechanisms and geochemical significance of these transformations are presented.  相似文献   

5.
A suite of 27 oils from the Qinjiatun–Qikeshu oilfields in the Lishu Fault Depression of the Songliao Basin was analyzed using whole oil gas chromatography. In combination with the relative distribution of C27, C28, and C29 regular steranes, detailed geochemical analyses of light hydrocarbons in oil samples revealed crude oils characterized by the dual input of lower aquatic organisms and higher terrestrial plants. Several light hydrocarbon indicators suggest that the liquid hydrocarbons have maturities equivalent to vitrinite reflectances of around 0.78%–0.93%. This is consistent with the maturity determination of steranes C29 20S/(20S + 20R) and C29 ααβ/(ααα + αββ). Crude oils derived from the two distinct oilfields likely both have source rocks deposited in a lacustrine environment based on light hydrocarbon parameters and on higher molecular weight hydrocarbon parameters. The results show that light hydrocarbon data in crude oils can provide important information for understanding the geochemical characteristics of the Qinjiatun–Qikeshu oils during geologic evolution.  相似文献   

6.
The high molecular weight constituents of the branched and cyclic hydrocarbon fraction of the Messel oil shale (Eocene) have been examined by high resolution gas chromatography and combined gas chromatography-mass spectrometry. The following compounds are present: perhydrolycopene (1; lycopane), together with one or more unsaturated analogues with the same skeleton; a series of 4-methylsteranes (2c) in higher abundance than their 4-desmethyl analogues; two series of pentacyclic triterpanes, one series (C27-C32) based on the hopane structure (3a-e), and the other (C27-C31) based on the 17α-H hopane structure (3a-d, 17αH); and an intact triterpene hop-17 (21)-ene [3c, Δ 17(21)]. Only two additional triterpanes were detected in minor concentrations, viz. 30-normoretane (3b, 21αH) and a C31 triterpane based on the hopane/lupane-type skeleton. The presence of these compounds suggests a significant microbial contribution to the forming sediment. Comparison of the tri- and tetraterpenoid hydrocarbons with those of the Green River Shale indicates differences in the organisms contributing to the two sediments.  相似文献   

7.
The major steranes of the non-asphaltene fraction of Nigerian tar sand bitumen (maltene) are the c27-c29 diasteranes [13β(H),17α(H); 20R + S] and C28-C29 regular steranes [14β (H),17β (H); 20S]. The reducing metal reaction products of the corresponding asphaltenes (maltene-I) contain mainly C27-C29 regular steranes with the 14β(H),17β(H); 20R + S and 14α(H),17α(H); 20R + S configurations as well as the corresponding diasteranes having the 13β(H),17α(H); 20R + S configuration. These sterane distributions suggest that maltene-I corresponds to an unaltered oil whilst the maltene is equivalent to the product of severe biodegradation of maltene-I. This is consistent with maltene-I being the remnant of “original oil” trapped within the asphaltene matrix and protected from the effect of in-reservior biodégradation.Degradation of Nigerian asphaltenes by refluxing with ferric chloride-acetic anhydride or methanolic potassium hydroxide also releases soluble reaction products having the characteristics of unaltered oil such as the presence of n-alkanes having an unbiased distribution. These methods appear to be milder and more suitable than reducing metal reactions for releasing hydrocarbons occluded by asphaltenes.  相似文献   

8.
9.
Hydrous pyrolysis experiments on the Phosphoria Retort Shale generate bitumen extracts and expelled oils that have steroid hydrocarbons with m/z 217-, 231-, and 253-mass Chromatographic distributions that are similar to those of bitumens and crude oils in the natural system. These experiments agree with the natural observations that diasteroid hydrocarbons increase relative to their regular counterparts with increasing thermal stress, while their C27 through C29 proportionality shows a slight enrichment in C27. Relative concentrations of 20S to 20R configurations of 24-ethyl-14α,17α-cholestane show the expected increase with increasing thermal stress into the early part of the primary oil generation stage, but thereafter decrease with increasing thermal stress. If this reversal is found in high maturity sections of the natural system, the utility of this transformation as a maturity index will be limited. Triaromatic- to monoaromatic-steroid hydrocarbon concentrations increase with increasing thermal stress as observed in the natural system. Preferred migration of monoaromatic steroid hydrocarbons from bitumen extracts to expelled oils places considerable doubt on currently employed kinetic models for this aromatization reaction. As in the natural system, the experiments show relative concentrations of low-molecular weight- to high-molecular weight-triaromatic steroid hydrocarbons to increase with increasing thermal stress. Assuming a first-order reaction rate, the apparent activation energy and pre-exponential factor for this apparent side-chain cleavage reaction are 175.59 kJ mol−1 and 2.82 × 1013 hr−1, respectively. These kinetic parameters are geologically reasonable and are similar to those for the overall generation of expelled oil.  相似文献   

