首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ~2,752-Ma Weld Range greenstone belt in the Yilgarn Craton of Western Australia hosts several Fe ore deposits that provide insights into the role of early hypogene fluids in the formation of high-grade (>55 wt% Fe) magnetite-rich ore in banded iron formation (BIF). The 1.5-km-long Beebyn orebody comprises a series of steeply dipping, discontinuous, <50-m-thick lenses of magnetite–(martite)-rich ore zones in BIF that extend from surface to vertical depths of at least 250 m. The ore zones are enveloped by a 3-km-long, 150-m-wide outer halo of hypogene siderite and ferroan dolomite in BIF and mafic igneous country rocks. Ferroan chlorite characterises 20-m-wide proximal alteration zones in mafic country rocks. The magnetite-rich Beebyn orebody is primarily the product of hypogene fluids that circulated through reverse shear zones during the formation of an Archean isoclinal fold-and-thrust belt. Two discrete stages of hypogene fluid flow caused the pseudomorphic replacement of silica-rich bands in BIF by Stage 1 siderite and magnetite and later by Stage 2 ferroan dolomite. The resulting carbonate-altered BIF is markedly depleted in SiO2 and enriched in CaO, MgO, LOI, P2O5 and Fe2O3(total) compared with the least-altered BIF. Subsequent reactivation of these shear zones and circulation of hypogene fluids resulted in the leaching of existing hypogene carbonate minerals and the concentration of residual magnetite-rich bands. These Stage 3 magnetite-rich ore zones are depleted in SiO2 and enriched in K2O, CaO, MgO, P2O5 and Fe2O3(total) relative to the least-altered BIF. Proximal wall rock hypogene alteration zones in mafic igneous country rocks (up to 20 m from the BIF contact) are depleted in SiO2, CaO, Na2O, and K2O and are enriched in Fe2O3(total), MgO and P2O5 compared with distal zones. Recent supergene alteration affects all rocks within about 100 m below the present surface, disturbing hypogene mineral and the geochemical zonation patterns associated with magnetite-rich ore zones. The key vectors for identifying hypogene magnetite-rich Fe ore in weathered outcrop include textural changes in BIF (from thickly to thinly banded), crenulated bands and collapse breccias that indicate volume reduction. Useful indicators of hypogene ore in less weathered rocks include an outer carbonate–magnetite alteration halo in BIF and ferroan chlorite in mafic country rocks.  相似文献   

2.
This paper reports a geochemical study on the major and trace elements and Pb–Sr isotopes of a weathering profile developed in the Lower Cambrian black shales in central Hunan (China). Six weathering horizons were identified and sampled vertically throughout the profile. The chemical composition of the profile consists of variable concentrations of the major elements Fe2O3, FeO, MnO, MgO, CaO, Na2O, and P2O5 and of less variable concentrations of SiO2, TiO2, Al2O3, and K2O. The chemical change caused by weathering is estimated by mass-balance calculations, and the results show that the element mobility is characterised by substantial loss of SiO2, FeO, CaO, K2O, Na2O, LOI, Cr, V, Ba, Cs, Rb, Sr, U, and Th, and moderate loss of Al2O3, MgO, Fe2O3, Ni, Cu, Pb, Tl, Sn, Sc, Ge and REE (Y). The high field strength elements TiO2, Sn, Sc, U, Ga, Ge, Zr, Hf, Nb, and Ta were immobile during weathering. The chemical changes and the Pb–Sr isotopic data suggest that four types of chemical reactions occurred: the oxidation of sulphide minerals (e.g., pyrite) and organic carbon (OS), the dissolution of less resistant clinochlore-Ia, calcite, and P-bearing minerals (DL), the dissolution of detrital albite and microcline (DA), and the transformation of clay (TC) minerals (e.g., muscovite and illite–smectite). These chemical reactions then led to two stages of geochemical processes, an early stage of chemical differentiation and a later stage of chemical homogenisation. The chemical differentiation dominated by the OS, DL, and DA reactions, led to the leaching of mobile elements (e.g., MgO, Na2O, K2O, P2O5, Sr, and REE) and the redistribution of some less mobile elements (e.g., SiO2 and Al2O3). In contrast, the chemical homogenisation, which was caused by TC reactions, led to the leaching of both mobile and less mobile elements from the system and ultimately transformed the weathered black shales into soil. Soils derived from black shales in South China might result from the above two geochemical processes.  相似文献   

