首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper compares the performance of analytical and numerical approaches for modeling DNAPL dissolution with biodecay. A solution derived from a 1-D advective transport formulation (“Parker” model) is shown to agree very closely with high resolution numerical solutions. A simple lumped source mass balance solution in which with decay is assumed proportional to DNAPL mass (“Falta1” model) over- or underpredicts aqueous phase biodecay depending on the magnitude of the exponential factor governing the relationship between dissolution rate and DNAPL mass. A modification of the Falta model that assumes decay proportional to the source exit concentration is capable of accurately simulating source behavior with strong aqueous phase biodecay if model parameters are appropriately selected or calibrated (“Falta2” model). However, parameters in the lumped models exhibit complex interdependencies that cannot be quantified without consideration of transport processes within the source zone. Combining the Falta2 solution with relationships derived from the Parker model was found to resolve these limitations and track the numerical model results. A method is presented to generalize the analytical solutions to enable simulation of partial mass removal with changes in source parameters over time due to various remedial actions. The algorithm is verified by comparison with numerical simulation results. An example application is presented that demonstrates the interactions of partial mass removal, enhanced biodecay, enhanced mass transfer and source zone flow reduction applied at various time periods on contaminant flux reduction. Increasing errors that arise in numerical solutions with coarse discretization and high decay rates are shown to be controlled by using an adjusted decay coefficient derived from the Parker analytical solution.  相似文献   

2.
The release of stored dissolved contaminants from low permeability zones contributes to plume persistence beyond the time when dense nonaqueous phase liquid (DNAPL) has completely dissolved. This is fundamental to successfully meeting acceptable low concentrations in groundwater that are driven by site‐specific cleanup goals. The study goals were to assess the role of DNAPL entrapment morphology on mass storage and plume longevity. As controlled field studies are not feasible, two‐dimensional (2D) test tanks were used to quantify the significance of mass loading processes from source dissolution and stored mass rebound. A simple two‐layer soil domain representing a high permeable formation sand overlying a zone of lower permeability sand was used in the tests. DNAPL mass depletion through dissolution was monitored via X‐ray photon attenuation, and effluent samples were used to monitor the plume. These data enabled analysis of the DNAPL distribution, the dissolved plume, and the dissolved phase distribution within the low permeability layer. Tests in an intermediate tank showed that mass storage contributes substantially to plume longevity. Detectable effluent concentrations persisted long after DNAPL depletion. The small tank results indicated that the DNAPL morphology influenced the flow field and caused distinctive transport mechanisms contributing to mass storage. Zones of high DNAPL saturation at the interface between the low and high permeability layers exhibited flow bypassing and diffusion dominated transport into the low permeability layer. In the absence of a highly saturated DNAPL zone near the soil interface the contaminant penetrated deeper into the low permeability layer caused by a combination of advection and diffusion.  相似文献   

3.
The influence of model dimensionality on predictions of mass recovery from dense non-aqueous phase liquid (DNAPL) source zones in nonuniform permeability fields was investigated using a modified version of the modular three-dimensional transport simulator (MT3DMS). Thirty-two initial two- (2D) and three-dimensional (3D) tetrachloroethene–DNAPL source zone architectures, taken from a recent modeling study, were used as initial conditions for this analysis. Commonly employed source zone metrics were analyzed to determine differences between 2D and 3D predictions: (i) down-gradient flux-averaged contaminant concentration, (ii) reductions in contaminant mass flux through a down-gradient boundary, (iii) source zone ganglia-to-pool (GTP) ratio, and (iv) time required to achieve a remediation objective. 3D flux-averaged contaminant concentrations were approximately 3.5 times lower than concentrations simulated in 2D. This difference was attributed to dilution of the contaminant concentrations down gradient of the source zone. Contaminant flux reduction predictions for a given mass recovery were generally 5% higher in 3D simulations than in 2D simulations. The GTP ratio declined over time as mass was recovered in both 2D and 3D simulations. Although the source longevity (i.e., time required to achieve 99.99% mass recovery) differed between individual 2D and 3D realizations, the mean source longevity for the 2D and 3D simulation ensembles was within 2%. 2D simulations tended to over-predict the time required to achieve lower mass recovery levels (e.g. 50% mass recovery) due to a smaller contaminated area exposed to uncontaminated water. These findings suggest that ensemble averages of 2D numerical simulations of DNAPL migration, entrapment, dissolution, and mass recovery in statistically homogenous, nonuniform media may provide reasonable approximations to average behavior obtained using simulations conducted in fully three-dimensional domains.  相似文献   

