首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The H2O and H2 solubilities in an albite melt at 1200° C and 2 kbar over the entire range of gas phase composition, from pure hydrogen to pure water were studied in gas-media pressure vessels. The water solubility initially increases with increasing hydrogen content until a maximum of 9.19 wt% H2O atXH 2 v =0.1 is reached, withXH 2 v >0.1 the water solubility decreases. The hydrogen solubility curve has a maximum atXH 2 v =0.42 where the concentration reaches 0.206 wt% H2O. Over the entire compositional range1H NMR (nuclear magnetic resonance) spectra show distinct absorption lines due to protons bound to OH groups and to isolated firmly bound water molecules. In NMR and Raman spectra there were no bands attributable to the H–H vibrations of molecular hydrogen. The X-ray photo-electronic spectra of hydrogen-bearing glasses show the Si2p (99 eV) band which corresponds to the zero-valency silicon. The formation of OH groups and molecular water during interaction between hydrogen-bearing fluids and melts under reducing conditions has a qualitative effect, the same as for water dissolution. Another point of interest is that hydrogen-bearing melts undergo more depolymerization than do hydrous melts.  相似文献   

2.
The data obtained on the sodic part of the SiO2-Al2O3-Na2O-K2O system with F at 800°C and 1 kbar provide the basis for constructing a phase diagram showing the region of an aluminosilicate melt. In this system, oxide and fluoride phases are identified that control the stability field of the melt and the solubility of F. Liquid immiscibility was detected in aluminous nepheline-and quartz-normative Li-bearing compositions (the latter compositions are characterized by a wider immiscibility field). Solubility of F was determined in an aluminosilicate melt saturated with respect to F, i.e., coexisting with phases rich in this element. The F concentrations in the glasses range from 2 to 20 wt %. The quartz-normative glasses are poorer in F (no more than 5 wt % F) than the nepheline-normative glasses (which contain mostly 5–10 wt % F). The maximum F concentrations (> 10 wt %) in the phase diagram lie on both sides of the albite composition point in the region of ultragpaitic nepheline-normative melts and in the region of normal syenite melts. Changes in the phase relations when Na is substituted for K were determined in the quartz-normative silicate melt.  相似文献   

3.
Quaternary volcanism in the Mt. Shasta region has produced primitive magmas [Mg/(Mg+Fe*)>0.7, MgO>8 wt% and Ni>150 ppm] ranging in composition from high-alumina basalt to andesite and these record variable extents ofmelting in their mantle source. Trace and major element chemical variations, petrologic evidence and the results of phase equilibrium studies are consistent with variations in H2O content in the mantle source as the primary control on the differences in extent of melting. High-SiO2, high-MgO (SiO2=52% and MgO=11 wt%) basaltic andesites resemble hydrous melts (H2O=3 to 5 wt%) in equilibrium with a depleted harzburgite residue. These magmas represent depletion of the mantle source by 20 to 30 wt% melting. High-SiO2, high-MgO (SiO2=58% and MgO=9 wt%) andesites are produced by higher degrees of melting and contain evidence for higher H2O contents (H2O=6 wt%). High-alumina basalts (SiO2=48.5% and Al2O3=17 wt%) represent nearly anhydrous low degree partial melts (from 6 to 10% depletion) of a mantle source that has been only slightly enriched by a fluid component derived from the subducted slab. The temperatures and pressures of last equilibration with upper mantle are 1200°C and 1300°C for the basaltic andesite and basaltic magmas, respectively. A model is developed that satisfies the petrologic temperature constraints and involves magma generation whereby a heterogeneous distribution of H2O in the mantle results in the production of a spectrum of mantle melts ranging from wet (calc-alkaline) to dry (tholeiitic).  相似文献   