3.
Neoproterozoic (690±19 Ma) felsic magmatism in the south Khasi region of Precambrian northeast Indian shield, referred to as south Khasi granitoids (SKG), contains country-rock xenoliths and microgranular enclaves (ME). The mineral assemblages (pl-hbl-bt-kf-qtz-mag) of the ME and SKG are the same but differ in proportions and grain size. Modal composition of ME corresponds to quartz monzodiorite whereas SKG are quartz monzodiorite, quartz monzonite and monzogranite. The presence of acicular apatite, fine grains of mafic-felsic minerals, resorbed maficfelsic xenocrysts and ocellar quartz in ME strongly suggest magma-mixed and undercooled origin for ME. Molar Al2O3/CaO+Na2O+K2O (A/CNK) ratio of ME (0.68–0.94) and SKG (0.81–1.00) suggests their metaluminous (I-type) character. Linear to sub-linear variations of major elements (MgO, Fe2O3 t, P2O5, TiO2, MnO and CaO against SiO2) of ME and SKG and two-component mixing model constrain the origin of ME by mixing of mafic and felsic magmas in various proportions, which later mingled and undercooled as hybrid globules into cooler felsic (SKG) magma. However, rapid diffusion of mobile elements from felsic to mafic melt during mixing and mingling events has elevated the alkali contents of some ME.  相似文献   

4.
刘鑫  汤艳杰 《岩石学报》2018,34(11):3315-3326
冀西北姚家庄存在一套晚三叠世的超镁铁岩-正长岩杂岩体,岩体内发育具有环带特征的单斜辉石。辉石的环带有两种:简单环带和复杂环带。简单环带一般为正环带,辉石核部的MgO和Cr2O3含量高,Si O2、Fe O和Na2O含量低;边部的主要氧化物含量与核部刚好相反。简单正环带可以分为两类,其中核边接触带平滑、由核到边化学成分具有渐变特征的正环带辉石可能是岩浆在分离结晶或地壳混染过程中形成。而核边接触带有熔蚀结构、由核到边化学成分突变的正环带辉石可能是早期结晶的辉石颗粒受到晚期低镁岩浆的溶蚀改造而成的。复杂环带具有核-幔-边结构,其中,核部低镁高铁、幔部高镁低铁、边部与核部相似,但其Mg#更低,这些特征暗示了岩浆混合作用的存在,形成辉石核部的母岩浆可能来自富集的岩石圈地幔,幔部高Mg#的特征指示了软流圈地幔物质的贡献,其边部低Mg#的特征则指示了地壳物质的加入。具有韵律环带的复杂辉石是在岩浆多期侵入的过程中形成的。辉石环带的组成特征表明,姚家庄杂岩体是由岩浆多期侵位形成的,后期侵入的岩浆与前期就位的岩浆不断反应,形成了具有多种不同环带特征的辉石,并最终形成了空间上由外到内依次为辉石岩、辉石正长岩和正长岩的环状杂岩体。结合前人的研究成果,推测形成姚家庄岩体的岩浆主要来源于富集的岩石圈地幔,并由少量地壳组分和软流圈物质的贡献。  相似文献   

5.
Because of major differences in both bulk chemical composition and silicate mineralogy between metabasalts and metaperidotites, valid comparison of the degree or intensity of carbonate alteration cannot be made in terms of weight per cent CO2. Molar CO2/CaO is preferred as an index of the intensity of carbonate alteration in metabasalts; molar CO2/CaO in carbonatized metabasalts is independent of CaO/MgO and only mildly sensitive to bulk composition and to the proportions of tremolite and clinozoisite. Molar CO2/CaO reflect the proportions of calcite and dolomite in metabasalts and the proportions of dolomite and magnesite in metaperidotites. However, neither molar CO2/CaO nor the proportions of dolomite and magnesite are reliable measures of carbonate alteration in metaperidotites of variable composition because both are strongly dependent on MgO/CaO in the whole rock. The preferred alteration index in metaperidotites is m CO2/m (CaO + MgO + FeO), which represents the proportion of total relevant cations that exist in carbonate form. An empirical equation relating molar CO2/CaO in metabasalts (x) and MCO2/m(CaO+MgO+FeO) in metaperidotites (y) is: y=0.16+0.30 x.  相似文献   