4.
A macroscopic transport model is developed, following the Taylor shear dispersion analysis procedure, for a 2D laminar shear flow between parallel plates possessing a constant specified concentration. This idealized geometry models flow with contaminant dissolution at pore-scale in a contaminant source zone and flow in a rock fracture with dissolving walls. We upscale a macroscopic transient transport model with effective transport coefficients of mean velocity, macroscopic dispersion, and first-order mass transfer rate. To validate the macroscopic model the mean concentration, covariance, and wall concentration gradient are compared to the results of numerical simulations of the advection–diffusion equation and the Graetz solution. Results indicate that in the presence of local-scale variations and constant concentration boundaries, the upscaled mean velocity and macrodispersion coefficient differ from those of the Taylor–Aris dispersion, and the mass transfer flux described by the first-order mass transfer model is larger than the diffusive mass flux from the constant wall. In addition, the upscaled first-order mass transfer coefficient in the macroscopic model depends only on the plate gap and diffusion coefficient. Therefore, the upscaled first-order mass transfer coefficient is independent of the mean velocity and travel distance, leading to a constant pore-scale Sherwood number of 12. By contrast, the effective Sherwood number determined by the diffusive mass flux is a function of the Peclet number for small Peclet number, and approaches a constant of 10.3 for large Peclet number.  相似文献   

5.
At sites where a dense nonaqueous phase liquid (DNAPL) was spilled or released into the subsurface, estimates of the mass of DNAPL contained in the subsurface from core or monitoring well data, either in the nonaqueous or aqueous phase, can be highly uncertain because of the erratic distribution of the DNAPL due to geologic heterogeneity. In this paper, a multiphase compositional model is applied to simulate, in detail, the DNAPL saturations and aqueous-phase plume migration in a highly characterized, heterogeneous glaciofluvial aquifer, the permeability and porosity data of which were collected by researchers at the University of Tübingen, Germany. The DNAPL saturation distribution and the aqueous-phase contaminant mole fractions are then reconstructed by sampling the data from the forward simulation results using two alternate approaches, each with different degrees of sampling conditioning. To reconstruct the DNAPL source zone architecture, the aqueous-phase plume configuration, and the contaminant mass in each phase, one method employs the novel transition probability/Markov chain approach (TP/MC), while the other involves a traditional variogram analysis of the sampled data followed by ordinary kriging. The TP/MC method is typically used for facies and/or hydraulic conductivity reconstruction, but here we explore the applicability of the TP/MC method for the reconstruction of DNAPL source zones and aqueous-phase plumes. The reconstructed geometry of the DNAPL source zone, the dissolved contaminant plume, and the estimated mass in each phase are compared using the two different geostatistical modeling approaches and for various degrees of data sampling from the results of the forward simulation. It is demonstrated that the TP/MC modeling technique is robust and accurate and is a preferable alternative compared to ordinary kriging for the reconstruction of DNAPL saturation patterns and dissolved-phase contaminant plumes.  相似文献   

6.
Air sparging was evaluated for remediation of tetrachloroethylene (PCE) present as dense nonaqueous phase liquid (DNAPL) in aquifers. A two-dimensional laboratory tank with a transparent front wall allowed for visual observation of DNAPL mobilization. A DNAPL zone 50 cm high was created, with a PCE pool accumulating on an aquitard. Detailed process control and analysis yielded accurate mass balances and insight into the mass-transfer limitations during air sparging. Initial PCE recovery rates were high, corresponding to fast removal of residual DNAPL within the zone influenced directly by air channels. The vadose zone DNAPL was removed within a few days, and the recovery in the extracted soil vapors decreased to low values. Increasing the sparge rate and pulsing the air injection led to improved mass recovery, as the pulsing induced water circulation and increased the DNAPL dissolution rate. Dissolved PCE concentrations both within and outside the zone of air channels were affected by the pulsing. Inside the sparge zone, aqueous concentrations decreased rapidly, matching the declining effluent PCE flux. Outside the sparge zone, PCE concentrations increased because highly contaminated water was pushed away from the air injection point. This overall circulation of water may lead to limited spreading of the contaminant, but accelerated the time-weighted average mass removal by 40% to 600%, depending on the aggressiveness of the pulsing. For field applications, pulsing with a daily or diurnal cycling time may increase the average mass removal rate, thus reducing the treatment time and saving in the order of 40% to 80% of the energy cost used to run the blowers. However, air sparging will always fail to remove DNAPL pools located below the sparge point because the air will rise upward from the top of a screen, unless very localized geological layers force the air to migrate horizontally. Unrecognized presence of DNAPL at chlorinated solvent sites residual and pools could potentially hamper success of air sparging cleanups, since the presence of small DNAPL pools, ganglia or droplets can greatly extend the treatment time.  相似文献   