4.
Solubility curves of water-hydrogen fluid were studied using a high-pressure gas apparatus at a pressure of 200 MPa under variable fluid composition in haplogranite (Ab 39 Or 32 Qtz 29, 950°C), Na-disilicate (Na2Si2O5, 950°C), and albite melts (1200°C). The mole fraction of hydrogen in experiments was controlled directly by Ar-H2 mixtures using a specially designed cell with a Shaw membrane. $ X_{H_2 }^{Ar - H_2 } $ X_{H_2 }^{Ar - H_2 } ranged from 0 to 1. In some experiments with haplogranite and Na-disilicate melts under oxidizing conditions, in order to increase the accuracy of experimental parameters, the fugacities of oxygen and hydrogen were controlled using the double-capsule technique and the solid-phase buffer mixtures Ni-NiO (NNO) and Co-CoO (CCO). The addition of H2 to the H2O-saturated systems ($ X_{H_2 }^{H_2 O - H_2 } $ X_{H_2 }^{H_2 O - H_2 } ≥ 0.012) results in the appearance of a distinct maximum on the solubility curves at $ X_{H_2 }^{H_2 O - H_2 } $ X_{H_2 }^{H_2 O - H_2 } = 0.05–0.07 (H2 mole fractions were calculated for real H2O-H2 mixtures of real gases), and the maximum content of H2O-H2 fluid increases relative to the H2O-saturated melts by 1.51 wt % for haplogranite melt at $ X_{H_2 } $ X_{H_2 } = 0.063, 2.68 wt % for albite melt at $ X_{H_2 } $ X_{H_2 } = 0.066, and 3.54 wt % for Na-disilicate melt at $ X_{H_2 } $ X_{H_2 } = 0.067. A further increase in H2 content in the gas mixture decreases the solubility of H2O-H2 fluid in the melts, and under pure H2 pressure, the contents of fluid components are 0.08 wt % in haplogranite melt and 0.06 wt % in albite melt. The 1H NMR study of aluminosilicate and Na-silicate glasses obtained under the pressure of H2O and H2O-H2 fluids suggests different mechanisms of the dissolution of H2O and H2O-H2 fluids in magmatic melts. In addition to the spectra of dissolved water fluid, the spectra of quenched glasses synthesized under H2O-H2 fluid pressure exhibited a narrow line of molecular hydrogen with a width at half height of 1.8–2.0 kHz at $ X_{H_2 } $ X_{H_2 } ≥ 0.653 for albite and $ X_{H_2 } $ X_{H_2 } ≥ 0.063 for Na-disilicate and two lines at $ X_{H_2 } $ X_{H_2 } ≥ 0.063 for the haplogranite composition.  相似文献   

5.
This study presents a new experimental approach for determining H2O solubility in basaltic melt at upper mantle conditions. Traditional solubility experiments are limited to pressures of ~600 MPa or less because it is difficult to reliably quench silicate melts containing greater than ~10 wt% dissolved H2O. To overcome this limitation, our approach relies on the use of secondary ion mass spectrometry to measure the concentration of H dissolved in olivine and on using the measured H in olivine as a proxy for the concentration of H2O in the co-existing basaltic melt. The solubility of H2O in the melt is determined by performing a series of experiments at a single pressure and temperature with increasing amounts of liquid H2O added to each charge. The point at which the concentration of H in the olivine first becomes independent of the amount of initial H2O content of the charge (added + adsorbed H2O) indicates its solubility in the melt. Experiments were conducted by packing basalt powder into a capsule fabricated from San Carlos olivine, which was then pressure-sealed inside a Ni outer capsule. Our experimental results indicate that at 1000 MPa and 1200 °C, the solubility of H2O in basaltic melt is 20.6 ± 0.9 wt% (2 × standard deviation). This concentration is considerably higher than predicted by most solubility models but defines a linear relationship between H2O fugacity and the square of molar H2O solubility when combined with solubility data from lower pressure experiments. Further, our solubility determination agrees with melting point depression determined experimentally by Grove et al. (2006) for the H2O-saturated peridotite solidus at 1000 MPa. Melting point depression calculations were used to estimate H2O solubility in basalt along the experimentally determined H2O-saturated peridotite solidus. The results suggest that a linear relationship between H2O fugacity and the square of molar solubility exists up to ~1300 MPa, where there is an inflection point and solubility begins to increase less strongly with increasing H2O fugacity.  相似文献   