6.
Elemental mobility based on major element geochemistry from 58 horizons related to six paleosols profiles in a typical Miocene — Pliocene Siwalik fluvial sequence in the NW Himalaya has been reported here. The paleosols developed over felsic parent material of fine to medium grained sandstone indicate notable enrichment of sesquioxides (Al2O3 = 29 % and Fe2O3 = 54 %) depicting significant leaching and dissolution. The depletion of base cations (mean wt% of Na2O = 0.24; CaO = 0.51) and SiO2 (mean wt% = 63.6) in the pedogenic layers and its enrichment in the parental material (mean wt% of Na2O = 0.44; CaO = 1.3; SiO2 = 70.1) shows a good gradient of elemental mobility due to pedogenesis. Bivariate plots of the base ratios (Na2O/K2O, CaO/K2O, and MgO/K2O) vs. Al2O3 reveal independent distribution for parent material, pedogenic horizons and the incipient zone indicating the gradual addition/removal of immobile/mobile elements with varying pedogenesis. Discontinuous and segmented pattern of the geochemical parameters enables discrimination of multiple pedogenic episodes and recognition of soil welding processes in the multistorey composite paleosols. We also test the applicability of the geochemical climofunctions: the Mean Annual Precipitation (MAP) and Mean Annual Temperature (MAT); that demands more data for calibration in the Siwalik paleosols.  相似文献   

7.
The Costabonne skarn complex was emplaced in the lower part of the Cambrian Canaveilles Formation (eastern Pyrenees) in contact with a Hercynian granitic stock. Skarns have developed from calcium-poor (<1% CaO) pelitic rocks. A zonation can be clearly seen: schists (Z0), biotite zone (Z1), amphibole zone (Z2), pyroxene zone (Z3), and garnet zone (Z4). Two superposed successions of transformations are observed: (1) muscovitefeldspar garnet and (2) biotiteamphibolepyroxene. Calculation of mass transfer indicates an important exchange of CaO and K2O and, in lesser amounts, Fe2O3, MgO and MnO. SiO2, Al2O3, FeO, TiO2, the heavy rare earths (HREE) and most of the trace elements remain constant; whereas the contents of Na2O, Rb, Sr, Ba, and the light rare earths elements (LREE) are reduced. According to fluid inclusion data and mineral compositions, the metasomatic fluid was mainly 0.99)$$ " align="middle" border="0"> with minor CO2, CH4, N2, H2, O2, H2S, HCl and HF. Ca, Na, and K were the most abundant cations. Temperature and pressure conditions are estimated to be at least 550° C and 1.7 to 2.0 kb, respectively. The totality of the observed transformations may be described in the system CaO-K2O-SiO2-Al2O3-MgO-H2O with the minerals quartz, muscovite, phlogopite, tremolite, diopside, grossular, K-feldspar, and anorthite. With CaO and K2O taken as perfectly mobile components, SiO2, Al2O3, and MgO as determining inert components and H2O as excess component, the reactions leading to the skarn formation can be represented in a diagram. The succession of zones is shown to take place with increasing CaO from the schist (Z0) up to the garnet zone (Z4). The nature of the feldspar (plagioclase or K-feldspar) depends on the value of relative to CaO.  相似文献   

8.
The geochemistry of major and trace elements (including heavy metals and rare earth elements) of the fresh and weathered black shales, and the soils derived from black shales in the Ganziping mine area in western Hunan province (China) were studied using the following techniques: X-ray fluorescence (XRF), inductively coupled plasma mass spectrometer (ICP-MS) and X-ray diffraction (XRD). The results show that the black-shale soils are significantly enriched with Al2O3 and Fe2O3, and depleted of mobile elements CaO, Na2O and K2O. The soils are also highly enriched with heavy metals U, V, Ni, Ba, Cu, Zn and Pb, that may cause potential heavy-metal contamination of the soils. Composition of the soils is homogeneous compared to the weathered black shales, for which the concentrations of major elements except CaO and Na2O, and trace elements except heavy metals (U, V, Ni, Ba, Cu, Zn and Pb) as well as the mobile Sr, show lower variations than in the weathered black shales. Ratios of Zr/Hf, Ta/Nb, Y/Ho, Nd/Sm, and Ti/(Ti + Zr), of the soils are also less variable, with values constantly similar to that of the fresh and weathered black shales correspondingly. Thus, components of the soils are believed to be contributed from the parent black shales through weathering and pedogenesis. It is concluded that the soils were formed by at least two stages of geochemical processes: the early stage of chemical differentiation and the later stage of chemical homogenization. The chemical differentiation that was taken during black-shale weathering might have caused the depletion of CaO and Na2O, and the enrichment of Al2O3 and Fe2O3; while the chemical homogenization that was taken during pedogenesis led to the depletion of SiO2 and K2O, and to the further enrichment of Al2O3 and Fe2O3. The heavy-metal enrichment (contamination) of the soils was then genetically related to the enrichment of Al2O3 and Fe2O3 in the soils.  相似文献   