7.
Porous aquifer materials are often characterized by layered heterogeneities that influence groundwater flow and present complexities in contaminant transport modeling. Such flow variations also have the potential to impact the dissolution flux from dense nonaqueous phase liquid (DNAPL) pools. This study examined how these heterogeneous flow conditions affected the dissolution of a tetrachloroethene (PCE) pool in a two-dimensional intermediate-scale flow cell containing coarse sand. A steady-state mass-balance approach was used to calculate the PCE dissolution rate at three different flow rates. As expected, aqueous PCE concentrations increased along the length of the PCE pool and higher flow rates decreased the aqueous PCE concentration in the effluent. Nonreactive tracer studies at two flow rates confirmed the presence of a vertical flow gradient, with the most rapid velocity located at the bottom of the tank. These results suggest that flow focusing occurred near the DNAPL pool. Effluent PCE concentrations and pool dissolution flux rates were compared to model predictions assuming local equilibrium (LE) conditions at the DNAPL pool/aqueous phase interface and a uniform distribution of flow. The LE model did not describe the data well, even over a wide range of PCE solubility and macroscopic transverse dispersivity values. Model predictions assuming nonequilibrium mass-transfer-limited conditions and accounting for vertical flow gradients, however, resulted in a better fit to the data. These results have important implications for evaluating DNAPL pool dissolution in the field where subsurface heterogeneities are likely to be present.  相似文献   

8.
The influence of aquifer property correlation on multiphase fluid migration, entrapment and recovery was explored by incorporating correlated and uncorrelated porosity, permeability, and capillary pressure-saturation (Pc-Sat) parameter fields in a cross-sectional numerical multiphase flow model. Comparison of two-dimensional entrapped organic saturation distributions for a simulated tetrachloroethylene (PCE) spill in ensembles of aquifer realizations suggests that the degree of spatial correlation in Pc-Sat parameters exerts a controlling influence on dense nonaqueous phase liquid (DNAPL) spreading and redistribution in saturated aquifers. The predicted evolution of DNAPL source zones and resultant remediation efficiency under surfactant enhanced aquifer remediation (SEAR) also appear to be strongly influenced by the spatial correlation of aquifer parameters and multiphase flow constitutive relationships. Results for a limited number of realizations selected from each ensemble showed that removal of 60% to 99% of entrapped PCE could reduce dissolved contaminant concentration and mass flux by approximately two orders of magnitude under natural gradient conditions. Aqueous phase contaminant mass flux did not vary uniformly as a function of % DNAPL removed, however, and notable differences in behavior were observed for models incorporating correlated versus uncorrelated Pc-Sat and permeability fields. Although these results must be confirmed through analysis of additional realizations, it is likely that similar or larger differences between correlated and uncorrelated system behavior will be observed in aquifers with greater spatially variability than that of the nonuniform, homogeneous sand aquifer studied here. Funding for this research was provided by the United States Environmental Protection Agency, Great Lakes and Mid-Atlantic Center for Hazardous Substance Research under Grant No. R-825540, the Michigan Department of Environmental Quality under Contract No. Y80011, and the Strategic Environmental Research and Development Program under Project No. CU-1293. The content of this publication does not necessarily represent the views of these agencies and has not been subject to agency review.  相似文献   