6.
Melt inclusions in kimberlitic and metamorphic diamonds worldwide range in composition from potassic aluminosilicate to alkali-rich carbonatitic and their low-temperature derivative, a saline high-density fluid (HDF). The discovery of CO2 inclusions in diamonds containing eclogitic minerals are also essential. These melts and HDFs may be responsible for diamond formation and metasomatic alteration of mantle rocks since the late Archean to Phanerozoic. Although a genetic link between these melts and fluids was suggested, their origin is still highly uncertain. Here we present experimental results on melting phase relations in a carbonated pelite at 6 GPa and 900–1500 °C. We found that just below solidus K2O enters potassium feldspar or K2TiSi3O9 wadeite coexisting with clinopyroxene, garnet, kyanite, coesite, and dolomite. The potassium phases react with dolomite to produce garnet, kyanite, coesite, and potassic dolomitic melt, 40(K0.90Na0.10)2CO3·60Ca0.55Mg0.24Fe0.21CO3 + 1.9 mol% SiO2 + 0.7 mol% TiO2 + 1.4 mol% Al2O3 at the solidus established near 1000 °C. Molecular CO2 liberates at 1100 °C. Potassic aluminosilicate melt appears in addition to carbonatite melt at 1200 °C. This melt contains (mol/wt%): SiO2 = 57.0/52.4, TiO2 = 1.8/2.3, Al2O3 = 8.5/13.0, FeO = 1.4/1.6, MgO = 1.9/1.2, CaO = 3.8/3.2, Na2O = 3.2/3.0, K2O = 10.5/15.2, CO2 = 12.0/8.0, while carbonatite melt can be approximated as 24(K0.81Na0.19)2CO3·76Ca0.59Mg0.21Fe0.20CO3 + 3.0 mol% SiO2 + 1.6 mol% TiO2 + 1.4 mol% Al2O3. Both melts remain stable to at least 1500 °C coexisting with CO2 fluid and residual eclogite assemblage consisting of K-rich omphacite (0.4–1.5 wt% K2O), almandine-pyrope-grossular garnet, kyanite, and coesite. The obtained immiscible alkali‑carbonatitic and potassic aluminosilicate melts resemble compositions of melt inclusions in diamonds worldwide. Thus, these melts entrapped by diamonds could be derived by partial melting of the carbonated material of the continental crust subducted down to 180–200 km depths. Given the high solubility of chlorides and water in both carbonate and aluminosilicate melts inferred in previous experiments, the saline end-member, brine, could evolve from potassic carbonatitic and/or silicic melts by fractionation of Ca-Mg carbonates/eclogitic minerals and accumulation of alkalis, chlorine and water in the residual low-temperature supercritical fluid. Direct extraction from the hydrated marine sediments under conditions of cold subduction would be another possibility for the brine formation.  相似文献   

7.
Experimental data indicate that high F concentrations in leucocratic aluminosilicate melts (of granite and nepheline syenite composition) bring about the crystallization of F-rich minerals (topaz, villiaumite, and cryolite) on the liquidus. The crystallization of the minerals is controlled by the silicity, agpaitic coefficient, and proportions of alkalis in the system SiO2-Al2O3-Na2O-K2O-F-H2O. Our earlier experimental data on this system are compared with petrographic and petrochemical data on granites and nepheline syenites containing accessory topaz, cryolite, and villiaumite. The composition of topaz- and cryolite-bearing rocks is proved to correspond to the experimentally established equilibrium fields of F-rich aluminosilicate melt with these minerals. It is proved that the high-F minerals can crystallize from melt. The partial substitution of K and Na for Li modifies phase relations in the system, first of all, significantly expands the equilibrium field of aluminosilicate melt and alkaline aluminofluoride melts. The two melts are proved to be immiscible within broad compositional ranges in the SiO2-Al2O3-Na2O-Li2O-F-H2O system at 800–650°C and 1 kbar. Experimental data indicate that fluoride brine can coexist with aluminosilicate melts in nature. This finds support data on melt inclusions in granites and alkaline rocks whose contents of major components, water and fluorine are close to those in the experimental glasses. Our data lend support to the hypothesis that large cryolite bodies at the Ivigtut, Pitinga, Ulog-Tanzek, and other deposits were formed by fluoride salt melts that separated from F-rich aluminosilicate magmas late in the course of their differentiation. It is experimentally established that fluoride salt melts are able to concentrate valuable trace elements, such as Li, W, Nb, Hf, Sc, U, Th, and REE, which suggests that such melts can play an important role in the origin of rare-metal deposits genetically related to rocks that crystallize from magmas rich in F.  相似文献   

