首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to experimentally evaluate the effects of simulated herbivory on the ability of a freshwater marsh plant to recover from temporary saltwater intrusion such as can be caused by tropical storms. Sods containingSagittaria lancifolia, a dominant plant in interior coastal marshes, were manipulated in the field so as to subject plants to a pulse of 15‰ salt water for a duration of 1 wk. In addition to the exposure to salt water, some plants were also subjected to both short-term and long-term flooding treatments of 20 cm, and to simulated herbivory (clipping). Following exposure to salt water, plants were allowed to recover over the winter and were harvested the next June. Neither simulated herbivory, nor salinity, nor flooding caused any long-term effect either singly or in pairwise combinations. However, when plants were subjected to herbivory, salt water, and flooding simultaneously, reduced growth and plant death occurred. These results suggest that high levels of grazing by herbivores may increase the susceptibility of coastal marsh plants to damage from saltwater intrusion. *** DIRECT SUPPORT *** A01BY073 00002  相似文献   

2.
Responses ofSpartina alterniflora marsh to combinations of feral horse grazing, clipping, simulated trampling, and a late winter burn were studied on Cumberland Island National Seashore, Georgia. Replicated 200-m2 plots were established and sampled bimonthly from July 1983 to November 1984. Clipping and trampling each reduced peak aboveground biomass by 20% in 1983 and 50% (clipping) and 55% (trampling) in 1984. A March burn reduced peak aboveground biomass by 35% in 1984. Trampling and burning earch reduced net aboveground primary production (NAPP) by 35%, but clipping did not reduce NAPP. Standing stocks of live rhizomes were correlated with aboveground biomass and were reduced with experimental treatments. Abundance of the periwinkle snail (Littorina irrorata) was also reduced. Horse grazing had a substantial impact on standing stocks and NAPP ofSpartina, but grazing was not uniform throughout the marsh. Moderately grazed plots had NAPP reduced by 25% compared to ungrazed plots. Heavily grazed plots had extremely low NAPP, and abovegroundSpartina never exceeded 40 g m?2 dry mass compared to 360 g m?2 within exclosures.  相似文献   

3.
The effect of tidal flooding on survival of juvenile muskrats (Ondatra zibethicus) was investigated in a brackish marsh in Louisiana by examining 50 muskrat lodges each month from July 1984 to June 1985 and tidal data over a 19-yr period. Tide levels increased at a rate of 1.58 cm yr?1 during the 19-yr period prior to the study, and during the study nest chambers in muskrat lodges were flooded on 43 d. Seventy-seven captured litters averaged 2.2±0.3 young per litter. older litters were less common than younger litters, but the number of young per litter did not differ among 5-d age classes, suggesting that mortality factors usually affected entire litters. The frequency of tidal flooding prior to opening of lodges each month was associated negatively with the number of litters and number of young per litter. If marsh subsidence and sea level rise continue, tidal flooding will become more prevalent and litter mortality will likely increase.  相似文献   

4.
The exotic freshwater clam speciesCorbicula fluminea (Asiatic clam) was first reported in the tidal freshwater Potomac estuary near Washington, D.C., in 1977, and was found in benthic surveys, conducted in 1978, 1982, 1984, 1986, and 1992. In 1981 a tripling of water clarity was reported in the region of the clam beds, followed in 1983 by reapperance of submerged aquatic vegetation (SAV) absent for 50 yr. Submerged aquatic vegetation (SAV) has been surveyed and mapped over the entire Potomac estuary region in almost every year from 1976 to 1993 by aerial photography, as part of the United States Environmental Protection Agency's Chesapeake Bay program. Fish surveys in 1986 found populations increased up to 7× in beds of SAV. Starting in 1984, the Washington, D.C. Christmas Bird Census reported significant increases in several aquatic bird populations both nonmigratory and migratory. An extensive benthic survey in September 1986 estimated a spring-summer population of 8.7×106 kg Asiatic clams (wet weight including shell) in the 5-km region of the Potomac below Washington, D.C. This population was calculated as having the capacity to filter one-third to all of the water in this region of the estuary daily, depending on river flow. The 1986 clam population was smaller than that of 1984 and the 1992 population was 25% of that in 1986. Since 1986, SAV acreage has been decreasing in this area of the Potomac. Aquatic bird populations have declined. Yearly nuisance algae (Microcystis) blooms, which had been absent since 1983, reappeared in 1993. This paper presents evidence to support the theory the invasive Asiatic clam population in the 10 km below Washington, D.C., was responsible for SAV resurgence through filtration affecting turbidity. It suggests the clam populations triggered system-level changes in biota, including increase and decrease in local Potomac estuary populations (SAV, bird, fish, algae) over 10 yr, from 1983 to 1993. Major changes in the Asiatic clam population took place approximately 2 yr before parallel changes in SAV acreage were observed.  相似文献   