9.
《International Geology Review》2012,54(10):1439-1446
Mineral equilibria in magnesial rocks undergoing metamorphosis in closed systems at different H2O content but at constant pressures and temperatures may be interpreted as follows: a) if H2O is excessive, as in pelitic rocks, the metamorphic zonation (an orderly sequence of dehydrations) correctly represents changes in the temperature during the progressive metamorphism; b) if H2O is deficient, as in the ortho-rocks, the metamorphic zonation may not always be representative of the temperature; however, when H2O itself is zoned in the rock and the metamorphism is isothermal, the metamorphic zonation may become entirely analogous to the zonation in the presence of excessive H2O; c) presence of metastable associations and rapid alternations of mineral parageneses, as in certain magmatic rocks, represent variations in H2O content of the rocks rather than different facies of the metamorphism.  相似文献   

10.
Serpentinites occur in transverse fracture zones and adjacent areas in the Mid-Atlantic Ridge near 24° and 30° N. In two fracture zones, about 700 km distant from each other, serpentinites show practically the same trend and range of variation in chemical composition. Their CaO content ranges from 2.05 to 0.07% by weight. Serpentinites relatively high in CaO content contain pargasite, whereas those relatively low in CaO do not. Serpentinites relatively high in CaO are chemically similar to high-temperature peridotites which are widely believed to have been derived from the upper mantle. With a decrease in CaO, the Al2O3, TiO2, K2O and FeO contents and the Fe/Mg ratio tend to decrease, whereas the H2O+ content tends to increase. This compositional variation is probably due partly to heterogeneity of uper mantle peridotite from which the serpentinites were derived, and partly to chemical migration during serpentinization. The interior of the Mid-Atlantic Ridge may be mainly made up of serpentinites. Alternatively, the Mid-Atlantic Ridge Serpentinites may have been formed by serpentinization of peridotites that were intruded into fracture zones from a great depth.Lamont-Doherty Geological Observatory Contribution No. 1354.  相似文献   

11.
Two Holocene sediment cores were retrieved respectively from the enclosed Lake Daihai in the monsoon/arid transition zone of North China and the Taihu Lake coast in the monsoonal area of the Yangtze delta, Eastern China. Distribution of major geochemical elements and their ratios were employed to reveal the characteristics of Holocene climate and associated environmental implications in the two regions. It is suggested that the temporal distribution of major elements serve as a useful indicator to denote the variations of monsoon effective precipitation for the enclosed lake area. High values of resistant elements such as Al2O3, SiO2, TiO2, (FeO + Fe2O3), MnO in the lake sediments correspond to the depressed chemical weathering and weakened mon-soon effective precipitation, while the highs of mobile and easy soluble elements such as MgO, CaO, Na2O reflect the enhanced chemical weathering and increased monsoon effective precipitation in the lake basin. In comparison, the behaviors of the major elements in sediments of the Taihu Lake coast were largely controlled by the changes both in sea transgression in the different Holocene time periods and the monsoon precipitation. The relatively highs of Al2O3, TiO2, (FeO + Fe2O3), in marine-influenced sediments suggest relatively strong coastal hydrodynamics and chemical weathering, and vice versa. Meanwhile, the lows of SiO2, Na2O and CaO in the non-marine-influenced sediments also denote relatively strong hydrodynamics and chemical weathering due to enhanced monsoon precipitation, and vice versa. Sedimentary environment should be taken into account when achieving a full understanding of their climate implications.  相似文献   