8.
Viscosity experiments were conducted with two flux-rich pegmatitic melts PEG0 and PEG2. The Li2O, F, B2O3 and P2O5 contents of these melts were 1.04, 4.06, 2.30 and 1.68 and 1.68, 5.46, 2.75 and 2.46 wt%, respectively. The water contents varied from dry to 9.04 wt% H2O. The viscosity was determined in internally heated gas pressure vessels using the falling sphere method in the temperature range 873–1,373 K at 200 and 320 MPa pressure. At 1,073 K, the viscosity of water-rich (~9 wt% H2O) melts is in the range of 3–60 Pa s, depending on the melt composition. Extrapolations to lower temperature assuming an Arrhenian behavior indicate that highly fluxed pegmatite melts may reach viscosities of ~30 Pa s at 773 K. However, this value is a minimum estimation considering the strongly non-Arrhenian behavior of hydrous silicate melts. The experimentally determined melt viscosities are lower than the prediction of current models taking compositional parameters into account. Thus, these models need to be improved to predict accurately the viscosity of flux-rich water bearing melts. The data also indicate that Li influences significantly the melt viscosity. Decreasing the molar Al/(Na + K + Li) ratio results in a strong viscosity decrease, and highly fluxed melts with low Al/(Na + K + Li) ratios (~0.8) have a rheological behavior which is very close to that of supercritical fluids.  相似文献   

9.
The influence of water on melting of mantle peridotite   总被引:47,自引:8,他引:39  
This experimental study examines the effects of variable concentrations of dissolved H2O on the compositions of silicate melts and their coexisting mineral assemblage of olivine + orthopyroxene ± clinopyroxene ± spinel ± garnet. Experiments were performed at pressures of 1.2 to 2.0 GPa and temperatures of 1100 to 1345 °C, with up to ∼12 wt% H2O dissolved in the liquid. The effects of increasing the concentration of dissolved H2O on the major element compositions of melts in equilibrium with a spinel lherzolite mineral assemblage are to decrease the concentrations of SiO2, FeO, MgO, and CaO. The concentration of Al2O3 is unaffected. The lower SiO2 contents of the hydrous melts result from an increase in the activity coefficient for SiO2 with increasing dissolved H2O. The lower concentrations of FeO and MgO result from the lower temperatures at which H2O-bearing melts coexist with mantle minerals as compared to anhydrous melts. These compositional changes produce an elevated SiO2/(MgO + FeO) ratio in hydrous peridotite partial melts, making them relatively SiO2 rich when compared to anhydrous melts on a volatile-free basis. Hydrous peridotite melting reactions are affected primarily by the lowered mantle solidus. Temperature-induced compositional variations in coexisting pyroxenes lower the proportion of clinopyroxene entering the melt relative to orthopyroxene. Isobaric batch melting calculations indicate that fluid-undersaturated peridotite melting is characterized by significantly lower melt productivity than anhydrous peridotite melting, and that the peridotite melting process in subduction zones is strongly influenced by the composition of the H2O-rich component introduced into the mantle wedge from the subducted slab. Received: 7 April 1997 / Accepted: 9 January 1998  相似文献   

10.
The solubility of H2O–CO2–Cl-containing fluids of various concentrations (0, 3, 10, and 23 wt % of HCl and from 0 to ~8–15 wt % of CO2) in dacite, phonolite, and rhyolite melts at 1000°C and 200 MPa was studied in experiments. It was shown that the Cl concentration in the melt increased substantially from rhyolite to phonolite and dacite (up to 0.25, 0.85, and 1.2 wt %, respectively). The introduction of CO2 into the system resulted in an increase in the Cl content in the melt composition by 20–25%. One may suppose that Cl reactivity in a fluid increases in the presence of CO2 to cause growth of the Cl content in the melt. The introduction of CO2 into the system considerably affects the content of H2O in aluminosilicate melts as well. Thus, the addition of CO2 decreases the H2O content in the melt by ~0.5–1.0 wt %. The decrease in the H2O content in an aluminosilicate melt is probably caused by fluid dilution with CO2 resulting in a decrease in the H2O mole fraction and fugacity in the fluid.  相似文献   