9.
Measurement and interpretation of mass fluxes in favor of concentrations is gaining more and more interest, especially within the framework of the characterization and management of large-scale volatile organic carbon (VOC) groundwater contamination (source zones and plumes). Traditional methods of estimating contaminant fluxes and discharges involve individual measurements/calculations of the Darcy water flux and the contaminant concentrations. However, taken into account the spatially and temporally varying hydrologic conditions in complex, heterogeneous aquifers, higher uncertainty arises from such indirect estimation of contaminant fluxes. Therefore, the potential use of passive sampling devices for the direct measurement of groundwater-related VOC mass fluxes is examined. A review of current passive samplers for the measurement of organic contaminants in water yielded the selection of 18 samplers that were screened for a number of criteria. These criteria are related to the possible application of the sampler for the measurement of VOC mass fluxes in groundwater. This screening study indicates that direct measurement of VOC mass fluxes in groundwater is possible with very few passive samplers. Currently, the passive flux meter (PFM) is the only passive sampler which has proven to effectively measure mass fluxes in near source groundwater. A passive sampler for mass flux measurement in plume zones with regard to long-term monitoring (several months to a year) still needs to be developed or optimized. A passive sampler for long-term monitoring of contaminant mass fluxes in groundwater would be of considerable value in the development of risk-based assessment and management of soil and groundwater pollutions.  相似文献   

10.
We present an upscaled model for the vertical migration of a CO2 plume through a vertical column filled with a periodic layered porous medium. This model may describe the vertical migration of a CO2 plume in a perfectly layered horizontal aquifer. Capillarity and buoyancy are taken into account and semi-explicit upscaled flux functions are proposed in the two following cases: (i) capillarity is the main driving force and (ii) buoyancy is the only driving force. In both cases, we show that the upscaled buoyant flux is a bell-shaped function of the saturation, as in the case of a homogeneous porous medium. In the capillary-dominant case, we show that the upscaled buoyant flux is the harmonic mean of the buoyant fluxes in each layer. The upscaled saturation is governed by the continuity of the capillary pressure at the interface between layers. In the capillary-free case, the upscaled buoyant flux and upscaled saturation are determined by the flux continuity condition at the interface. As the flux is not continuous over the entire range of saturation, the upscaled saturation is only defined where continuity is verified, i.e. in two saturation domains. As a consequence, the upscaled buoyant flux is described by a piecewise continuous function. Two analytical approximations of this flux are proposed and this capillary-free upscaled model is validated for two cases of heterogeneity. Upscaled and cell averaged saturations are in good agreement. Furthermore, the proposed analytical upscaled fluxes provide satisfactory approximations as long as the saturation set at the inlet of the column is in a range where analytical and numerical upscaled fluxes are close.  相似文献   

11.
A two-dimensional numerical transport model is developed to determine the effect of aquifer anisotropy and heterogeneity on mass transfer from a dense nonaqueous phase liquid (DNAPL) pool. The appropriate steady state groundwater flow equation is solved implicitly whereas the equation describing the transport of a sorbing contaminant in a confined aquifer is solved by the alternating direction implicit method. Statistical anisotropy in the aquifer is introduced by two-dimensional, random log-normal hydraulic conductivity field realizations with different directional correlation lengths. Model simulations indicate that DNAPL pool dissolution is enhanced by increasing the mean log-transformed hydraulic conductivity, groundwater flow velocity, and/or anisotropy ratio. The variance of the log-transformed hydraulic conductivity distribution is shown to be inversely proportional to the average mass transfer coefficient.  相似文献   

12.
The performance of cyclodextrin (CD)‐enhanced push‐pull (PP) and line‐drive (LD) approaches to remediation of a site contaminated with a multicomponent dense nonaqueous phase liquid (DNAPL) present in a surficial sandy aquifer was evaluated in this field study. The treatment techniques were compared to each other and to the projected performance of a conventional water‐flushing system. Performance was assessed based on contaminant mass removed per unit volume of extraction solution and per unit time of operation. As expected, the CD‐enhanced LD and PP approaches to remediation were more efficient than conventional flushing with water. Between the two techniques, the PP approach performed 1.5 to 2 times better than the LD approach, particularly for higher DNAPL saturation of the source zone. This result suggests that forcing the flushing solution directly into and through the DNAPL source zone minimized flow bypassing and consequently resulted in a more efficient transfer of contaminant mass between the DNAPL phase and the flushing solution. Nonuniform treatment zone contaminant concentrations and changes in contaminant composition influenced the treatment performances, but these effects were small and still permitted the comparison of successive tests. Although CD was used as the solubility‐enhancing flushing agent in this study, it is likely that the results can be transferred to other chemically enhanced flushing technologies that use, for example, surfactants or alcohols.  相似文献   