12.
The hydrothermally altered andesite hosting the Hishikari gold-silver vein deposits in southern Kyushu, Japan, is analyzed with respect to the spatial variation in chemical composition. The (CaO + Na2O) content is found to be inversely correlated with the K2O content as it progresses away from the site of mineralization. It was found that analytical data plotted on a (CaO + Na2O) − K2O diagram cannot be explained only by addition of K+ from the hydrothermal solution to the original rock and release of Ca2+ and Na+ from the original rock (K- alteration). Addition of Ca2+ and Na+ from the hydrothermal solution to the rock and release of K+ from the rock but release of K+, Ca2+, and Na+ to the hydrothermal solution (advanced argillic alteration) is important for causing the wide variations in K2O, CaO, and Na2O contents on the (CaO + Na2O) − K2O diagram. These variations can be explained by superimposed potassic, advanced argillic and calcium alterations. The altered rocks in the Honko-Sanjin area, Yamada area, and Masaki area analyzed by this study are characterized by their intermediate K2O content and variable CaO content, high K2O content and low CaO content, and low K2O content and low CaO content, respectively. The K2O, Na2O and CaO contents and oxygen isotopic composition of altered andesite, in conjunction with the solubility of gold as a thio complex, suggest that both gold deposition and the observed compositional variation of altered andesite are the result of mixing between acidic groundwater and neutral gold-bearing hydrothermal solution. The present results indicate that the compositional variation of hydrothermally altered rocks may represent a useful geochemical indicator of epithermal gold–silver mineralization.  相似文献   

13.
本文用电子探针对岩浆和变质重结晶锆石进行了成份分带的研究,结果表明,变质重结晶锆石具有从晶体中心至边缘P2O5含量增大的特点,可作为它们的成因标型特征,岩浆锆石则P2O5含量变化不稳定,本文论述了它们的成因。  相似文献   

14.
A highly-fractionated garnet-bearing muscovite granite represents the marginal granitic facies of the Abu-Diab multiphase pluton in the Central Eastern Desert of Egypt. New electron microprobe analyses(EMPA) and laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS) data from garnets are reported, in order to constrain their origin and genesis. Garnet in the Abu-Diab host granite is euhedral to subhedral, generally homogeneous and, in rare cases, it shows weak zonation. The garnet contains appreciable amounts of MnO and FeO, with lesser amounts of MgO and CaO, yielding an end-member formula of Sps_(61–72)Alm_(25–35)Prp_(1–4)Adr_(0–1). Moreover, it is depleted in large ion lithophile elements(LILE) with lower values of Ba, Nb and Sr relative to the primitive mantle. Additionally, it contains high concentrations of HREE and Y and their REE pattern shows strong negative Eu anomalies. The garnet was crystallized under relatively low temperature(646°C–591°C) and pressure( 3 kbar) conditions. The textural and chemical features indicate that the garnet is magmatic in origin and is chemically similar to that from highly-fractionated A-type granite. It was probably formed at the expense of biotite in a highly-evolved MnO-rich magma and/or by hydroxyl complexing of Mn during the ascending fluid phases.  相似文献   

15.
This study focuses on the Lower-Middle Miocene syn-orogenic flysch deposits of the Zoumi basin to infer source area paleoclimatic conditions, the intensity of source rocks paleoweathering, and mechanical sorting and recycling effects. The mudrocks are enriched in Al2O3, Fe2O3, CaO, and TiO2 relative to PAAS and depleted in the other mobile major elements. There are high positive correlations between SiO2, Al2O3, and TiO2 and negative correlations between SiO2 and CaO. Geochemically, the mudstones are mainly classified as shales, Fe-shales, and wackes. Various discriminant diagrams were used to reveal the inferred tectonics, source paleoweathering intensity, and paleoclimatic conditions. Chemical index of alteration (CIA) and chemical index of weathering (CIW) values for Lower-Middle Miocene vary from 50 to 80% indicating low to moderate degree of source area weathering compatible with non-steady-state weathering under wet and humid paleoclimatic conditions. Locally (Zoumi mid-section) CIA values are higher (>?80) reflecting intense source area weathering, which may be attributed to high tectonic impulses and more humid conditions during deposition. The combination of ICV-CIA, Al2O3-Zr-TiO2, and Th/Sc-Zr/Sc values suggests the bulk rock is chemically immature and has experienced modest physical sorting and recycling reflecting little transportation until the final deposition.  相似文献   