5.
Despite an extensive system of river regulation works, the mainstem of the Colorado River in 1983 experienced the highest flows on record, resulting in severe flood damage. The high flows were due to an abnormally late season mountain snow accumulation, an accelerated snowpack ablation, and high initial reservoir levels. Forecasts of April-July inflow to Lake Powell, the major Upper Basin reservoir, nearly doubled from early May to late June.The report evaluates the efficacy of runoff and inflow prediction methodologies utilized to formulate reservoir operational responses during the winter and spring of 1983. Given the restrictions inherent in the forecasting network, the reservoir release schedule followed during the period by the US Bureau of Reclamation (USBR) is then reviewed. Two alternative reservoir release schedules are also presented, and their hypothetical impacts on flooding assessed. In light of the 1983 flooding, recommendations are made to increase the reliability of flood predictions for Colorado River reservoirs and to reduce the extent of future damage to and destabilization of the biological and physical resources of Grand Canyon National Park.A brief epilogue provides an update on the evolution of the Colorado River reservoir operations policy. The new policies helped to attenuate 1984 peak reservoir discharges, even though the 1984 total tunoff exceeded that of 1983.  相似文献   

6.
Newly settled spat of the American oyster (Crassostrea virginica) exhibited reduced survival and growth when exposed to chronic chlorination (as Na-OCl). Spat exposed to nominal concentrations of 0.250 and 0.500 mg per 1 chlorine-produced oxidant (CPO) had only 20% survival after 12 weeks, compared to 64% survival in controls. Spat growth was retarded by nominal concentrations as low as 0.125 mg per I CPO. Shell height of control oysters increased 103% after 12 weeks, while spat exposed to 0.125 mg per I CPO grew 39% and spat exposed to 0.250 mg per I CPO had no net growth. Surviving spat exposed to 0.500 mg per I CPO showed an apparent growth increase of 160%, due mainly to heavy mortality among smaller-sized spat. The numbers of spat (whether surviving or not) that showed any growth over the 12-week exposure period decreased with increasing chlorine concentration. Larger spat were found to be more resistant than smaller spat to increased chlorination. The mechanism of growth inhibition in spat (mantle retraction and cessation of feeding) appeared to be similar to that found in adult oysters exposed to chlorine.  相似文献   

7.
The Swartvlei estuary possesses a prolific growth of both intertidal and subtidal eelgrass,Zostera capensis. During 1984 less than 12% of the eelgrass beds were located in the upper half of the estuary, yet deposition ofZostera/macroalgal wrack in this region, when the estuary was linked to the sea (open phase), was similar to that in the lower half. Over a period of 20 semidiurnal tidal cycles there was a net gain of 2.5 tonnes dry mass of plant material into the upper reaches. Export of aquatic macrophytes and filamentous algae from the lower reaches toward the sea over 20 tidal cycles amounted to 1.6 tonnes dry mass. The amount of plant material transported during spring tides was 2 to 3 times greater than that carried during neap tides. Shallowing of the estuary mouth due to sand deposition resulted in a decline in the tidal prism and a decrease in macrodetrital flux. Total export ofZostera and associated algae amounted to 0.87 g ash-free dry mass m?2d?1 and represented a monthly export of 18% ofZostera bed biomass. Deposition of plant wrack during the 1984–1985 closed phase amounted to 63 g dry mass per meter of shore per day at the lower reaches site but only 10 g m?1d?1 was recorded at the upper reaches site. The relatively low latter value was attributed to the absence of tidal action which transports macrodetritus from the lower and middle reaches into the upper part of the system. During the 1984 open phase 70 g m?1d?1 was deposited at the lower reaches site and 68 g m?1d?1 at the upper reaches site. The role of tides in the redistribution of aquatic macrophyte primary production in the Swartvlei estuary was therefore clearly underscored.  相似文献   

