首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Variations in the cosmic-ray vector anisotropy observed on Earth are closely connected with the state of the near-Earth interplanetary medium. Hourly characteristics of vector anisotropy for the period 1957–2013, which were obtained by the global survey method from the data of the worldwide network of neutron monitors, make it possible to study the relationship between the cosmic-ray anisotropy and solar wind parameters. In the present work, we have studied the connection between the equatorial component of anisotropy of cosmic rays with a rigidity of 10 GV and the following parameters: velocity and density of the solar wind; density of the interplanetary magnetic field; and cosmic-ray density variations, in which the spatial gradient of cosmic rays in the interplanetary medium is manifested. The characteristics of cosmic-ray anisotropy at various combinations of the interplanetary medium parameters are compared. The possibility of diagnosing the solar wind state from data on the cosmic-ray anisotropy is discussed.  相似文献   

2.
利用第23太阳活动周中WIND和ACE资料,统计分析行星际扰动对不同水平地磁活动的影响,研究磁暴强度与不同行星际参数之间的相关性,结果发现:①从长期来看,地磁活动指数Dst与太阳风速度的相关性最好,相关性在太阳活动谷年时最高;②多磁暴时序叠加结果证实了导致小、中、强磁暴开始的经验行星际南向磁场条件,磁暴过程中行星际磁场...  相似文献   

3.
日冕物质抛射(Coronal Mass Ejection,简称CME)和共转相互作用区(Corotating Interaction Region,简称CIR)是造成日地空间行星际扰动和地磁扰动的两个主要原因,提供了地球磁暴的主要驱动力,进而显著影响地球空间环境.为深入研究太阳风活动及受其主导影响的地磁活动的时间分布特征,本文对大量太阳风参数及地磁活动指数的数据进行了详细分析.首先,采用由NASA OMNIWeb提供的太阳风参数及地磁活动指数的公开数据,通过自主编写matlab程序对第23太阳活动周期(1996-01-01—2008-12-31)的数据包括行星际磁场Bz分量、太阳风速度、太阳风质子密度、太阳风动压等重要太阳风参数及Dst指数、AE指数、Kp指数等主要的地磁指数进行统计分析,建立了包括269个CME事件和456个CIR事件列表的数据库.采用事例分析法和时间序列叠加法分别对两类太阳活动的四个重要太阳风参数(IMF Bz、太阳风速度、太阳风质子密度、太阳风动压)和三个主要地磁指数(Dst、AE、Kp)进行统计分析,并研究了其统计特征.其次,根据Dst指数最小值确定了第23太阳活动周期内的355个孤立地磁暴事件,并以Dst指数最小值为标准将这些磁暴进一步分类为145个弱磁暴、123个中等磁暴、70个强磁暴、12个剧烈磁暴和5个巨大磁暴.最后,采用时间序列叠加法对不同强度磁暴的太阳风参数和地磁指数进行统计分析.统计分析表明,对于CME事件,Nsw/Pdyn(Nsw表示太阳风质子密度,Pdyn表示太阳风动压)线性拟合斜率一般为正;对于CIR事件,Nsw/Pdyn线性拟合斜率一般为负,这可作为辨别CME和CIR事件的一种有效方法.从平均意义上讲,相较于CIR事件,CME事件有更大的南向IMF Bz分量、太阳风动压Pdyn、AE指数、Kp指数以及更小的Dstmin.一般情况下,CME事件有更大的可能性驱动极强地磁暴.总体而言,对于不同强度的地磁暴,Dst指数的变化呈现出一定的相似性,但随着地磁暴强度的增强,Dst指数衰减的速度变快.CME和CIR事件以及其各自驱动的地磁暴事件有着很多不同,因此,需要将CME事件驱动的磁暴及CIR事件驱动的磁暴分开研究.建立CME、CIR事件及地磁暴的数据库以及获取的统计分析结果,将为深入研究地球磁层等离子体片、辐射带及环电流对太阳活动的响应特征提供有利的帮助.  相似文献   

4.
We address the geoeffectiveness of three interplanetary structures in the interplanetary space: magnetic clouds (MCs), interplanetary shocks (IPSs), and corotating interaction regions (CIRs). The geoeffectiveness is evaluated using the geomagnetic indices Kp, AE, and Dst. We find that MCs are more geoeffective than IPSs, or CIRs. The average values of magnetic indices are significantly enhanced during disturbed periods associated with MCs, IPSs and CIRs, compared to the whole interval. The highest effect is noted for MC disturbed periods.Results obtained for the three data sets are used to derive a theoretical (continuous) probability distribution function (PDF) by fitting the histograms representing the percentage of events against the intervals of magnetic index. PDFs allow estimation of the probability of a given level of geomagnetic activity to be reached after the detection, by in situ solar wind observations, of a given interplanetary structure approaching the Earth.  相似文献   

