首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
植被发育斜坡非饱和带土体中共同存在基质孔隙和大孔隙。为研究强降雨条件下植被发育斜坡非饱和带土体中水流路径分布模式及水流运动过程。在云南螳螂川流域的马卡山开展碘-淀粉显色示踪试验,基于顺坡方向的垂直染色剖面,采用经典K均值聚类算法和一般统计法研究水流路径分布特征。结果表明:1.水流路径分布是非均匀的,顺坡方向的异质性比垂直方向显著,湿润前锋面不是平面,降雨入渗不是活塞式,Darcy定律和Richards方程等均匀多孔介质水流理论不能完整地描述强降雨条件下植被发育斜坡非饱和带土体的水流运动过程;2.随着非饱和带土体深度增加,水流从基质流渐变到优先流与基质流的过渡流,深部土体以优先流为主;3.应该从三维流场方面对植被发育斜坡非饱和带土体中的水流运动过程进行精细描述。  相似文献   

2.
为了全面得到植被发育斜坡非饱和带土体中优先域结构类型,以2个试验区5个玄武岩斜坡为研究对象,采用染色示踪试验揭示优先域的存在形式及其影响因素,并采用双环入渗试验对不同深度非饱和带土体渗透特征进行测定,揭示优先域对水分入渗的贡献。研究表明:植被发育斜坡非饱和带土体中优先域结构类型除了传统的植物根系腐烂后残留的通道、动物通道、土体干缩裂隙以外,还存在有根系-土体以及砾石-土体接触带空隙以及气候冻融交替产生的裂隙,其中植被根系对大孔隙的影响占主导地位;试验区斜坡非饱和带土体的饱和渗透速度随深度增加有降低的趋势,土体饱和渗透速度最大值高达513.6 mm/h(表层);最小值13.33 mm/h,受广泛分布的优先域影响下形成的斜坡饱和带高渗透盖层对降水入渗的贡献是巨大的。  相似文献   

3.
植被发育斜坡土体大孔隙结构多尺度特征   总被引:1,自引:0,他引:1  
植被发育斜坡土体中普遍存在大孔隙,在强降雨过程中大孔隙产生的优先流加快降雨入渗,影响斜坡稳定。大孔隙结构影响优先流过程和优先流的水动力特性。为探明植被发育斜坡土体大孔隙结构的多尺度特征,本文在分析土体大孔隙研究进展的基础上,提出适用于研究植被发育斜坡土体大孔隙的试验方法。以云南省段家营、头寨、象冲、东月各、白泥山和贵州八渡滑坡的植被发育斜坡土体为研究对象,采用挖掘法、染色示踪法、CT扫描法、SEM法定性和定量分析植被发育斜坡土体大孔隙的多尺度几何形态和分布特征。研究表明:挖掘法、染色示踪法、CT扫描法、内窥镜检查和SEM法适用于分析植被发育斜坡土体的大孔隙结构;植被发育斜坡土体的大孔隙有腐烂根系通道、根-土间隙、动物通道、团聚体间大孔隙、土-石间隙、干缩裂隙和成因不明大孔隙,其中前四种是主要类型;各种大孔隙相互交织组成大孔隙网络系统;受到植物物种、树龄、动物物种、土体生态系统和立地条件的影响,不同类型大孔隙的多尺度几何形态和分布特征不同。将先进技术手段与染色剂溶液降雨模拟示踪试验结合起来,研究大尺度的大孔隙三维几何形态和分布特征是未来的主要工作。  相似文献   

