首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem of computation of elliptic Hansen coefficients and their derivatives is considered for constructing a motion theory of an artificial Earth satellite with large eccentricity. An algorithm for analytical and numerical computation of these coefficients and their derivatives is described. The recurrence relations for derivatives of the first and second order and initial values for recurrences are obtained. As an example, numerical values of some elliptic Hansen coefficients are given for the orbit with eccentricityk=0.74.  相似文献   

2.
This paper deals with the perturbations which tidal lag in longitude can produce to the orbital elements of a close binary system. The expressions obtained for the six elements of the orbit have been presented as functions of the unperturbed true anomaly, measured from the periastron. Our study includes the effects produced by the second, third, and fourth tidal harmonic distortions. In order to save space these extremely lengthy equations are given in the compact form of summations, by means of Hansen coefficients. Various recurrence relations, which hold good for Hansen coefficients, are also presented. Finally, this paper includes a second-order approximation only for the secular terms of first-order approximation.  相似文献   

3.
In two previous papers (Zafiropoulos and Kopal, 1983a, b; hereafter referred to as Papers I and II) we have investigated the effects of rotational and tidal distortion (for non-lagging tides) on the orbital elements of a close binary system. The present paper deals with secular and periodic perturbations caused by dynamical tides. The componentsR, S, andW of disturbing accelerations for tidal lag have been substituted in the Gaussian form of Lagrange's planetary equations to give the first-order approximation. The results obtained have been expressed by means of Hansen coefficients and include the effects produced by the second, third and fourth harmonic dynamical tides.  相似文献   

4.
This paper presents the basic theory underlying the computer program PROD for predicting the long-term development of drag-free orbits of eccentricity up to about 0.9 under the influence of the Earth's gravitational potential and the gravitational attractions of the Sun and Moon. To prevent excessive use of computer time, the disturbing functions are averaged analytically with respect to the mean anomaly of the satellite and recurrence relations are given wherever possible for the evaluation of the various coefficients.Crown copyright reserved. Reproduced by permission of the Controller, H.M. Stationery Office.  相似文献   

5.
Seven direct calculation methods of Hansen coefficients and their derivatives are reviewed. The computational efficiencies of these methods are compared, and their computational stabilities are analyzed. We show that the recursion relations of Hansen coefficients can be used to determine the stabilities of calculation results. Finally, it is pointed out that Wnuk's method (double precision computation) and McClain's methods (quadruple precision computation) are stable, which can be used to calculate orbit perturbations. Because of small orbital eccentricities of most satellites, the perturbation calculations without singularities are required, and McClain's first method (quadruple precision computation) is recommended.  相似文献   

6.
回顾总结了7种Hansen系数及其导数的直接计算方法,比较分析了这些方法的计算效率和计算稳定性.研究表明:Hansen系数的递推关系可以用来判别计算结果的稳定性.最后指出, Wnuk方法(双精度计算)和McClain方法(4精度计算)是稳定的,可以用来计算人造卫星轨道摄动.由于大多数人造卫星采用小偏心率轨道,需要计算无奇点摄动,推荐使用McClain方法1 (4精度计算).  相似文献   

7.
The Hamiltonian of the second order with respect to the disturbing mass, as defined in the higher order-higher degree theory of asteroid secular perturbations by Yuasa (1973), is expressed in the heliocentric, ecliptic coordinate system. Errors found in the original paper with terms coming from the principal part of the disturbing function are removed, and corrected values of the coefficients are computed. The importance of second-order perturbations and the improvement in the accuracy of proper element determination, achieved by using the newly-obtained coefficients, are demonstrated. Finally, a table of the secular frequencies as functions of the semimajor axis is given, and compared with the analogous one by Kozai (1979).  相似文献   

8.
This paper derives the contributionF 2 * by the great inequality to the secular disturbing function of the principal planets. Andoyer's expansion of the planetary disturbing function and von Zeipel's method of eliminating the periodic terms is employed; thereby, the corrected secular disturbing function for the planetary system is derived. An earlier solution suggested by Hill is based on Leverrier's equations for the variation of elements of Jupiter and Saturn and on the semi-empirical adjustment of the coefficients in the secular disturbing function. Nowadays there are several modern methods of eliminating periodic terms from the Hamiltonian and deriving a purely secular disturbing function. Von Zeipel's method is especially suitable. The conclusion is drawn that the canonicity of the equations for the secular variation of the heliocentric elements can be preserved if there be retained, in the secular disturbing function, terms only of the second and fourth order relative to the eccentricity and inclinations.The Krylov-Bogolubov method is suggested for eliminating periodic terms, if it is desired to include the secular perturbations of the fifth and higher order in the heliocentric elements. The additional part of the secular disturbing functionF 2 * derived in this paper can be included in existing theories of the secular effects of principal planets. A better approach would be to preserve the homogeneity of the theory and rederive all the secular perturbations of principal planets using Andoyer's symbolism, including the part produced by the great inequality.  相似文献   