5.
根据Cluster卫星在中高度极尖区的观测数据,分析研究了两次连续磁暴期间极尖区场向电子事件的持续时间以及与Dst值和Dst时间变化率之间的关系.结果表明,磁暴期间场向电子事件的持续时间的范围为6~54 s,大多数场向事件的持续时间小于34 s;极尖区场向电子事件的最大密度和最大场向通量与Dst值没有明显的相关关系;而随着Dst变化率的增加,场向电子最大密度和最大通量也随之增加,场向电子最大密度与Dst变化率之间的相关系数为0.81,场向电子最大通量与Dst变化率之间的相关系数为0.56,下行电子最大通量与Dst变化率之间的相关系数为0.85.经讨论认为行星际磁场持续南向、太阳风速度和动压的急剧增加是引起场向电子通量增加的主要原因.  相似文献   

6.
The time variations in the CR geomagnetic cutoff rigidity and their relation to the interplanetary parameters and the Dst index during a strong magnetic storm of November 18–24, 2003, have been analyzed. The Tsyganenko (Ts03) model of a strongly disturbed magnetosphere [Tsyganenko, 2002a, 2002b; Tsyganenko et al., 2003] have been used to calculate effective geomagnetic thresholds with the help of the method for tracing CR particle trajectories in the magnetospheric magnetic field. The geomagnetic thresholds have been calculated using the method of global spectrographic survey (GSS), based on the data from the global network of CR stations, and the results have been compared with the effective geomagnetic cutoff rigidities. The daily anisotropy of effective geomagnetic thresholds during the Dst variation minimum have been estimated. The relation of the theoretical and experimental geomagnetic thresholds, obtained using the GSS method, to the interplanetary parameters and Dst variation is analyzed. The Dst variations, IMF B z , and solar wind density are most clearly defined in the geomagnetic thresholds during this storm. The correlation between B y and experimental geomagnetic thresholds is higher than such a correlation between this parameter and theoretical thresholds by a factor 2–3, which suggests that a real dawn-dusk asymmetry during this storm was stronger than such an asymmetry represented by the Ts03 model.  相似文献   

7.
The distinguished directions, dependent on the solar wind velocity and IMF line position, exist in the interplanetary space, which results in the nonuniform distribution of phases and the amplitude-phase interrelation of the first cosmic ray anisotropy harmonic. The characteristics of the first anisotropy harmonics, determined for each hour using the global survey method based on the worldwide neutron monitor network from 1957 to 2010, were used to study long-period variations in the cosmic ray anisotropy. The longitudinal distributions of the cosmic ray vector anisotropy and the interrelation between the anisotropy amplitude and phase have been obtained for each year in this time interval. The results evidently demonstrate the anisotropy variations caused by the solar magnetic and activity cycles. The anisotropy distributions at different solar wind velocities have also been studied. Periods with a specific cosmic ray anisotropy behavior are distinguished and discussed. The obtained cosmic ray anisotropy variations agree with the convection-diffusion anisotropy model.  相似文献   

8.
The sun was very active in the declining phase of solar cycle 23. Large sunspot active regions gave origin to multiple flare and coronal mass ejection (CME) activity in the interval 2003–2005. On November 2004, the active region AR 10696 was the origin of dozens of flares and many CMEs. Some events of this solar activity region resulted in two large geomagnetic storms, or superstorms (Dst??250 nT) on November 8, peak Dst=?373 nT, and on November 10, peak Dst=?289 nT. It is the purpose of this article to identify the interplanetary origins of these two superstorms. The southward-directed interplanetary magnetic fields (IMF Bs) that caused the two superstorms were related to a magnetic cloud (MC) field for the first superstorm, and a combination of sheath and MC fields for the second superstorm. However, this simple, classic picture is complicated by the presence of multiple shocks and waves. Six fast-forward shocks and, at least, two reverse waves were observed in the period of the two superstorms. A detailed analysis of these complex interplanetary features is performed in this work.  相似文献   

9.
An algorithm for retrieving the AL index dynamics from the parameters of solar-wind plasma and the interplanetary magnetic field (IMF) has been developed. Along with other geoeffective parameters of the solar wind, an integral parameter in the form of the cumulative sum Σ[N*V 2] is used to determine the process of substorm formation. The algorithm is incorporated into a framework developed to retrieve the AL index of an Elman-type artificial neural network (ANN) containing an additional layer of neurons that provides an “internal memory” of the prehistory of the dynamical process to be retrieved. The ANN is trained on data of 70 eight-hour-long time intervals, including the periods of isolated magnetospheric substorms. The efficiency of this approach is demonstrated by numerical neural-network experiments on retrieving the dynamics of the AL index from the of solar wind and IMF parameters during substorms.  相似文献   