8.
Tidal wetlands are affected by sea level rise. In the tidal freshwater stretches of estuaries in the temperate zone, willows (Salix spp.) form tidal freshwater forests above the mean high water level. Willows tolerance to prolonged periodic flooding in riverine systems is well documented, whereas effects of tidal flooding on willows are largely unknown. Flooding stress may play a major role in regeneration failure of willows in tidal forest stands along estuarine shores, and juvenile willows might be specifically affected by partial or total submergence. To assess the tolerance of juvenile willows to tidal flooding, we conducted a mesocosm experiment with cuttings from Salix alba and Salix viminalis, which are both characteristic species for tidal freshwater forests in Europe. Cuttings originating from either fresh or brackish tidal forest stands were grown under four tidal treatments with up to a tidal flooding of 60 cm. A general tolerance to a tidal flooding of 60 cm was observed in chlorophyll fluorescence, growth rates, and biomass production in both willow species. Overall, S. alba showed higher leaf and shoot growth, whereas S. viminalis produced more biomass. S. alba with brackish origin performed worst with increasing tidal flooding, suggesting a possible pre-weakening due to stressful site conditions in tidal wetlands at the estuarine brackish stretch. This study demonstrates that juvenile willows of S. alba and S. viminalis tolerate tidal flooding of up to 60 cm. It is concluded that tidal inundation acts as a stress by causing submergence and soil anaerobiosis, but may also act as a subsidy by reestablishing aerobic conditions and thus maintaining willows performance. Therefore, we suggest investigations on Salix tidal flooding tolerance and possible effects of willows on tidal wetland accretion under estuarine field conditions.  相似文献   

9.
Weather and water-quality data from 1980 to 1989 were correlated with fluctuations in submersed macrophyte populations in the tidal Potomac River near Washington, D.C., to elucidate causal relationships and explain population dynamics. Both reaches were unvegetated in 1980 when mean growing-season Secchi depths were <0.60 m. Macrophyte resurgence in the upper tidal river in 1983 was associated with a growing-season Secchi depth of 0.86 m, total suspended solids (TSS) of 17.7 mg l?1, chlorophyll a concentrations of 15.2 μg l?1, significantly higher than average percent available sunshine, and significantly lower than average wind speed. From 1983 to 1989, mean seasonal Secchi depths <0.65 m were associated with decrease in plant coverage and mean seasonal Secchi depths >0.65 were associated with increases in plant coverage. Changes in mean seasonal Secchi depth were related to changes in mean seasonal TSS and chlorophyll a concentration; mean Secchi depths >0.65 generally occur when seasonal mean TSS is <19 mg l?1 and seasonal mean chlorophyll a concentration is ≤15 μg l?1. Secchi depth is highly correlated with plant growth in the upper tidal river and chlorophyll a and TSS with plant growth in the lower tidal river. Wind speed is an important influence on plant growth in both reaches.  相似文献   

10.
Sea-level rise is anticipated to alter hydrologic and salinity regimes of coastal wetlands. We conducted a mesocosm experiment to determine species-level responses to 12 sea-level rise scenarios. Both hydrologic regime (−10, +5, and +20 cm flooding depth) and salinity level (fresh, 2‰, 4‰ and 6‰) were interactively manipulated. Within these various sea-level rise scenarios, we sought to determine the effects of hydrologic regime, salinity level, and the interaction of these two stresses on the productivity ofPanicum hemitomon, Sagittaria lancifolia, andSpartina patens, which are dominant macrophytes of fresh, intermediate, and brackish marsh types, respectively, in coastal Louisiana and the southeastern coastal plain. We found that altered hydrologic regimes and increased salinity levels differentially affected edaphic conditions and species-level productivity. Increases in flooding depth were most detrimental toS. patens. Salinity levels greater than 4‰ resulted in mortality ofP. hemitomon, and salinity levels of 6‰ resulted in reduced growth and eventual death, ofS. lancifolia. The effects of elevated salinity levels onP. hemitomon andS. lancifolia were exacerbated when coupled with increased flooding levels. Although soil organic matter was shown to increase in all vegetative conditions, increases were dependent upon the productivity of the species under the different hydrologic regimes and salinity levels withP. hemitomon displaying tremendous potential to increase soil organic matter under fresh conditions, especially when coupled with moderate flooding. The results of this study indicate that as plant communities are subjected to long-term changes in hydrology and salinity levels, community productivity and sustainability ulimately will be determined by species-level tolerances in conjunction with species interactions.  相似文献   