13.
The migration of five dense nonaqueous phase liquids (DNAPLs) through a single fracture in a clay aquitard was numerically simulated with the use of a compositional simulator. The effects of fracture aperture, fracture dip, matrix porosity, and matrix organic carbon content on the migration of chlorobenzene, 1,2-dichloroethylene, trichloroethylene, tetra-chloroethylene, and 1,2-dibromoethane were examined. Boundary conditions were chosen such that DNAPL entry into the system was allowed to vary according to the stresses applied. The aperture is the most important factor of those studied controlling the migration rate of DNAPL through a single fracture embedded in a clay matrix. Loss of mass to the matrix through diffusion does not significantly retard the migration rate of the DNAPL, particularly in larger aperture fractures (e.g., 50 microm). With time, the ratio of diffusive loss to the matrix to DNAPL flux into the fracture approaches an asymptotic value lower than unity. The implication is that matrix diffusion cannot arrest the migration of DNAPL in a single fracture. The complex relationships between density, viscosity, and solubility that, to some extent, govern the migration of DNAPL through these systems prevent accurate predictions without the use of numerical models. The contamination potential of the migrating DNAPL is significantly increased through the transfer of mass to the matrix. The occurrence of opposite concentration gradients within the matrix can cause dissolved phase contamination to exist in the system for more than 1000 years after the DNAPL has been completely removed from the fracture.  相似文献   

14.
Cutoff walls and liners are used frequently as barriers to isolate contaminants at both controlled and uncontrolled hazardous waste sites. Neville and Andrews (2006) presented a containment criterion for contaminant isolation by a barrier. The analysis of Neville and Andrews (2006) yields the inward Darcy flux that balances the diffusive mass flux from the source so that the net mass flux is zero. A requirement of zero net mass flux may not be achievable in all situations. The analysis developed by Neville and Andrews (2006) is extended to develop straightforward expressions for the long-term mass fluxes across a barrier for any conditions. In cases where it may not be possible to satisfy a criterion of zero net mass flux, the results from an exact solution for transient solute transport are used to show how the mass fluxes evolve to their long-term values.  相似文献   

15.
This paper presents inputs and output fluxes of dissolved metals (As, Cd, Co, Cu, Fe, Mn, Ni, Pb and Zn) into and out the Western Mediterranean. These flux estimates are based on the most recently published concentrations and fluxes for the atmosphere, the rivers and the straits. Comparison of the different sources shows the predominance of the inputs through the straits over other sources. The river input is smaller than the atmospheric input except for As. For all elements except Fe, output flux and input flux are balanced; iron budget indicates transfer from the dissolved to the particulate phase.  相似文献   

16.
Contamination from the use of chlorinated solvents, often classified as dense nonaqueous phase liquids (DNAPLs) when in an undissolved state, represents an environmental challenge with global implications. Mass-transfer limitations due to rate-limited dissolution can lead to long-term aquifer persistence for even small volumetric fractions. The identification of DNAPL source zones located beneath the water table is critical to ultimately achieve site remediation and aquifer restoration. This paper provides a comparison of the advantages and disadvantages of many of the methods being used for detecting and delineating DNAPL contaminant source zones. The objective is to determine which options are best to pursue based on site characteristics, method performance, and method costs. DNAPL characterization methods are grouped into approaches, which include site preparation, characterization, and data-processing activities necessary to design an effective remediation system. We compare the different approaches based on the level of chemical and hydrogeologic resolution, and the need for additional data requirements. Our findings can be used to assist with selection of appropriate site remediation management options.  相似文献   

17.
Hydraulic displacement is a mass removal technology suitable for stabilization of a dense, nonaqueous phase liquid (DNAPL) source zone, where stabilization is defined as reducing DNAPL saturations and reducing the risk of future pool mobilization. High resolution three-dimensional multiphase flow simulations incorporating a spatially correlated, heterogeneous porous medium illustrate that hydraulic displacement results in an increase in the amount of residual DNAPL present, which in turn results in increased solute concentrations in groundwater, an increase in the rate of DNAPL dissolution, and an increase in the solute mass flux. A higher percentage of DNAPL recovery is associated with higher initial DNAPL release volumes, lower density DNAPLs, more heterogeneous porous media, and increased drawdown of groundwater at extraction wells. The fact that higher rates of recovery are associated with more heterogeneous porous media stems from the fact that larger contrasts in permeability provide for a higher proportion of capillary barriers upon which DNAPL pooling and lateral migration can occur. Across all scenarios evaluated in this study, the ganglia-to-pool (GTP) ratio generally increased from approximately 0.1 to between approximately 0.3 and 0.7 depending on the type of DNAPL, the degree of heterogeneity, and the imposed hydraulic gradient. The volume of DNAPL recovered as a result of implementing hydraulic displacement ranged from between 9.4% and 45.2% of the initial release volume, with the largest percentage recovery associated with 1,1,1 trichloroethane, the least dense of the three DNAPLs considered.  相似文献   