11.
We have compiled water solubility data for a wide range of natural and synthetic aluminosilicate melts in a search for correlations between melt composition and solubility. The published data reveal some interesting systematics. For example, molar water solubility increases with decreasing silica content in binary and pseudobinary silicates, and much higher solubilities are associated with alkali systems compared to alkaline earth silicate melts. Water solubility increases regularly with decreasing silica content along the silica-nepheline join. From the limited data available for potassium and calcium aluminosilicate melts, these systems appear to behave differently to sodium aluminosilicates. The compiled data are not nearly extensive enough to begin to understand the effects of melt composition on solubility. We suggest that many more systematic studies for a wide range of aluminosilicate melts will be necessary before we can systematize and understand the compositional dependence of water solubility. We have also examined results of experiments designed to probe the details of the water dissolution mechanism, and discuss the present state of interpretation of these data. We conclude that although considerable progress has been made, the water dissolution process is still not well understood at the molecular level, and remains an important research problem.  相似文献   

12.
An experimental study of bromine behaviour in water-saturated silicic melts   总被引:1,自引:0,他引:1  
To assess the effect of the melt composition on bromine concentrations in magmas, we have investigated bromide solubility for water-saturated, iron-free silicic melts with variable Na+K/Al and Si/Al molar ratios (albite, haplogranite, rhyolite, and pantellerite). The experiments were performed in rapid quench cold-seal autoclaves over a range of pressure (1, 1.5, and 2 kbar) and temperature (900, 1000, and 1080 °C) with run durations from 5 to 7 days. A series of natural volcanic glasses and melt inclusions hosted in magmatic minerals were analysed together with the synthetic glasses by PIXE (proton-induced X-ray emission). The Br concentrations range from 5360 to 7850 ppm for albite, from 2800 to 3900 ppm for haplogranite, from 4300 to 5900 ppm for rhyolite, and from 9745 to 11,250 ppm for pantellerite. Br concentrations are negatively correlated with pressure in H2O-saturated silicic melts and vary with (Na+K)/Al molar ratio with a minimum value at the ratio close to unity. Br behaves similarly to chlorine for all of these melt compositions. The bromide solubility is similar in albitic and rhyolitic melts, which implies that Df/m is nearly the same for both compositions and is applicable for natural rhyolites as suggested in our previous study (Bureau et al., 2000). This means that the volcanic Br contribution to the atmosphere may be significant. In natural obsidian samples and MI hosted in quartz, olivine, and leucite, the Br concentration varies from < 3 to 28 ppm, with the highest concentrations in pantelleritic melts. We attribute the low Br concentrations of natural melts to a low initial abundance of this halogen in the Earth mantle. However, because Br behaves as an incompatible element before water exsolution, our results imply that magmas could contain much more dissolved Br before eruption and water degassing than the few ppm usually measured in volcanic rocks. Br behaviour during magma crystallisation is controlled by its partitioning into the H2O-rich fluid phase when this occurs. In addition, its potential high solubility in silicate melts makes it a very sensitive chemical tracer of magma contamination by seawater and Br-rich material. This infers that the investigation of Br behaviour in subduction-zone samples may help for a better understanding of volatiles cycling between the Earth reservoirs.  相似文献   

13.
Electrical conductivity of the following molten silicate systems (in mol%): 60SiO2-40Na2O; 65SiO2-35Na2O; 75SiO2-25Na2O; 78SiO2-22Na2O; 72SiO2-24Na2O-4CaO; 66SiO2-19Na2O-15H2O; and an anhydrous and hydrous (4 wt% H2O) Mt. Erebus lava, have been measured as a function of temperature (to 1000°C) and pressure (to 1.3 kbar). The anhydrous soda-rich melts have a positive pressure coefficient of conductivity to ~200 bars and beyond this pressure the pressure coefficient is small and negative. Addition of water lowers the conductivity and gives rise to a negative pressure coefficient at the highest temperatures. The conductivity of hydrous Mt. Erebus lava passed through a maximum with increasing temperature at constant pressure. These phenomena are interpreted in terms of explanations of similar phenomena found in molten salt and aqueous electrolyte solutions.  相似文献   