11.
Iva frutescens is a common shrub at the upland fringe of salt marshes throughout the East and Gulf Coasts of North America. Within a marsh, its location and relative size are governed largely by the degree of flooding by seawater.Iva’s wide distribution and restricted location within salt marshes may make it a useful indicator of overall conditions of the marshes. This work was designed to provide basic information on the age and growth ofI. frutescens, especially as they relate to the degree of flooding that is needed in order to investigateIva’s potential as an indicator. Cross-sections of older stems (living and standing dead) from salt marshes in Rhode Island, United States, were examined in order to age stems and estimate their growth rate from cumulative increase in woody tissue. Most stems were six yr old or less, suggesting that aboveground structures live for only a few years. Stem diameter correlated with growth rate and aboveground biomass. Elevation at the root zone was used to estimate the duration that plants were flooded, which was negatively correlated with stem diameter. The most robust plants came from sites that were flooded only up to 6–7% of the total time during the growing season. No plants were found in areas flooded more than 30% of the time.  相似文献   

12.
Foundation species regulate communities by reducing environmental stress and providing habitat for other species. Successful restoration of biogenic habitats often depends on restoring foundation species at appropriate spatial scales within a suitable range of environmental conditions. An improved understanding of the relationship between restoration scale and environmental conditions has the potential to improve restoration outcomes for many biogenic habitats. Here, we identified and tested whether inundation/exposure stress and spatial scale (patch size) can interactively determine (1) survival and growth of a foundation species, Spartina alterniflora and (2) recruitment of supported fauna. We planted S. alterniflora and artificial mimics in large and small patches at elevations above and below local mean sea level (LMSL) and monitored plant survivorship and production, as well as faunal recruitment. In the first growing season, S. alterniflora plant survivorship and stem densities were greater above LMSL than below LMSL regardless of patch size, while stem height was greatest in small patches below LMSL. By the third growing season, S. alterniflora patch expansion was greater above LMSL than below LMSL, while stem densities were higher in large patches than small patches, regardless of location relative to LMSL. Unlike S. alterniflora, which was more productive above LMSL, sessile marine biota recruitment to mimic plants was higher in patches below LMSL than above LMSL. Our results highlight an ecological tradeoff at ~LMSL between foundation species restoration and faunal recruitment. Increasing patch size as inundation increases may offset this tradeoff and enhance resilience of restored marshes to sea-level rise.  相似文献   

13.
We examine the potential for diurnal variation in elevation of saltmarsh surfaces as a source of error in long-term experiments; errors particularly critical in high precision studies that employ the surface elevation table (SET) as a means to monitor elevations. The field study was carried out along the New Brunswick coast of the Bay of Fundy in high and low zones at three marshes with different tidal ranges. We used a total of 16 benchmark pipes and controlled for daily variability in evapotranspiration (ET), as well as timing of tidal flooding, two factors that affect soil water storage, and consequently soil volumes. In six of nine trials we detected significant elevation change over periods as short as 5 d. Marsh-wide averages ranged from 1.2 to 3.0 mm, greater than the yearly increase in relative sea level in many regions. Wood Point marsh had the highest tidal range, but lowest soil organic matter content, giving its soils the lowest compressibility and little sensitivity to ET during two of three trials; the average change in elevation in Wood Point high marsh stations was 4.0 mm during the last trial. Greater differences later in the growing season (while temperature changes were minor) at Wood Point and another site suggest that plant transpiration drove changes in water storage at those sites. Significantly greater differences in elevation with lower plant cover in the third marsh suggests that evaporation drove changes in water storage there. Surface elevation change due to ET should be of greatest concern to SET users in temperate regions where there are large changes in plant biomass and variable temperatures. Variation due to plant transpiration could be reduced if yearly monitoring is scheduled before the start of the growing season.  相似文献   

14.
To assess the biogeochemical effects of tidal restrictions on salt-marsh sulfur cycling and plant growth, cores of short-formSpartina alterniflora peat were desalinated and kept either waterlogged or drained in greenhouse microcosms. Changes in netSpartina production, and porewater and solid phase chemistry of treated cores were compared to natural conditions in the field collection site over a 21-mo period. Net production among treatments increased significantly in drained and waterlogged peat compared to field conditions during the first growing season. Constantly high sulfide in waterlogged cores accompanied reduced plant growth. Aeration invigorated growth in draimed cores but led to oxidization of sulfide minerals and to lowered pH. During the second growing season, growth declined in the drained treatment, probably because of acidification and decreased dissolved inorganic nitrogen. Results are pertinent to the success of current wetland protection and restoration activities in the coastal zone.  相似文献   