10.
The yield of alkanes released from three coals by liquefaction in tetralin at 400°C is 6–8 times greater than the yield obtained by Soxhlet extraction with the azeotropic micture of benzene and ethanol. The alkanes are dominated by a series of n alkanes, in most cases in the range C14-C34, together with major amounts of pristane and phytane. Homologous series of pentacyclic triterpanes are also present, according to GC/MS analyses. These consist almost entirely of hydrocarbons of the hopane and moretane series (17αH, 21βH and 17βH, 21αH), in the range C27-C34 (C28 being absent). Several members of the series are found in S and R epimeric pairs. Differences in several aspects of alkane distribution between extract and liquefaction products were carefully examined. taking an overall view, the distributions in extract and product oil from any one coal were quite closely similar. It is concluded that the additional alkanes yielded by liquefaction had most probably been physically trapped inside the macromolecular network of the coals, and releasable only on disruption of that network.  相似文献   

11.
The thermodynamic stability of selected alkylated, dealkylated and rearranged 17α- and 17β-hopane isomers in the C27, C28, C29, C30 and C31 families were calculated using molecular mechanics (MM2) methods and, where possible, calculated equilibrium ratios of certain isomers were compared with observed ratios of isomers in thermally mature crude oil samples. Those calculated and observed ratios having similar values include: (1) the relative distributions among 17β(H)/17α(H) and 21β(H)/21α(H)-hopanes including the absence of the 17β(H),21β(H)- and 17α(H),21α(H)-hopanes; (2) the 22R/22S ratios in 30-methyl-17α-hopane and 30-methyl-17β-moretane; (3) the relative distributions among 17α(H)/17β(H)- and 21α(H)/21β(H)-28,30-bisnorhopanes and among 25,28,30-trisnorhopanes, including the relatively greater stability of 17β(H) isomers in contrast to the regular hopane series; and (4) the ratios of 28(18−17S)abeo hopanes with respect to their unrearranged counterparts including the C27 compounds, Ts/Tm.  相似文献   

12.
The physical properties and group compositions of crude oils in the western depression of the Liaohe Basin possess such characteristics as to increase gradually in density, viscosity and wax contents, and decrease in saturated hydrocarbon and non-hydrocarbon and bitumen contents from the deep level to the shallow level and from the center of the depression to its boundary. Saturated hydrocarbons have various spectra, such as single peak and double peak patterns, front peak and rear peak patterns, and smooth peak and serated peak patterns, as well as the chromatograms of biodegraded n-alkanes. The ratios of Pr/Ph in crude oils from the southern part of the depression are generally higher than those in the northern part. The distribution of regular steranes C27–C29 is predominantly of the ramp type, and only a few samples have relatively high C28 contents in the southern part of the depression. As viewed from their physical properties and geochemical characteristics, crude oils in the study area can be divided into two types (I and II) based on oil-generating sources and sedimentary environments, and then further divided into three sub-types (Ia, Ib and Ic:IIa, IIb and IIIc, respectively) based on their degrees of maturation and secondary transformation. This will provide the reliable basis for oil-source correlation and petroleum exploration and prediction.  相似文献   

13.
Two ring-like artefacts from the aceramic Neolithic site of Demirköy Höyük in southeastern Turkey were analysed using geochemical techniques in order to determine whether they were prepared using a bitumen amalgam or not. The artefacts, dated 8100 BC, are early evidence of the innovative use of a petroleum-based material to prepare pieces of ornaments (beads, rings, etc.) for the elite of a Neolithic settlement. In order to trace the source of the presumed bitumen, two oil seeps, Boğazköy and Yeşilli, were sampled. To complete the genetic references, geochemical data on crude oils from the main oil fields from the area were compiled.Basic geochemical data show that bitumen is present in the artefacts. Sterane and terpane patterns, as well as carbon isotopic data on C15+ saturated and C15+ aromatic hydrocarbons, allowed us to conclude that the Demirköy Höyük bitumen and the Boğazköy oil seep were generated from a Silurian source rock. The detailed geochemical characteristics show, however, that the Demirköy Höyük bitumen does not correlate perfectly with the Boğazköy oil. This discrepancy suggests several explanations: the real bitumen source may be elsewhere in the vicinity and has not been discovered or was at the Boğazköy oil seep location but with slightly different properties in Neolithic times, or has disappeared. Another possibility is that the slight molecular differences are due to weathering effects, which affected the pristine bitumen within the archaeological sample.  相似文献   