4.
降雨过程中森林土壤大孔隙内优先流的发生,是森林植被调蓄径流和保持水土的主要方式。利用染色示踪法,对三峡库区宜昌大老岭-邓村地区不同垂直带内森林土壤大孔隙特征进行了实验研究。结果表明,山地植被-土壤类型的梯度变化使不同垂直带内土壤大孔隙数量差异显著,在土壤垂直剖面内呈现不同分布模式。亚高山阔叶林覆盖的山地棕壤下,土壤剖面染色面积比达62.3%,染色区域主要集中在根系发达的腐殖质层,染料下渗深度较浅。低山针叶林黄壤剖面染色比例低于亚高山阔叶林棕壤,但染料下渗深度较深可达69.5 cm,腐殖质层、淋溶淀积层和母质层间染色比例无显著差异。中山灌丛幼林黄棕壤剖面染色比例和染料下渗深度较小,腐殖质层染色比例显著高于淋溶淀积层,母质层几乎无染色现象。与森林土壤相比,低山弃耕坡地的染料下渗深度和染色面积比显著减小,染色区域集中在耕作表层。植物根孔、母质裂隙、土壤发育程度和土地耕作是造成山地不同垂直带间土壤大孔隙结构差异的主要因素。  相似文献   

5.
植被发育斜坡非饱和带垂直深度50 cm范围内根系密布,与根系相关的大孔隙很大程度上降低了土体密实程度,而垂直深度50 cm范围内根系稀疏,土体较密实,孔隙比较小。基质吸力受土体孔隙分布影响显著。对昆明呈贡县某植被发育玄武岩斜坡垂直深度10~20 cm和60~80 cm处取原状样(编号为XA和XB)进行了基质吸力测试,结果表明相同含水率下基质吸力XA小于XB。对头寨沟滑坡左翼某植被发育玄武岩斜坡垂直深度10~20 cm和60~80 cm处取原状样(编号为TA和TB)也进行了基质吸力测试,结果表明相同含水率下基质吸力TATB。对研究区土体有机质含量测试发现,TA、TB分别为14.89%、3.28%,而XA、XB分别为1.05%、0.39%。土壤有机质自身结构疏松多孔,并且会增大土壤比表面积和毛管孔隙度,改善颗粒级配和土体结构,使土壤吸附作用增强,利于土壤水分的保持,进而影响到土体土-水特征曲线。  相似文献   

6.
植被发育斜坡土体大孔隙分布特征的染色示踪法研究   总被引:1,自引:0,他引:1  
植被发育斜坡土体中广泛存在由各种大孔隙组成的大孔隙网络系统,其分布特征影响斜坡水文行为和孔隙水压力场,对斜坡稳定性有重要影响。运用亚甲基蓝溶液分别在木本植被群落斜坡和草本植被群落斜坡土体进行染色示踪渗透试验。通过对垂直剖面大孔隙分布模式的分析和对整个试验区大孔隙的深度分布的统计分析,研究大孔隙分布的非均匀特征。研究结果表明:1.大孔隙在垂直方向和横坡方向上的分布都表现出非均匀性,顺坡方向表现出明显的变异性;2.大孔隙分布表现出显著的各向异性特征,横坡方向的非均匀性比顺坡方向的非均匀性显著;3.草本植被群落斜坡土体大孔隙分布的非均匀性和变异性比木本植被群落斜坡显著;4.在100 cm×100cm的尺度下研究大孔隙分布特征是合理的。  相似文献   

7.
基于土柱CT扫描数据,运用Volview软件重构土体三维图及根系分布图,精确了解土体根系分布情况;应用Navier-Stokes方程计算根土间隙物理概念模型,分析横向间隙流速分布情况;采用格子Boltzmann方法,并结合Matlab程序,实现渗流场细观模拟。为研究根土间隙在土体降雨入渗过程中的作用,综合以上多种方法,深入并全面分析根土间隙在植被发育斜坡降雨入渗过程中的作用。结果表明,(1)CT扫描技术结合Volview软件能够进行土柱三维重建,从而获取根系在土体分布实际情况,为研究根土间隙导流奠定基础;(2)横向根土间隙流速分布情况,中心线位置流速最大,为平均速度的1.5倍;(3)格子Boltzmann方法作为一种基于流体离散粒子的计算方法,能够结合编程软件进行土体渗流细观模拟;(4)随着深度的增加,竖向根土间隙渗流速度逐渐降低,其渗流作用主要依赖于一些连通性好的间隙通道,且流速在30 cm左右深度降低为零。以上各分析手段可有效评估根土间隙对植被发育斜坡在降雨入渗过程中的贡献,并深入分析植被发育斜坡根土间隙降雨入渗机理。  相似文献   