16.
Significant zonation in major, minor, trace, and volatile elements has been documented in naturally glassy olivine-hosted melt inclusions from the Siqueiros Fracture Zone and the Galapagos Islands. Components with a higher concentration in the host olivine than in the melt (e.g., MgO, FeO, Cr2O3, and MnO) are depleted at the edges of the zoned melt inclusions relative to their centers, whereas except for CaO, H2O, and F, components with a lower concentration in the host olivine than in the melt (e.g., Al2O3, SiO2, Na2O, K2O, TiO2, S, and Cl) are enriched near the melt inclusion edges. This zonation is due to formation of an olivine-depleted boundary layer in the adjacent melt in response to cooling and crystallization of olivine on the walls of the melt inclusions, concurrent with diffusive propagation of the boundary layer toward the inclusion center. Concentration profiles of some components in the melt inclusions exhibit multicomponent diffusion effects such as uphill diffusion (CaO, FeO) or slowing of the diffusion of typically rapidly diffusing components (Na2O, K2O) by coupling to slow diffusing components such as SiO2 and Al2O3. Concentrations of H2O and F decrease toward the edges of some of the Siqueiros melt inclusions, suggesting either that these components have been lost from the inclusions into the host olivine late in their cooling histories and/or that these components are exhibiting multicomponent diffusion effects. A model has been developed of the time-dependent evolution of MgO concentration profiles in melt inclusions due to simultaneous depletion of MgO at the inclusion walls due to olivine growth and diffusion of MgO in the melt inclusions in response to this depletion. Observed concentration profiles were fit to this model to constrain their thermal histories. Cooling rates determined by a single-stage linear cooling model are 150–13,000 °C h?1 from the liquidus down to ~1,000 °C, consistent with previously determined cooling rates for basaltic glasses; compositional trends with melt inclusion size observed in the Siqueiros melt inclusions are described well by this simple single-stage linear cooling model. Despite the overall success of the modeling of MgO concentration profiles using a single-stage cooling history, MgO concentration profiles in some melt inclusions are better fit by a two-stage cooling history with a slower-cooling first stage followed by a faster-cooling second stage; the inferred total duration of cooling from the liquidus down to ~1,000 °C ranges from 40 s to just over 1 h. Based on our observations and models, compositions of zoned melt inclusions (even if measured at the centers of the inclusions) will typically have been diffusively fractionated relative to the initially trapped melt; for such inclusions, the initial composition cannot be simply reconstructed based on olivine-addition calculations, so caution should be exercised in application of such reconstructions to correct for post-entrapment crystallization of olivine on inclusion walls. Off-center analyses of a melt inclusion can also give results significantly fractionated relative to simple olivine crystallization. All melt inclusions from the Siqueiros and Galapagos sample suites exhibit zoning profiles, and this feature may be nearly universal in glassy, olivine-hosted inclusions. If so, zoning profiles in melt inclusions could be widely useful to constrain late-stage syneruptive processes and as natural diffusion experiments.  相似文献   

17.
《Gondwana Research》2001,4(3):465-475
The Tamperkola granite-acid volcanics association occurring at the western margin of the Archaean Singhbhum-Orissa Iron Ore Craton (SOC), eastern India, is intrusive into the Darjing Group which represents a sequence of mobile belt metasediments in this part of the SOC. The Darjing Group rests unconformably on the Bonai Granite (∼3.2 Ga old). Absence of any deformational imprints of the country rock metasediments on the Tamperkola granite acid volcanics together with its undeformed and unmetamorphosed nature, its alkali feldspar dominant mineralogy, and its high SiO2 and Na2O + K2O and low MgO and CaO contents suggest that this granite-acid volcanics association is anorogenic in nature. Two representative samples-one each from the granite and the acid volcanics have been dated by in situ 207Pb/206Pb zircon dating method using a small ion-microprobe. Minimum age of crystallisation of the acid volcanics is found to be 2.8 Ga. Strong peak in the 207Pb/206 Pb frequency diagram and equality of the observed and expected errors in radiogenic 207Pb/206Pb ratios suggest that this age probably represents the true age of formation of the volcanics. The age data place the deposition and metamorphism of the mobile belt metasediments of the Darjing Group in between 3.2 and 2.8 Ga. Occurrence of 2.9–2.8 Ga old small granitoid plutons, alkali-feldspar granite to syenogranite in composition, is also known from the southern margin of the SOC. Therefore, it appears that around 2.9–2.8 Ga small alkali granite bodies formed at the marginal part of this cratonic block after its stabilisation at ∼3.1 Ga.  相似文献   