9.
The aim of this investigation is to present the periodic and secular perturbations of the orbital elements of close binary systems due to tidal lag in latitude. The variational equations of the problem of plane motion will be set up in terms of the rectengular componentsR, S, andW of the disturbing accelerations. These equations are highly nonlinear with respect to the orbital elements and we present analytic approximations to the effects produced by the perturbing acceleration due to dynamical tides lagging in latitude. The perturbed elements of the orbit have been expressed by means of Hansen coefficients in the compact form of summations.  相似文献   

10.
Hansen coefficients are used in expansions of the elliptic motion. Three methods for calculating the coefficients are studied: Tisserand's method, the Von Zeipel-Andoyer (VZA) method with explicit representation of the polynomials required to compute the Hansen coefficients, and the VZA method with the values of the polynomials calculated recursively. The VZA method with explicit polynomials is by far the most rapid, but the tabulation of the polynomials only extends to 12th order in powers of the eccentricity, and unless one has access to the polynomials in machine-readable form their entry is laborious and error-prone. The recursive calculation of the VZA polynomials, needed to compute the Hansen coefficients, while slower, is faster than the calculation of the Hansen coefficients by Tisserand's method, up to 10th order in the eccentricity and is still relatively efficient for higher orders. The main advantages of the recursive calculation are the simplicity of the program and one's being able to extend the expansions to any order of the eccentricity with ease. Because FORTRAN does not implement recursive procedures, this paper used C for all of the calculations. The most important conclusion is recursion's genuine usefulness in scientific computing.  相似文献   

11.
It is shown that the first-order general planetary theory, i.e. the theory without secular terms, developed in (Brumberg and Chapront, 1973) may be re-constructed and presented by the series in powers of the eccentricity and inclination variables with the closed form coefficients expressed in terms of elliptic functions. The intermediate solution of the zero degree in eccentricities and inclinations has been given explicitly with the aid of elliptic functions and the Hansen type quadratures with trigonometric function kernels. In determining the first and higher degree terms in eccentricities and inclinations one meets the Hansen type quadratures with elliptic function kernels. The secular evolution is described by the autonomous polynomial differential system.  相似文献   

12.
A system of averaged equations of planetary motion around a central star is constructed. An astrocentric coordinate system is used. The two-planet problem is considered, but all constructions are easily generalized to an arbitrary number N of planets. The motion is investigated in modified (complex) Poincarécanonical elements. The averaging is performed by the Hori–Deprit method over the fast mean longitudes to the second order relative to the planetary masses. An expansion of the disturbing function is constructed using the Laplace coefficients. Some terms of the expansion of the disturbing function and the first terms of the expansion of the averaged Hamiltonian are given. The results of this paper can be used to investigate the evolution of orbits with moderate eccentricities and inclinations in various planetary systems.  相似文献   

13.
Some methods are described for the expansion of the disturbing function in planetary theory. One method uses the classical binomial expansion theorem or a successive approximation process derived from it. Another method is a direct application of the Laplace series expansions. For both methods it is proposed to first prepare the series to be manipulated by a scaling operation. These methods can be applied either in a literal or in a numerical form, or any combination of both, but they are especially designed for use on a large scale digital computer with standard Poisson series programs. No usage is made of Newcomb operators or derivatives of Laplace coefficients.  相似文献   

14.
Following some ideas, developed by Woltjer (1928), Message (1989), Yokoyama (1988, 1989) and Duriez (1990) an expansion of the disturbing function is given for high values of the eccentricity and large amplitude of libration. The classical expansion can be obtained as a particular case of the present model. Several asteroids with high eccentricity and large amplitude of libration are tested and the results are much better than those obtained from the classical theory.  相似文献   

