首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
降雨人渗补给规律的分析研究   总被引:1,自引:0,他引:1  
陈建峰 《地下水》2010,32(2):30-31
浅层地下水资源计算中,降雨入渗补给系数是最基本的参数,而求解参数关键是确定降雨入渗补给量。从其土壤水下渗机理,包气带蓄水库容,降雨入渗补给系数方面分析研究,最后得出:包气带可容纳库容是降雨入渗补给量的极限值;降雨入渗补给系数因不同岩性、土壤前期含水量、降雨量等因素而变化;降雨入渗补给规律存在一个地下水最佳埋深。  相似文献   

2.
淮北平原降雨入渗补给系数随地下水埋深变化特征   总被引:1,自引:0,他引:1  
谢永玉 《地下水》2012,(1):9-11
水文地质参数对地下水资源评价起着至关重要的作用。其中,降雨入渗补给系数是影响浅层地下水水量、水质的重要参数。它对研究区域水量转化和水量平衡也十分重要。但是由于受降雨量、土壤类型、植被、地下水埋深等诸多因素的影响,准确判断降雨入渗补给系数存在很大困难。如果没有考虑这些因素的影响,尤其是降雨量和地下水埋深的影响,所推求的降雨入渗补给系数就会存在较大误差。结合安徽省淮北平原区五道沟水文实验站观测的降雨量、地下水补给量、地下水水位资料,利用两种不同的方法推求了不同降雨量等级的次降雨入渗补给系数。根据统计学理论研究了不同降雨量条件下,次降雨入渗补给系数随地下水埋深变化的分布规律,建立了次降雨入渗补给系数与地下水埋深的回归模型,并进行了相应的检验。研究表明,在控制地下水埋深的条件下,次降雨入渗补给系数随地下水埋深的变化符合指数分布;在地下水位自由变动的条件下符合伽玛分布。  相似文献   

3.
降雨入渗补给潜水存在滞后效应.利用HYDRUS程序建立垂直一维非饱和渗流数值模型,模拟了补给过程对脉冲式地面入渗的响应.根据不同潜水面埋深补给强度的变化过程计算补给权重,获得了滞后补给权函数曲线.模拟结果表明权函数曲线具有单峰形式,随潜水面埋深增加,峰值减小,其出现的时间推迟.相对粗颗粒土壤,缅颗粒土壤产生的权函数峰值较小,出现时间更晚.前人提出的滞后补给权函数经验公式能够近似地刻画单峰曲线形态,在包气带介质颗粒较粗、潜水面埋深较小时比较适用,但是对细颗粒土壤和潜水面埋深较大的情况则存在一定的偏差.土壤类型和含水量的垂向分布,都可以通过对包气带渗透性的控制而影响滞后补给过程.可为研究地下水模型处理动态降雨入渗补给及包气带溶质淋滤过程提供参考.  相似文献   

4.
甘肃省黑河干流细土平原区灌溉水入渗运移的初步研究   总被引:8,自引:0,他引:8  
西北干旱地带农业区的灌溉水入渗是地下水补给的重要途径。在甘肃省黑河干流细土平原区,利用中子仪和负压计观测了灌溉水入渗时包气带的含水率和土水势的变化,初步分析了灌溉水入渗运移规律,确定了灌溉水入渗补给系数随地下水埋深的变化,为本区进行地下水资源评价奠定了基础。  相似文献   

5.
针对在地下水资源评价中入渗补给量采用经验估算存在较大误差的问题,以神东矿区为例,在广泛调查矿区包气带岩性结构并结合野外取样、室内参数测定的基础上,采用数值模拟的方法建立包气带水分运移数值模拟模型,定量模拟矿区内不同地段降雨入渗强度,探讨影响降雨入渗强度的主要因素,计算得出研究区降雨入渗系数大致在0.18~0.27,分析认为影响降雨入渗强度的因素有降雨量、潜水埋深、包气带岩性等。其中在研究区广泛分布的风积沙对地下水资源起到了一定的保护作用。  相似文献   