14.
Phase relations were investigated in the model water-saturated system Si-Al-Na-Li-F-O at high fluorine contents, a temperature of 800°C, and a pressure of 1 kbar. The obtained aluminosilicate melts are widely variable from quartz- to nepheline-normative compositions with agpaitic indexes both higher and lower than one. Various fluoride, aluminofluoride, and oxide phases were observed in the equilibrium assemblage depending on the melt composition: quartz and cryolite associate with the silica richest aluminosilicate melts, topaz and corundum coexist with peraluminous melts, and villiaumite was observed in highly peralkaline melts. Extensive immiscibility between aluminosilicate and aluminofluoride melts was observed in the system. Aluminofluoride melt coexists with quartz- and nepheline-normative aluminosilicate melts with agpaitic indexes (K a) of 0.7–1.4. The composition of aluminosilicate melt in equilibrium with aluminofluoride melt ranges from 33 to 70 wt % SiO2, from 12 to 24 wt % Al2O3, and from 5 to 16 wt % alkalis. The aluminofluoride melt is variable in composition, its Al/Na ratio ranges from 20/80 to 40/60 depending on the composition of the equilibrium aluminosilicate melt. The experimental aluminosilicate melts equilibrated with cryolite, topaz, and aluminofluoride melt coincide in major component proportions with the bulk compositions of cryolite- and topaz-bearing granites and melt inclusions in minerals.  相似文献   

15.
The effect of water on heat capacity has been determined for four series of hydrated synthetic aluminosilicate glasses and supercooled liquids close to albite, phonolite, trachyte, and leucogranite compositions. Heat capacities were measured at atmospheric pressure by differential scanning calorimetry for water contents between 0 and 4.9 wt % from 300 K to about 100 K above the glass transition temperature (Tg). The partial molar heat capacity of water in polymerized aluminosilicate glasses, which can be considered as independent of composition, is (J/mol K). In liquids containing at least 1 wt % H2O, the partial molar heat capacity of water is about 85 J/mol K. From speciation data, the effects of water as hydroxyl groups and as molecular water have tentatively been estimated, with partial molar heat capacities of 153 ± 18 and 41 ± 14 J/mol K, respectively. In all cases, water strongly increases the configurational heat capacity at Tg and exerts a marked depressing effect on Tg, in close agreement with the results of viscosity experiments on the same series of glasses. Consistent with the Adam and Gibbs theory of relaxation processes, the departure of the viscosity of hydrous melts from Arrhenian variations correlates with the magnitude of configurational heat capacities.  相似文献   

16.
The diffusion of water in natural obsidian and model dacitic melts (Ab90Di8Wo2, mol %) has been studied at water vapor pressure up to 170 MPa, temperatures of 1200°C, H2O contents in melts up to ~6 wt % using a high gas pressure apparatus equipped with a unique internal device. The experiments were carried out by a new low-gradient technique with application of diffusion hydration of a melt from fluid phase. The water solubility in the melts and its concentration along $C_{H_2 O} $ diffusion profiles were determined using IR microspectrometry by application of the modified Bouguer-Beer-Lambert equation. A structural-chemical model was proposed to calculate and predict the concentration dependence of molar absorption coefficients of the hydroxyl groups (OH?) and water molecules (H2O) in acid polymerized glasses (quenched melts) in the obsidian-dacite series. The water diffusion coefficients $D_{H_2 O} $ were obtained by the mathematical analysis of concentration profiles and the analytical solution of the second Fick diffusion law using the Boltzman-Matano method. It was shown experimentally that $D_{H_2 O} $ exponentially increases with a growth of water concentration in the obsidian and dacitic melts within the entire range of diffusion profiles. Based on the established quantitative correlation between $D_{H_2 O} $ and viscosity of such melts, a new method was developed to predict and calculate the concentration, temperature, and pressure dependences of $D_{H_2 O} $ in acid magmatic melts (obsidian, rhyolite, albite, granite, dacite) at crustal T, P parameters and water concentrations up to 6 wt %.  相似文献   