18.
A study of the effects of grid discretization on the migration of DNAPL within a discrete-fracture network embedded in a porous rock matrix is presented. It is shown that an insufficiently fine discretization of the fracture elements can lead to an overprediction of the volume of DNAPL that continues to migrate vertically at the intersection of a vertical and horizontal fracture. Uniform discretization of elements at the scale of one centimetre (or less) accurately resolved the density and capillary pressure components of the head gradient in the DNAPL. An alternative, non-uniform method of discretization of elements within the discrete-fracture network is presented whereby only fracture elements immediately adjacent to fracture intersections are refined. To further limit the number of elements employed, the porous matrix elements adjacent to the fracture elements are not similarly refined. Results show this alternative method of discretization reduces the numerical error to an acceptable level, while allowing the simulation of field-scale DNAPL contamination problems. The results from two field-scale simulations of a DNAPL-contaminated carbonate bedrock site in Ontario, Canada are presented. These simulations compare different methods of grid discretization, and highlight the importance of grid refinement when simulating DNAPL migration problems in fractured porous media.  相似文献   

19.
《Advances in water resources》2007,30(6-7):1547-1561
Recent laboratory experimental evidence has suggested that bioremediation may be an attractive management strategy for dense non-aqueous phase liquid (DNAPL) source-zones. In particular, metabolic reductive dechlorination has been shown to reduce aqueous phase chlorinated ethene contaminant concentrations and enhance DNAPL dissolution, reducing source longevity. Transitioning this technology from the laboratory to the field will be facilitated by tools capable of simulating bioenhanced dissolution. This work presents a mathematical model for metabolic reductive dechlorination in a macroscale two-phase (aqueous-organic) environment. The model is implemented through adaptation of an existing multi-phase compositional simulator, which has been modified to incorporate eight chemical components and four microbial populations: a fermentative population, two dechlorinating populations, and a competitor population (e.g., methanogens). Monod kinetics, modified to incorporate electron donor thresholds, electron acceptor competition, and competitor inhibition, are used to simulate microbial growth and component degradation. The developed model is numerically verified and demonstrated through comparisons with published column-scale dechlorination data. Dechlorination kinetics, electron donor concentrations, and DNAPL saturation and distribution are all found to affect the extent of dissolution enhancement, with enhancements ranging from 1.0 to ∼1.9. Comparison of simulation results with those from a simplified analytic modeling approach suggest that the analytical model may tend to over-predict dissolution enhancement and fail to account for the transient nature of dissolution enhancement, leading to significant (70%) under-prediction of source longevity.  相似文献   

20.
A field demonstration was performed at Edwards Air Force Base to assess bioaugmentation for treatment of a well‐characterized tetrachloroethene (PCE) dense nonaqueous phase liquid (DNAPL) source area in fractured rock. Groundwater recirculation was employed to deliver remedial amendments, including bacteria, to facilitate reductive dechlorination and enhance DNAPL dissolution. An active treatment period of 9 months was followed by a 10‐month posttreatment rebound evaluation. Dechlorination daughter products were observed in both the shallow and deep fracture zones following treatment. In the shallow fracture zone, the calculated DNAPL mass removed was approximately equal to the DNAPL mass estimated using partitioning tracer testing, and no rebound in chlorinated ethenes or ethene was observed during the posttreatment period. A maximum DNAPL dissolution enhancement factor of 5 was observed in the shallow fracture zone. In the deep fracture zone, only approximately 45% of the DNAPL mass—as estimated via partitioning tracer testing—was removed and rebound in the total molar chlorinated ethenes + ethene was observed. The difference in behavior between the shallow and deep fracture zones was attributed to DNAPL architecture and the fracture flow field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号