6.
利用包气带环境示踪剂评估张掖盆地降水入渗速率   总被引:2,自引:0,他引:2  
降水入渗补给速率是干旱半干旱地区地下水资源评价和保护中的重要参数。长期以来在河西走廊中游盆地地下水资源评价中,一直认为地下水位埋深>5m的地带难以产生降水入渗补给。本文在黑河流域中游的张掖盆地分别选择沙丘区和裸地区,综合运用包气带同位素和水化学信息,开展了降水入渗补给研究。包气带氯质量平衡法结果表明:现代气候条件下,张掖盆地地下水位埋深>5m的地带仍存在降水入渗补给,在沙丘覆盖区,地下水位埋深6.3m时,降水入渗补给速率为13.3~14.4mm/a,入渗系数0.10~0.11;在裸地区,地下水位埋深8.6m时,降水入渗补给速率为16.8~18.4mm/a,入渗系数0.13~0.14。  相似文献   

7.
黄河冲积平原面积广大,农田灌溉频繁,灌水量大,在地下水资源评价时对灌溉入渗系数取值困难。本文在现场灌溉入渗试验的基础上,分析包气带岩性及结构、水位埋深、灌溉水量对灌溉入渗系数的影响,总结提出了多种条件下灌溉入渗系数的取值范围。在单位灌水量40~60m3/亩和水位埋深小于4m、4~8m、大于8m的井灌区中,当包气带岩性为粉土、粉砂时,灌溉入渗系数可分别取值0.21~O.10、0.10—0.05、0.05~0;当包气带岩性夹有粉质粘土层时,灌溉入渗系数可分别取值0.15~0.09、0.09—0.05、0.05~0。在单位灌水量较大的渠灌区,灌溉入渗系数可按单位灌水量的增大倍数而增加,由此为黄河冲积平原区地下水补给量计算中灌溉入渗系数的确定提供了依据。  相似文献   

8.
季家强  齐仁贵 《地下水》2004,26(2):78-81,128
本文用实测资料统计计算分析了惠北试区降雨对浅层地下水资源的补给。用非线性回归问题的迭代法,求出了雨前不同埋深条件下,次降雨与地下水位上升的关系式,并提出了能引起地下水位上升的最小次降雨量(也称临界雨量),用本区41年的降雨资料对地下水资源的补给进行了统计计算,导出了相关性很好的年降雨量与年入渗补给量的关系式,求出了多年降雨入渗补给系数。  相似文献   

9.
不同作物覆盖对农业区地下水入渗补给的影响分析   总被引:1,自引:1,他引:0       下载免费PDF全文
灌溉入渗是卫宁平原地下水的主要补给来源,研究不同农作物对地下水的灌溉入渗补给对于准确评价地下水资源量十分重要。本研究基于卫宁平原灌区2个包气带水分运移原位试验点系统观测数据,运用Hydrus-1D软件建立了试验点的包气带水分运移数值模型;设置了单次灌溉量、生长期天数、最大根系埋深和叶面积指数四种影响因子,应用模型分析了其对地下水入渗补给量的影响,计算了不同作物种植期内地下水垂向入渗补给量。结果表明:试验点地下水入渗补给量以灌溉入渗补给量为主。单次灌溉量的大小对地下水垂向入渗补给量的影响最为显著,其次是生长期天数和最大根系埋深,叶面积指数对地下水垂向入渗补给量的影响最小。随着地下水位埋深的增加,农作物种植因子对地下水入渗补给的影响也会增大。不同时期的降雨入渗系数为0.02~0.25;受次降雨量和降雨频率影响差异较大。灌溉入渗系数大小与作物种类关系密切:玉米种植期内的灌溉入渗系数为0.78,茄子种植期内的灌溉入渗系数为0.51,枸杞种植期内的灌溉入渗系数为0.6~0.63。综合考虑研究区作物类型和地下水位埋深(117~267 cm),给出了研究区农田区域在作物单次灌溉量为50~150 mm情况下,对应的灌溉入渗系数参考值。  相似文献   

10.
种植条件下降雨灌溉入渗试验研究   总被引:2,自引:0,他引:2  
基于清水河平原头营和黑城试验场降雨(灌溉)入渗过程土壤水分运移观测试验数据的分析研究,笔者应用能量观点描述了包气带水分运移的分带性、降雨(灌溉)入渗补给地下水的水分条件和地下水入渗补给过程的基本特征。应用蒸散量模型、土壤水分通量模型,计算了作物生长期的蒸发蒸腾量、土壤贮水量的变化量、400cm深度处的土壤水分渗漏量及渗漏系数。从多年的角度分析了深层土壤水分渗漏量、渗漏系数与地下水入渗补给量和补给系数的关系。它对分析降雨(灌溉)入渗对地下水的补给过程和定量分析地下水入渗补给量、入渗补给系数具有重要价值。  相似文献   