17.
The water solubility in haplogranitic melts (normative composition Ab39Or32Qz29) coexisting with H2O-H2 fluids at 800 and 950 °C and 1, 2 and 3 kbar vapour pressure has been determined using IR spectroscopy. The experiments were performed in internally heated pressure vessels and the hydrogen fugacity (f H2) was controlled using the double capsule technique and oxygen buffer assemblages (WM and IW). Due to the limited lifetimes of these oxygen buffers the water solubility was determined from diffusion profiles (concentration-distance profiles) measured with IR spectroscopy in the quenched glasses. The reliability of the experimental strategy was demonstrated by comparing the results of short- and long-duration experiments performed with pure H2O fluids. The water solubility in Ab39Or32Qz29 melts equilibrated with H2O-H2 fluids decreases progressively with decreasing f H2O, as f H2 (or X H2) increases in the fluid phase. The effect of H2 on the evolution of the water solubility is similar to that of CO2 or another volatile with a low solubility in the melt and can be calculated in a first approximation with the Burnham water solubility model. Recalculation of high temperature water speciation for AOQ melts coexisting with H2O-H2 fluids at 800 °C, 2 kbar suggests that the concentrations of molecular H2O are proportional to f H2O (calculated using available mixing models), indicating Henrian behaviour for the solubility of molecular H2O in haplogranitic melts. Received: 29 June 1998 / Accepted: 10 March 1999  相似文献   

18.
Peraluminous granitoid magmas are a characteristic product of ultrametamorphism leading to anatexis of aluminous metasedimentary rocks in the continental crust. The mechanisms and characteristic length-scales over which these magmas can be mobilized depend strongly on their melt fraction, because of their high viscosities. Thus, it is of fundamental importance to understand the controls exerted by pressure, temperature and bulk composition of the source material on melt productivity. We have studied experimentally the vapour-absent melting behaviour of a natural metapelitic rock and our results differ greatly from those of previous experimental and theoretical investigations of melt productivity from metamorphic rocks. Under H2O-undersaturated conditions, bulk composition of the source material is the overriding factor controlling melt fraction at temperatures on the order of 850–900° C. Granitoid melts formed in this temperature interval by the peritectic dehydration-melting reaction: $$\begin{gathered} Biotite + plagioclase + aluminosilicate + quartz \hfill \\ = melt + garnet \hfill \\ \end{gathered} $$ have a restricted compositional range. As a consequence, melt fractions will be maximized from protoliths whose modes coincide with the stoichiometry of the melting reaction. This “optimum mode” (approximately 38% biotite, 32% quartz, 22% plagioclase and 8% aluminosilicate) reflects the fact that generation of low-temperature granitoid liquids requires both fusible quartzo-feldspathic components and H2O (from hydrous minerals). Metapelitic rocks rich in mica and aluminosilicate and poor in plagioclase contain an excess of refractory material (Al2O3, FeO, MgO) with low solubility in low-temperature silicic melts, and will therefore be poor magma sources. Melt fraction varies inversely with pressure in the range 7–13 kbar, but the effect is not strong: the decrease (at constant temperature) over this pressure range is of at most 15 vol% (absolute). The liquids produced in our experiments are silicarich (68–73 wt% SiO2), strongly peraluminous (2–5 wt% normative corundum) and very felsic (MgO+FeO* +TiO2 less than 3 wt%, even at temperatures above 1000° C). The last observation suggests that peraluminous granitoids with more than 10% mafic minerals (biotite, cordierite, garnet) contain some entrained restite. Furthermore, because liquids are also remarkably constant in composition, we believe that restite separation is more important than fractional crystallization in controlling the variability within and among peraluminous granitoids. We present liquidus phase diagrams that allow us to follow the phase relationships of melting of silica-and alumina-saturated rocks at pressures corresponding to the mid- to deep-continental crust. Garnet, aluminosilicate, quartz and ilmenite are the predominant restitic phases at temperatures of about 900° C, but Ti-rich biotite or calcic plagioclase can also be present, depending on the bulk composition of the protolith. At temperatures above 950–1050° C (depending on the pressure) the restitic assemblage is: hercynitic spinel+ilmenite+quartz±aluminosilicate. Our results therefore support the concept that aluminous granulites (garnet-spinel-plagioclase-aluminosilicate-quartz) can be the refractory residuum of anatectic events.  相似文献   