15.
The effects of humic acid (HA) on heavy metal uptake by herbaceous plants in soil simultaneously contaminated with heavy metals and petroleum hydrocarbons were investigated. The results showed that HA reduced readily soluble and exchangeable forms of heavy metals in the contaminated soil but increased their plant-available forms. Potential bioavailability and leachability factors became larger than 1 after adding HA to the soil, except for those of Ni, suggesting that more heavy metals could be potentially phytoavailable for plant uptake. Furthermore, HA increased the accumulation of Pb, Cu, Cd, and Ni in the shoots and roots of selected plants. The greatest increase in the accumulation of heavy metals was 264.7 % in the shoot of Festuca arundinacea, with the bioconcentration factor (BCF) increasing from 0.30 to 1.10. Humic acid also increased the BCFs of the roots of Brassica campestris for Ni and Pb. These results suggest that HA amendment could enhance plant uptake of heavy metals, while concurrently reducing heavy metal leachability and preventing subsurface contamination, even in soils simultaneously contaminated with petroleum hydrocarbons.  相似文献   

16.
氮素输入影响下淡水湿地碳过程变化   总被引:12,自引:0,他引:12  
通过野外控制试验和室内培养试验研究了氮素输入对淡水沼泽湿地碳循环过程的影响。结果表明,氮素的输入能够提高沼泽湿地碳的生物累积,但过多的氮素输入则引起植物生产力的降低,并对常年积水沼泽湿地有机物质的分解有抑制作用。在非淹水条件下,氮素输入后有机物质的分解速率明显大于淹水条件,说明水文条件和氮素输入对枯落物的分解过程都有重要的影响,只是在不同环境条件下的响应存在一定的差异。氮素输入后,植物—土壤系统CO2排放量增大;但是,过多氮素输入后植物—土壤系统呼吸速率降低,这说明一定量的氮素输入可促进植物的生长和根的发育,对微生物的活性也有一定的影响,但过多的氮素输入则会对这些过程产生一定的抑制作用。氮素输入对土壤溶解有机碳(DOC)有明显的影响。氮素输入后,根层土壤DOC含量明显降低(P<0.05),不同土壤深度DOC的变化有一定的差异。  相似文献   

17.
Tidal freshwater wetlands are complex, species-rich ecosystems located at the interface between tidal estuaries and nontidal rivers. This study conducted on the Patuxent River estuary in Maryland was designed to assess vegetation dynamics over several decades to determine if there were directional changes in the dominant communities. Aerial photographs (1970, 1989, and 2007) documented broad-scale spatial changes in major plant communities. The coverage of areas dominated by Nuphar lutea and Phragmites australis expanded; mixed vegetation and scrub–shrub habitats were essentially unchanged; and Typha and Zizania aquatica communities fluctuated in coverage. Data collected between 1988 and 2010 from permanent plots and transects were used to examine fine-scale changes. Shifts in the importance of some species through time were observed, but there were no directional changes in community species composition. The lack of directional change as measured at a fine scale is characteristic of tidal freshwater wetlands in which variations in the abundance of individual species, especially annuals, are responsible for most short-term change in species composition. Changes in the composition of plant communities are interpreted as responses to variations in vertical accretion, stability of habitat types, invasive plant species, and herbivores. In the future, vegetation changes are likely to occur as a result of the intrusion of brackish water and increased flooding associated with global climate change and sea level rise. This long-term study establishes a baseline from which potential future changes to tidal freshwater wetlands can be better understood.  相似文献   