11.
大气降雨是华北平原浅层地下水的主要补给来源。长期过量开采地下水造成地下水位持续下降,使原来处于饱水带的透镜体位移到包气带中,形成了厚度大、非均质性更为复杂的包气带。厚层包气带中弱渗透性黏土透镜体对于降雨入渗补给的影响是关系到降水入渗过程及补给量评价的基本问题。用HYDRUS软件建立数值模拟模型,模拟探讨单次降雨条件下,透镜体埋深、宽度比、厚度等要素对入渗路径、入渗补给时间和入渗补给量的影响。结果表明:入渗过程中弱渗透性黏土透镜体两侧会形成较快的绕流;透镜体会减小补给峰值并延长总体补给时间,但不改变补给起始时间;透镜体埋深与极限蒸发深度的相对关系决定了潜在补给量的大小,透镜体埋深或因透镜体形成的上层滞水处于极限蒸发深度以上会减少潜在补给量。  相似文献   

12.
包气带增厚区土壤水力参数及其对入渗补给的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
林丹  靳孟贵  马斌  汪丙国 《地球科学》2014,39(6):760-768
为探讨包气带深部增厚区土壤水力参数变化对入渗补给过程的影响,采用压力膜仪对河北正定深部包气带(8.0~21.0 m)10个原状土样进行水分特征曲线测试,利用RETC软件中Mualem-van Genuchten导水率模型对其拟合,获取含水率与非饱和导水率的关系曲线,并根据达西法对其进行分析讨论.结果表明:场地包气带深埋区的非饱和导水率为25~240 mm/a.当某一埋深历史水位下降速度越快,该埋深处相同含水率情况下土壤非饱和导水率越大,说明对应土层的入渗补给强度越大;因包气带厚度增大使原来位于饱水带的层状非均质土层转变为包气带,潜水位波动下降过程中深部包气带土层因排水压密作用,使得土壤水力特性发生变化,进而影响垂向入渗补给过程.   相似文献   

13.
The vadose zone is the zone in between the land surface and above the groundwater table at vertical profile with partial water saturation and under the unsaturation condition, which constitutes the connections among atmospheric water, surface water and groundwater. Soil moisture migration in the vadose zone is a rather complicate process, which controls the rates of groundwater depletion and recharge, and has close hydraulic connections with highly frequent water transfers on the interfaces among the irrigation farmland, sand dunes, wetlands, lakes, and other landscape types. Recent development on soil moisture migration simulations and the application of tracer techniques, geophysical techniques and other geological methods in the vadose zone research, the factors affecting soil moisture migration and groundwater recharge,and soil moisture migration effects on moisture exchange between different landscapes were reviewed in this paper. Several suggestions on the future research were presented here: ① An intense field observation and research database should be initiated and constructed to determine the soil hydraulic parameters, and quantify the influence of moisture migration in vadose zone on the groundwater recharge; ② The proposed observations and researches should learn from the “Critical Zone Observatory”, and focus on the coupling of the soil moisture migration, solute transport and groundwater recharge.  相似文献   

14.
降水和人工灌溉是黑河中游浅层地下水重要的补给来源。长期以来入渗补给量评价采用经验参数法,但没有成熟的监测方法和实证数据。采用人工溴示踪法研究黑河中游不同灌溉条件和不同深度条件下的地下水入渗补给规律。结果表明:研究区大气降水条件下包气带溴离子含量峰值年均运移距离为21.25 cm,年平均入渗补给量为11.93 mm,入渗补给系数为0.1;大水漫灌条件下包气带溴离子含量峰值年均运移距离为86.51 cm,年平均入渗补给量为148.7 mm,入渗补给系数为0.16;小水漫灌条件下包气带溴离子含量峰值年均运移距离为46.35 cm,年平均入渗补给量为 53.81 mm,入渗补给系数为0.07;滴灌条件下年包气带溴离子含量峰值年均运移距离为41.72 cm,年平均入渗补给量为52.6 mm,入渗补给系数为0.11。人工溴示踪剂应投放在包气带水分单向入渗下行区,一般西北内陆盆地在地表3 m以下为宜。此研究成果可为黑河流域地下水资源评价提供实证参数,对西北内流盆地地下水水资源量与合理开发利用的科学认识具有重要意义。  相似文献   