18.
The genesis of the recently discovered and highly attractive jewelry stone charoite at its only known occurrence remains controversial. The authors present the hydrothermal-metasomatic nature of the charoite paragenesis, including charoite and associated minerals (tinaksite, canasite, miserite, and fedorite, etc.). Formation of charoite metasomatites is related to calc-alkaline metasomatism of mesocratic and melanocratic fenite, shonkinite, and alkaline minettes. The metasomatic column includes circum-ore metasomatites (dark, intermediate in color and composition, light orthoclase zone), charoite ore (lilac zone), and an axial quartz zone. The order of differential mobilities of components (from inert to most mobile) was: SiO2, (K2O + Na2O), (CaO + TiO2), AL2O3, Fe203, (FeO + MnO). Concentrated aqueous solutions of calcium and potassium chlorides were found in fluid inclusions in quartz associated with high-quality charoite.  相似文献   

19.
Scapolite at Mary Kathleen (North-Western Queensland) occurs in calcareous and non-calcareous metapelites, acid and basic metavolcanics and metadolerites. Graphical treatment of the relationship between scapolite composition (Me%) and the host rock oxide ratios CaO/Na2O and Al2O3/(CaO + Na2O) reveals the following points:
  1. The calcareous metapelites are also very sodic.
  2. Scapolite in calcareous metapelites is more marialitic than that in low-calcium equivalents.
  3. In graphs of Me% against CaO/Na2O and Al2O3/(CaO + Na2O) the metasediments and the metaigneous rocks show markedly different trends.
It is concluded that scapolite in the metasediments originated by isochemical metamorphism of shales and marls containing evaporitic halite. The local abundance of halite was the main control on the composition and distribution of the scapolite, but the relative abundance of CaO and Na2O was a modifying factor. In the metaigneous rocks scapolite formed metasomatically during regional metamorphism by the introduction of volatile-rich fluids derived from the adjacent evaporitic sediments. The relative availability of CO2 and Cl2 again appears to have been the primary control on scapolite composition and may in turn have been controlled by bulk rock composition.  相似文献   

20.
Tidal inundation is a new technique for remediating coastal acid sulfate soils (CASS). Here, we examine the effects of this technique on the geochemical zonation and cycling of Fe across a tidally inundated CASS toposequence, by investigating toposequence hydrology, in situ porewater geochemistry, solid-phase Fe fractions and Fe mineralogy. Interactions between topography and tides exerted a fundamental hydrological control on the geochemical zonation, redistribution and subsequent mineralogical transformations of Fe within the landscape. Reductive dissolution of Fe(III) minerals, including jarosite (KFe3(SO4)2(OH)6), resulted in elevated concentrations of porewater Fe2+ (> 30 mmol L?1) in former sulfuric horizons in the upper-intertidal zone. Tidal forcing generated oscillating hydraulic gradients, driving upward advection of this Fe2+-enriched porewater along the intertidal slope. Subsequent oxidation of Fe2+ led to substantial accumulation of reactive Fe(III) fractions (up to 8000 μmol g?1) in redox-interfacial, tidal zone sediments. These Fe(III)-precipitates were poorly crystalline and displayed a distinct mineralisation sequence related to tidal zonation. Schwertmannite (Fe8O8(OH)6SO4) was the dominant Fe mineral phase in the upper-intertidal zone at mainly low pH (3–4). This was followed by increasing lepidocrocite (γ-FeOOH) and goethite (α-FeOOH) at circumneutral pH within lower-intertidal and subtidal zones. Relationships were evident between Fe fractions and topography. There was increasing precipitation of Fe-sulfide minerals and non-sulfidic solid-phase Fe(II) in the lower intertidal and subtidal zones. Precipitation of Fe-sulfide minerals was spatially co-incident with decreases in porewater Fe2+. A conceptual model is presented to explain the observed landscape-scale patterns of Fe mineralisation and hydro-geochemical zonation. This study provides valuable insights into the hydro-geochemical processes caused by saline tidal inundation of low lying CASS landscapes, regardless of whether inundation is an intentional strategy or due to sea-level rise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号