18.
Benthic macroinvertebrate abundance, taxonomic composition, and surface flooding dynamics were compared among high and low elevation stands of narrow-leaved cattail (Typha angustifolia) and invasive common reed (Phragmites australis) at Iona Island Marsh, an oligohaline wetland, and Piermont Marsh, a mesohaline wetland, within the Hudson River National Estuarine Research Reserve during 1999 and 2000. Overall, the benthic macroinvertebrate community at both sites was similar in composition and abundance to those documented from other low-salinity systems. Macroinvertebrate taxa richness was lowest in mesohaline common reed, but similar among common reed and cattail habitats in oligohaline wetlands. Total macroinvertebrate densities were greater at high-elevation compared to low-elevation reed stands at the mesohaline site during summer 1999 and spring 2000. Total macroinvertebrate densities were similar among both oligohaline vegetation types during all seasons, except for spring 2000, when lower densities were observed in low-elevation common reed. A weak positive relationship between macroinvertebrate density and depth of flooding suggests that surface hydrology may be influencing the observed patterns of macroinvertebrate density among the vegetation stands. These results suggest that benthic macroinvertebrate abundance and diversity may not necessarily be impaired in low-salinity wetlands experiencing invasion by common reed unless the change in vegetation is accompanied by a measurable alteration to physical conditions on the marsh surface (i.e., elevation and flooding dynamics).  相似文献   

19.
A greenhouse experiment was conducted to examine the effects of salinity, nitrogen, and aeration on the growth of Spartina alterniflora Loisel. The experiment was conducted in a factorial arrangement of treatments with salt marsh substrate at three salinity levels (15, 30, 45‰), at two nitrogen levels (0 and 168 kg/ha) and at two aeration levels (zero and oxygen saturation). The maximum biomass was found in the low salinity, nitrogen enhanced, aerated treatment which had 11 times more biomass than the highest (45‰) salinity, nitrogen poor, unaerated treatment. the average effect of nitrogen over the three salinity levels was a 2.01, 1.47, 1.25, and 1.52 times increase in aerial biomass, density, height, and belowground biomass of the plants, respectively. The main effect of aeration was a 2.49, 2.01, 1.57, and 1.85 times increase in the same variables. The combination effect of aeration and nitrogen additions enhanced biomass by 453%. An increase in salinity from 15‰ to 45‰ decreased biomass, density, height and belowground biomass of S. alterniflora by 66, 53, 38, and 61%, respectively. The effect of salinity was more pronounced between 30 and 45‰ than it was between 15 and 30‰. N, P, K, Ca, Mg, Na, Fe, Mn, Zn, Cu, and S concentrations in the aerial living biomass were also examined. There was no evidence to suggest that elemental concentrations (on a per gram basis) were consistently correlated with increased or decreased growth. In relation to salinity, correlations between growth and elemental concentrations were negative while for nitrogen enhanced and/or aerated systems, the correlations were positive.  相似文献   

20.
The effects of system closure on the dynamics of productivity and nutrient cycling are examined in four wetlands that differ in plant growth form and magnitudes and sources of water input and nutrient loading. Dynamics in relatively closed ombrotrophicCarex marsh andTaxodium swamp systems from Okefenokee Swamp are compared to those in open, rheotrophic riparian systems. The riparian systems examined includeZizaniopsis marshes along the tidal freshwater portion of the Altamaha River in Georgia and a matureTaxodium-Nyssa swamp along the Cache River in Illinois. Water budgets in the ombrotrophic systems are dominated by precipitation inputs while in the riparian wetlands they are dominated by overbank flooding. Nutrient loading to the open and closed systems differs by only two orders of magnitude, the former depending on atmospheric inputs and the latter depending on tidal and riverine inputs. Comparisons of nutrient import, export, and retention indicate that greater than 90% of inorganic nutrients are retained in the closed systems while less than 5% are retained in the open systems. Nutrient budgets for wetland vegetation, including aboveground uptake, root uptake, leaching, death, and translocation, are constructed. Strong differences in nutrient conservation within plant communities are found between marsh and forested closed systems and between open and closed systems as a whole. There is the indication that nutrients turn over more rapidly and nutrient cycles are less retentive and conservative as systems become more open and nutrient inputs increase. Nutrients turn over more rapidly in marshes with nonwoody vegetation than in swamp forests. This phenomena is partially attributable to the growth form of the vegetation as trees store vast amounts of high Canutrient ratio biomass in boles. Substituting space for time and marsh and swamp wetlands for young and mature ecosystems enables patterns of productivity and nutrient cycling for these wetlands to be compared with Odum’s (1969) predictions of ecosystem development. Patterns of ecosystem development in wetlands agree with those predicted for terrestrial systems in general, but there are many areas of contradiction. The degree of system closure appears to be a major factor controlling nutrient retention and cycling in wetland ecosystems. System closure is also likely to be important in determining the response of wetland systems to global increases in CO2 levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号