15.
选取桂林丫吉试验场硝盐洞为研究对象,通过示踪试验和高分辨率水文水化学监测,确定滴水补给来源,研究典型岩溶包气带洞穴滴水对降雨响应的水文过程。研究结果表明,硝盐洞XY5滴水主要受到两种径流成分补给,即集中补给的管道流和弥散流。硝盐洞上部包气带中可能存在表层岩溶带含水层,长期维持滴水流量。滴水流量、电导率和示踪剂浓度的峰值均出现在强降雨时段,表现出快速响应的管道流特征,存在降雨阈值引起硝盐洞滴水降雨响应。降雨前岩溶含水层水分条件是包气带水文响应差异的主要原因,雨季滴水对降雨响应迅速,XY5滴水对降雨响应的滞后时间为10 h;而旱季对降雨的响应滞后明显,滞后时间达9.8天,体现了土壤和表层岩溶带的调蓄作用。74.4 mm降雨量是旱季转雨季滴水响应的降雨阈值。借助于洞穴滴水的水文动态变化和示踪试验技术对于研究包气带水文过程,深入了解岩溶含水层结构及特征,揭示岩溶区降雨入渗补给机制具有重要作用。  相似文献   

16.
The present research aims to derive the intrinsic vulnerability of groundwater against contamination using the GIS platform. The study applies DRASTIC model for Ahmedabad district in Gujarat, India. The model uses parameters like depth, recharge, aquifer, soil, topography, vadose zone and hydraulic conductivity, which depict the hydrogeology of the area. The research demonstrates that northern part of district with 46.4% of area is under low vulnerability, the central and southern parts with 48.4% of the area are under moderate vulnerability, while 5.2% of area in the south-east of district is under high vulnerability. It is observed from the study that lower vulnerability in northern part may be mostly due to the greater depth of vadose zone, deeper water tables and alluvial aquifer system with minor clay lenses. The moderate and high vulnerability in central and southern parts of study area may be due to lesser depth to water tables, smaller vadose zone depths, unconfined to semi-confined alluvial aquifer system and greater amount of recharge due to irrigation practices. Further, the map removal and single-parameter sensitivity analysis indicate that groundwater vulnerability index has higher influence of vadose zone, recharge, depth and aquifer parameters for the given study area. The research also contributes to validating the existence of higher concentrations of contaminants/indicators like electrical conductivity, chloride, total dissolved solids, sulphate, nitrate, calcium, sodium and magnesium with respect to groundwater vulnerability status in the study area. The contaminants/indicators exceeding the prescribed limits for drinking water as per Indian Standard 10500 (1991) were mostly found in areas under moderate and high vulnerability. Finally, the research successfully delineates the groundwater vulnerability in the region which can aid land-use policies and norms for activities related to recharge and seepage with respect to existing status of groundwater vulnerability and its quality.  相似文献   

17.
Fast population growth and rapid industrialization, on one hand, and lack of sewerage network and poor living condition, on the other, have led to the deterioration of surface and ground water quality in the city of Addis Ababa. The urban wastewater is discharged largely into streams that drain the city. Only less than 3% join the wastewater treatment facilities. Due to sporadic rainfall that causes shortage in groundwater recharge, managed aquifer recharge (MAR) experiment was tested on soil column collected from Akaki Well Field which is located in the southern part of the city using water from the Big Akaki River that crosses the same well field and effluent from Kaliti Wastewater Treatment Plant. Water quality analysis for 17 different parameters was done for both the inflow and outflow water samples and soils were tested for electrical conductivity and cation exchange capacity. The results indicate improved water quality as a result of higher attenuation/filtration capacity of the vadose zone in the well field due to the presence of vertisols. The main geochemical processes that have acted in the soil column could be cation exchange, dissolution, precipitation, oxidation, nitrification, die off etc. that are responsible for the effectiveness of vadose zone for MAR.  相似文献   