14.
A series of tricyclic terpenoid carboxylic acids (C20–C40) was found in the acidic fraction of Tasmanian tasmanite bitumen, occurring as a mixture of stereoisomers with mainly the 13β(H), 14α(H)-and 13α(H),14α(H)-configurations. These dominant acidic tricyclic constituents have the same carbon skeleton as the ubiquitous tricyclic terpane biomarkers. A novel series of ring-C monoaromatic tricyclic terpenoid carboxylic acids was also characterized. The series ranges from C19 to C39 and is the acidic counterpart of the recently described series of monoaromatic tricyclic terpanes.  相似文献   

15.
Hydrocarbon distributions and stable isotope ratios of carbonates (δ13Ccar, δ18Ocar), kerogen (δ13Cker), extractable organic matter (δ13CEOM) and individual hydrocarbons of Liassic black shale samples from a prograde metamorphic sequence in the Swiss Alps were used to identify the major organic reactions with increasing metamorphic grade. The studied samples range from the diagenetic zone (<100°C) to amphibolite facies (∼550°C). The samples within the diagenetic zones (<100 and 150°C) are characterized by the dominance of C<20n-alkanes, suggesting an origin related with marine and/or bacterial inputs. The metamorphic samples (200 to 550°C) have distributions significantly dominated by C12 and C13n-alkanes, C14, C16 and C18n-alkylcyclopentanes and to a lesser extend C15, C17 and C21n-alkylcyclohexanes. The progressive 13C-enrichment (up to 3.9‰) with metamorphism of the C>17n-alkanes suggests the occurrence of cracking reactions of high molecular weight compounds. The isotopically heavier (up to 5.6) C<17n-alkanes in metamorphic samples are likely originated by thermal degradation of long-chain homologous with preferential release of isotopically light C1 and C2 radicals. The dominance of specific even C-number n-alkylcyclopentanes suggests an origin related to direct cyclization mechanism (without decarboxylation step) of algal or bacterial fatty acids occurring in reducing aqueous metamorphic fluid conditions. The regular increase of the concentrations of n-alkylcycloalkanes vs. C>13n-alkanes with metamorphism suggests progressive thermal release of kerogen-linked fatty acid precursors and degradation of n-alkanes. Changes of the steroid and terpenoid distributions are clearly related to increasing metamorphic temperatures. The absence of 18α(H)-22,29,30-trisnorneohopane (Ts), the occurrence of 17β(H)-trisnorhopane, 17β(H), 21α(H)-hopanes in the C29 to C31 range and 5α(H),14α(H),17α(H)-20R C27, C29 steranes in the low diagenetic samples (<100°C) are characteristic of immature bitumens. The higher thermal stress within the upper diagenetic zone (150°C) is marked by the presence of Ts, the disappearance of 17β(H)-trisnorhopane and thermodynamic equilibrium of the 22S/(22S + 22R) homohopane ratios. The increase of the ααα-sterane 20S/(20S + 20R) and 20R ββ/(ββ + αα) ratios (from 0.0 to 0.55 and from 0.0 to 0.40, respectively) in the upper diagenetic zone indicates the occurrence of isomerization reactions already at <150°C. However, the isomerization at C-20 (R → S) reaches thermodynamic equilibrium values already at the upper diagenesis (∼150°C) whereas the epimerisation at C-14 and C-17 (αα → ββ) arrives to constant values in the lower anchizone (∼200°C). The ratios Ts vs. 17α(H)-22,29,30-trisnorneohopane [(Ts/(Ts + Tm)] and 18α(H)-30-norneohopane (C29Ts) vs. 17α(H),21β(H)-30-norhopane [C29Ts/(C29Ts + C29)] increase until the medium anchizone (200 to 250°C) from 0.0 to 0.96 and from 0.0 to 0.44, respectively. An opposite trend towards lower values is observed in the higher metamorphic samples.The occurrence of specific hydrocarbons (e.g., n-alkylcyclopentanes, cadalene, hydrogenated aromatic compounds) in metamorphic samples points to kerogen degradation reactions most probably occurring in the presence of water and under reducing conditions. The changes of hydrocarbon distributions and carbon isotopic compositions of n-alkanes related to metamorphism suggest that the organic geochemistry may help to evaluate the lowest grades of prograde metamorphism.  相似文献   