19.
The speciation of water in silicate melts   总被引:1,自引:0,他引:1  
Previous models of water solubility in silicate melts generally assume essentially complete reaction of water molecules to hydroxyl groups. In this paper a new model is proposed that is based on the hypothesis that the observed concentrations of molecular water and hydroxyl groups in hydrous silicate glasses reflect those of the melts from which they were quenched. The new model relates the proportions of molecular water and hydroxyl groups in melts via the following reaction describing the homogeneous equilibrium between melt species: H2Omolecular (melt) + oxygen (melt) = 2OH (melt). An equilibrium constant has been formulated for this reaction and species are assumed to mix ideally. Given an equilibrium constant for this reaction of 0.1–0.3, the proposed model can account for variations in the concentrations of molecular water and hydroxyl groups in melts as functions of the total dissolved water content that are similar to those observed in glasses. The solubility of molecular water in melt is described by the following reaction: H2O (vapor) = H2Omolecular (melt).These reactions describing the homogeneous and heterogeneous equilibria of hydrous silicate melts can account for the following observations: the linearity between fH2O and the square of the mole fraction of dissolved water at low total water contents and deviations from linearity at high total water contents; the difference between the partial molar volume of water in melts at low total water contents and at high total water contents; the similarity between water contents of vapor-saturated melts of significantly different compositions at high pressures versus the dependence on melt composition of water solubility in silicate melts at low pressures; and the variations of viscosity, electrical conductivity, the diffusivity of “water,” the diffusivity of cesium, and phase relationships with the total dissolved water contents of melts.This model is thus consistent with available observations on hydrous melt systems and available data on the species concentrations of hydrous glasses and is easily tested, since measurements of the concentrations of molecular water and hydroxyl groups in silicate glasses quenched from melts equilibrated over a range of conditions and total dissolved water contents are readily obtainable.  相似文献   

20.
To interpret the degassing of F-bearing felsic magmas, the solubilities of H2O, NaCl, and KCl in topaz rhyolite liquids have been investigated experimentally at 2000, 500, and ≈1 bar and 700° to 975 °C. Chloride solubility in these liquids increases with decreasing H2O activity, increasing pressure, increasing F content of the liquid from 0.2 to 1.2 wt% F, and increasing the molar ratio of ((Al + Na + Ca + Mg)/Si). Small quantities of Cl exert a strong influence on the exsolution of magmatic volatile phases (MVPs) from F-bearing topaz rhyolite melts at shallow crustal pressures. Water- and chloride-bearing volatile phases, such as vapor, brine, or fluid, exsolve from F-enriched silicate liquids containing as little as 1 wt% H2O and 0.2 to 0.6 wt% Cl at 2000 bar compared with 5 to 6 wt% H2O required for volatile phase exsolution in chloride-free liquids. The maximum solubility of Cl in H2O-poor silicate liquids at 500 and 2000 bar is not related to the maximum solubility of H2O in chloride-poor liquids by simple linear and negative relationships; there are strong positive deviations from ideality in the activities of each volatile in both the silicate liquid and the MVP(s). Plots of H2O versus Cl in rhyolite liquids, for experiments conducted at 500 bar and 910°–930 °C, show a distinct 90° break-in-slope pattern that is indicative of coexisting vapor and brine under closed-system conditions. The presence of two MVPs buffers the H2O and Cl concentrations of the silicate liquids. Comparison of these experimentally-determined volatile solubilities with the pre-eruptive H2O and Cl concentrations of five North American topaz and tin rhyolite melts, determined from melt inclusion compositions, provides evidence for the exsolution of MVPs from felsic magmas. One of these, the Cerro el Lobo magma, appears to have exsolved alkali chloride-bearing vapor plus brine or a single supercritical fluid phase prior to entrapment of the melt inclusions and prior to eruption. Received: 6 November 1995 / Accepted: 29 January 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号