18.
Groundwater is a very important natural resource in Khanyounis Governorate (the study area) for water supply and development. Historically, the exploitation of aquifers in Khanyounis Governorate has been undertaken without proper concern for environmental impact. In view of the importance of quality groundwater, it might be expected that aquifer protection to prevent groundwater quality deterioration would have received due attention. In the long term, however, protection of groundwater resources is of direct practical importance because, once pollution of groundwater has been allowed to occur, the scale and persistence of such pollution makes restoration technically difficult and costly. In order to maintain basin aquifer as a source of water for the area, it is necessary to find out, whether certain locations in this groundwater basin are susceptible to receive and transmit contamination. This study aims to: (1) assess the vulnerability of the aquifer to contamination in Khanyounis governorate, (2) find out the groundwater vulnerable zones to contamination in the aquifer of the study area, and (3) provide a spatial analysis of the parameters and conditions under which groundwater may become contaminate. To achieve that, DRASTIC model within geographic information system (GIS) environment was applied. The model uses seven environmental parameters: depth of water table, net recharge, aquifer media, soil media, topography, impact of vadose zone, and hydraulic conductivity to evaluate aquifer vulnerability. Based on this model and by using ArcGIS 9.3 software, an attempt was made to create vulnerability maps for the study area. According to the DRASTIC model index, the study has shown that in the western part of the study area the vulnerability to contamination ranges between high and very high due to the relatively shallow water table with moderate to high recharge potential, and permeable soils. To the east of the previous part and in the south-eastern part, vulnerability to contamination is moderate. In the central and the eastern part, vulnerability to contamination is low due to depth of water table. Vulnerability analysis of the DRASTIC Model indicates that the highest risk of contamination of groundwater in the study area originates from the soil media. The impact of vadose zone, depth to water level, and hydraulic conductivity imply moderate risks of contamination, while net recharge, aquifer media, and topography impose a low risk of aquifer contamination. The coefficient of variation indicates that a high contribution to the variation of vulnerability index is made by the topography. Moderate contribution is made by the depth to water level, and net recharge, while impact of vadose zone, hydraulic conductivity, soil media, and Aquifer media are the least variable parameters. The low variability of the parameters implies a smaller contribution to the variation of the vulnerability index across the study area. Moreover, the “effective” weights of the DRASTIC parameters obtained in this study exhibited some deviation from that of the “theoretical” weights. Soil media and the impact of vadose zone were the most effective parameters in the vulnerability assessment because their mean “effective” weights were higher than their respective “theoretical” weights. The depth of water table showed that both “effective” and “theoretical” weights were equal. The rest of the parameters exhibit lower “effective” weights compared with the “theoretical” weights. This explains the importance of soil media and vadose layers in the DRASTIC model. Therefore, it is important to get the accurate and detailed information of these two specific parameters. The GIS technique has provided an efficient environment for analysis and high capabilities of handling large spatial data. Considering these results, DRASTIC model highlights as a useful tool that can be used by national authorities and decision makers especially in the agricultural areas applying chemicals and pesticides which are most likely to contaminate groundwater resources.  相似文献   

19.
大气降水是滨海盐碱地区浅层地下水的重要补给来源。滨海地区浅层地下水多为咸水且埋藏较浅,在不同包气带岩性渗透性差异下,在大气降水入渗补给过程中,一定时间内潜水面以上一定范围内存在淡水分布,即淡水透镜体,它能局部隔离地下咸水对上层土壤和植物的危害,并在一定程度上供给植物吸收利用。采用自制的室内物理模拟装置,通过控制土层结构,模拟了大气降水入渗补给条件下包气带中淡水透镜体的形成与消退过程,探讨了不同土壤类型中淡水透镜体的维持情况;并利用吸水管模拟客土上所种植物根系吸水,研究了不同吸水量条件下土壤中淡水透镜体的变化规律。结果表明:上层中砂、底层粉砂质黏土的双层土体结构中,淡水透镜体的维持性最好,在降水入渗补给条件下,透镜体形成时间在1500 min左右可达最大厚度(约15 cm),若补给源消失,透镜体完全消退需7500 min,能较长时间地阻隔地下咸水;双层土中模拟形成的稳定淡水透镜体在无补给条件下,能够隔离地下咸水的同时亦能为上层植物提供243.5 mL淡水资源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号