16.
The current geochemical study of n-alkanes, steranes, and triterpanes in bitumen from the Late Maastrichtian–Paleocene El Haria organic-rich facies in West of Gafsa, southern Tunisia, was performed in order to characterize with accuracy their geochemical pattern. The type of organic matter as deduced from n-alkanes, steranes, and triterpanes distributions is type II/III mixed oil/gas prone organic matter. Isoprenoids and biomarkers maturity parameters (i.e., T s/T m, 22S/(22S?+?22R) of the C31 αβ-hopanes ratios, 20S/(20R?+?20S) and ββ/(ββ?+?αα) of C29 steranes), revel that the organic-rich facies were deposited during enhanced anoxic conditions in southern Tunisa. The organic matter is placed prior to the peak stage of the conventional oil window (end of diagenesis–beginning of catagenesis). All these result are suggested by total organic carbon analysis, bitumen extraction and liquid chromatography data. Thus, the n-alkanes, triterpane, and steranes study remains valuable and practical for geochemical characterization of sedimentary organic matter.  相似文献   

17.
Four typical distribution patterns of pentacyclic triterpenoid hydrocarbons (types A-D) are distinguished in the low-mature source rocks from eastern China. Type A has a relatively high content of pentacyclic triterpenes. It exists in immature sediments and the distribution and abundance of triterpenes vary with the maturity of the sediments. An unknown C30 triterpene (UCT2) has also been detected in very shallow sediments. This compound is very unstable and disappears rapidly with the increase of depth. Type B is characterized by a relatively high amount of 17α(H), 21β(H)-30-homohopane. This kind of distribution pattern is common in coals and terrestrial sediments of low maturity. Type C has a relatively high content of diahopane and neohopane series. The analysis shows that this distribution pattern may have an indirect relationship with the input of higher plants despite its microbial source. There are C30-unconfirmed triterpane (UCT2) and a relatively high content of C35 hopane in type D. The dist  相似文献   

18.
The degradation of acyclic petroleum hydrocarbons was studied during a 24-month experiment in Mediterranean coastal sediments (Gulf of Fos). Sediment cores entirely contaminated with oil (Arabian Light Crude Oil) were incubated in situ. The use of conservative tracers of sediment's particles reworking (luminophores) allowed the distinction of the reworked layer from the anoxic deeper sediments. Using the 17α,21βC30 hopane (C30H) as an inert internal reference, we could demonstrate that, after 24 months of experiment, acyclic petroleum hydrocarbons can be degraded under natural anaerobic conditions. The reactivity of individual alkanes appeared to depend on their chemical structure. To cite this article: D. Massias et al., C. R. Geoscience 335 (2003).To cite this article: D. Massias et al., C. R. Geoscience 335 (2003).  相似文献   

19.
TD-2 structure is located in the eastern part of the Central Uplift zone of the Tarim Basin, China. It is a basement-uplift anticline-type structure confirmed by seismic and gravity prospecting, and it is expected to have good potential for oil and gas according to the analysis of regional geological evolution history. But further exploration such as drilling is suspended because of lacking direct geochemical information. Therefore, multi-parametric geochemical surveys, such as free hydrocarbons (C1-C5), acid hydrocarbons (C1-C5) and ?C, Hg of soil, were conducted. It is concluded in this paper that free hydrocarbons are obviously better than other geochemical parameters and could be used for evaluation of oil and gas potential of TD-2 structure in the desert area. Shapes of near-surface geochemical anomalies and geochemical characteristic parameters suggested that TD-2 structure was a dry gas-bearing structure at the early-middle dissipation stage. So TD-2 structure should have some promising potential for oil-gas. Multi-parametric geochemical survey provided important information for further drilling exploration.  相似文献   

20.
Distinctive compositional features of cyclic saturated hydrocarbon biomarkers have been established in oils from the main petroliferous lithostratigraphic complexes of various structural zones in the Timan-Pechora petroliferous province (TPPP). Four geochemical families (types) of oils in TPPP are recognized based on the variations in the geochemical parameters of steranes and terpanes including sterane ratios C27/C29 and C28/C29, K1 mat and K2 mat, diasterane/regular sterane, pregnane (C21–22)/sterane (C21–22 + C27–29), as well as terpane Ts/Tm parameters, adiantane C29/hopane C30, neoadiantane/adiantane, tryciclic terpane/pentacyclic terpane, hopane/sum of C29 steranes, etc. The distribution of various types of oil in the sedimentary sequence of TPPP makes it possible to infer source rocks for each of the four selected types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号