8.
水分或溶液在土体中的迁移具有空间和时间上的异质性。以植被发育斜坡云南昭通头寨沟和昆明呈贡段家营为研究试验区,分别运用亚甲基蓝和罗丹明B溶液进行了多次染色示踪渗透试验,发现根-土间隙的导流现象十分明显,其导流作用很可能已经超过了传统的三类土体大孔隙。然而,国内外研究者对根-土间隙方面的研究还比较欠缺。为此,对根-土间隙宽度为0.5~3.0 mm,步长为0.5 mm流道内单相流体摩擦阻力系数和入渗速度进行了理论计算,并讨论了在同一流道和不同间隙流道内影响水分下渗速度的因素,结果表明:根-土间隙的大小对根-土间隙通道内流体的流动特性有着重要影响,随着间隙的减小摩擦阻力系数也相应减小;间隙对流动阻力系数的影响还依赖于Re的大小,其影响随Re的减小而减小。在昭通头寨植被发育斜坡土体中,根-土间隙宽度主要集中在0.5~1.0 mm,间隙内水分下渗的速度分布在区间0.014~0.203 mm/s;相同面积上,头寨试验区渗透速率是呈贡段家营试验区的26.28倍。由于根-土间隙的存在,大大地促进了土体水分的快速下渗,对滑坡孕育的贡献是显著的。  相似文献   

9.
在植被发育程度较高的云南昭通头寨试验区和呈贡段家营试验区,使用亚甲基蓝和罗丹明B溶液多次进行染色示踪渗透试验,发现根-土间隙的导流现象十分明显,其导流作用很可能已经超过了传统的三类土体大孔隙。对不同尺寸根-土间隙流道内水分入渗速度模型进行推导与理论计算,并将其与实测实值进行比较分析,最后讨论了头寨试验区和呈贡段家营试验区斜坡土体中根-土间隙在降雨入渗过程中导流量所占比例。结果表明:昭通头寨和呈贡段家营试验区斜坡土体中根-土间隙的尺寸主要集中在0.5~1.0 mm,多数间隙尺寸为0.5 mm左右,根-土间隙流道内水分下渗速度主要分布在区间0.027~0.203 mm/s和0.014~0.102 mm/s,两试验区土体中根-土间隙的导流量分别占总入渗量的72%~82%和54%~70%,相同面积上,头寨试验区土体中根-土间隙的导流量是呈贡段家营试验1.67倍,根-土间隙对降雨入渗的贡献是显著的。  相似文献   

10.
植被发育斜坡非饱和带大孔隙   总被引:4,自引:0,他引:4  
在气候温湿的滑坡灾害易发区,根系通道、动物通道、干裂缝、管道及团聚体间的结构性孔隙等大孔隙普遍存在于斜坡非饱和带中.采用微观观察、化学分析和现场试验方法并结合相关学科的研究成果,分析大孔隙界定、大孔隙类型和主控因素、大孔隙三维空间结构及大孔隙时效稳定.不同测量方法的差异和大孔隙密度时空变异性是目前大孔隙定义缺乏统一性的原因.大孔隙尺寸不能作为唯一标准界定大孔隙,必须考虑其三维几何形态.多因素控制大孔隙的成因和类型,其中根系通道、裂缝和结构性孔隙对优先流有显著贡献.需从三维几何学和拓扑学方面进一步研究大孔隙三维结构.枯枝落叶层是大孔隙抵御环境因素扰动的重要屏障,但大孔隙域与周围基质域水量交换对大孔隙时效稳定是不利的.深入研究以上问题对植被发育斜坡优先流模型的改进和发展是重要的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号