15.
《New Astronomy》2007,12(6):490-496
To explore the dynamics of a test particle in the near-Mercury’s environment, the orbital motion of an orbiter around Mercury is considered. Different perturbing forces, namely the Mercurian gravity field, the solar radiation pressure, the solar wind and the coronal mass ejections, are taken into account. The order of magnitude of each perturbing term is assessed. The equations of motion in canonical representation are obtained. The Hamiltonian in terms of Hansen coefficients is expressed. A procedure for solution is presented. The short and long periodic terms are removed from the Hamiltonian and the solution is obtained. Long periodic perturbations on the orbital dynamics of an orbiter around Mercury due to the solar events are found as revealed by Eq. (26) in the text. Resonance cases are discussed and the different resonant inclinations are obtained. A procedure for the computation of the position and velocity is presented.  相似文献   

16.
Hansen’s coefficients in the theory of elliptic motion with eccentricity e are studied as functions of the parameter η = (1 − e 2)1/2. Their analytic behavior in the complex η plane is described and some symmetry relations are derived. In particular, for every Hansen coefficient, multiplication by suitable powers of e and η results in an entire analytic function of η. Consequently, Hansen’s coefficients can be in principle computed by means of rapidly convergent series in powers of η. A representation of Hansen’s coefficients in terms of two entire functions of e 2 follows.   相似文献   

17.
Lie-integration is one of the most efficient algorithms for numerical integration of ordinary differential equations if high precision is needed for longer terms. The method is based on the computation of the Taylor coefficients of the solution as a set of recurrence relations. In this paper, we present these recurrence formulae for orbital elements and other integrals of motion for the planar $N$ -body problem. We show that if the reference frame is fixed to one of the bodies—for instance to the Sun in the case of the Solar System—the higher order coefficients for all orbital elements and integrals of motion depend only on the mutual terms corresponding to the orbiting bodies.  相似文献   

18.
Recurrent power series methods are particularly applicable to problems in celestial mechanics since the Taylor coefficients may be expressed by recurrence relations. However, as the number of Taylor coefficients increases as is often necessary because of accuracy requirements, the computing time grows prohibitively large. In order to avoid this unfavorable situation, Dr E. Fehlberg introduced in 1960 Runge-Kutta methods that use the firstm Taylor coefficients obtained by recursive relations, or some other technique.Optimalm-fold Runge-Kutta methods are introduced. Embedded methods of order (m+3)[m+4] and (m+4)[m+5] are presented which have coefficients that produce minimum local truncation errors for the higher order pair of solutions of the method, as well as providing a near maximum absolute stability region. It is emphasized that the methods are formulated such that the higher order pair of solutions is to be utilized. These optimal methods are compared to the existingm-fold methods for several test problems. The numerical comparisons show that the optimal methods are more efficient. It is stressed that these optimal methods are particularly efficient whenm is small.  相似文献   

19.
Lunisolar perturbations of an artificial satellite for general terms of the disturbing function were derived by Kaula (1962). However, his formulas use equatorial elements for the Moon and do not give a definite algorithm for computational procedures. As Kozai (1966, 1973) noted, both inclination and node of the Moon's orbit with respect to the equator of the Earth are not simple functions of time, while the same elements with respect to the ecliptic are well approximated by a constant and a linear function of time, respectively. In the present work, we obtain the disturbing function for the Lunar perturbations using ecliptic elements for the Moon and equatorial elements for the satellite. Secular, long-period, and short-period perturbations are then computed, with the expressions kept in closed form in both inclination and eccentricity of the satellite. Alternative expressions for short-period perturbations of high satellites are also given, assuming small values of the eccentricity. The Moon's position is specified by the inclination, node, argument of perigee, true (or mean) longitude, and its radius vector from the center of the Earth. We can then apply the results to numerical integration by using coordinates of the Moon from ephemeris tapes or to analytical representation by using results from lunar theory, with the Moon's motion represented by a precessing and rotating elliptical orbit.  相似文献   

20.
C.D. Murray 《Icarus》1982,49(1):125-134
The mean orbit of the Quadrantid meteor stream has a high eccentricity and inclination with an aphelion close to the orbit of Jupiter. The nodal regression rate, a quantity which has been well determined from observations, cannot be calculated with sufficient accuracy using standard low-order expansions of the disturbing function. By using a high-order expansion of the disturbing function we show how the behavior of the longitude of ascending node of the Quadrantid stream is a result of both secular and resonant effects. Our analysis illustrates how the proximity of the stream's orbit to the 2: 1 commensurability with Jupiter dominates the short-term variations in orbital elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号