10.
The solar wind velocity and polarity of the B x-component of the interplanetary magnetic field have been analyzed for the first eight months of 2005. The interplanetary magnetic field had a four-sector structure, which persisted during nine Carrington rotations. Three stable clusters of a high-speed solar wind stream and one cluster of a low-speed stream were observed during one solar rotation. These clusters were associated with the interplanetary magnetic field sectors. The predicted solar wind velocity was calculated since July 2005 one month ahead as an average over several preceding Carrington rotations. The polarity of the B x-component of the interplanetary magnetic field was predicted in a similar way based on the concept of the sector structure of the magnetic field and its relation to maxima of the solar wind velocity. The results indicate a satisfactory agreement of the forecast for two rotations ahead in July–August 2005 and pronounced violation of agreement for the next rotation due to a sudden reconfiguration of the solar corona and strong sporadic processes in September 2005.  相似文献   

11.
Data from the BMSW spectrometer, which measures the ion flux value and sometimes plasma parameters with a time resolution of 31 ms, allow the study of the parameters of turbulence of the solar wind and magnetosheath plasma on kinetic scales. In this work, the frequency spectra of the ion flux fluctuations before and after recording the interplanetary shock front in the Earth’s magnetosheath are compared based on these data. It is shown that, in contrast to the solar wind, where the exponential decay of the spectrum often occurs after the shock front on the kinetic scales, no such phenomenon is observed in the magnetosheath: the spectrum on these scales can be approximated by a power function in all the cases considered. In half of these cases, the spectrum slope on the kinetic scales does not change during the interplanetary shock propagation. The results indicate a weak impact of interplanetary shock waves on the parameters of the plasma turbulence. In addition, it is shown that an interplanetary shock does not change the level of intermittency of the ion flux in the magnetosheath at both low and high level before the front.  相似文献   

12.
The properties of turbulent fluctuations of the solar wind plasma near the interplanetary shock observed at September 12, 2014 by the BMSW instrument are considered. The spectra of the density fluctuations in the solar wind and their statistical characteristics up-and downstream of the shock front are analyzed. They are compared with each other and with characteristics corresponding to different turbulence models. It is shown that the spectral and statistical characteristics of the density fluctuations in the solar wind conserve their basic properties after the arrival of an interplanetary shock. Intermittency is observed both before and after the front, but its level increases on average in the second case. In both regions, the scaling of the structure functions of the density fluctuations in the solar wind differ from the scaling of the classical Kolmogorov model and can be described by the log-Poisson turbulence model. Parameterization of the scaling of the structure functions revealed the presence of filamentary structures in the solar wind plasma, which provide the density intermittency in the studied space regions.  相似文献   

13.
The solar wind velocity distribution in the heliosphere is best represented using a v-map, where velocity contours are plotted in heliographic latitude-longitude coordinates. It has already been established that low-speed regions of the solar wind on the source surface correspond to the maximum bright regions of the K-corona and the neutral line of the coronal magnetic field. In this analysis, v-maps on the source surface for Carrington rotations (CRs) 1787-1795, during 1987, have been prepared using the interplanetary scintillation measurements at Research Institute of Atmospherics (RIA), Nagoya Univ., Japan. These v-maps were then used to study the time evolution of the low-speed (\leq450 km s−1) belt of the solar wind and to deduce the distribution of solar wind velocity on the heliospheric current sheet. The low-speed belt of the solar wind on the source surface was found to change from one CR to the next, implying a time evolution. Instead of a slow and systematic evolution, the pattern of distribution of solar wind changed dramatically at one particular solar rotation (CR 1792) and the distributions for the succeeding rotations were similar to this pattern. The low-speed region, in most cases, was found to be close to the solar equator and almost parallel to it. However, during some solar rotations, they were found to be organised in certain longitudes, leaving regions with longitudinal width greater than 30 free of low-speed solar wind, i.e. these regions were occupied by solar wind with velocities greater than 450 km s−1. It is also noted from this study that the low-speed belt, in general, followed the neutral line of the coronal magnetic field, except in certain cases. The solar wind velocity on the heliospheric current sheet (HCS) varied in the range 300–585 km s−1 during the period of study, and the pattern of velocity distribution varied from rotation to rotation.  相似文献   

14.
This paper addresses observed variations in cosmic ray (CR) intensity, the interplanetary magnetic field (IMF), the solar wind (SW) turbulence energy spectrum, and the energy spectrum index of Forbush decreases in the 20th–23rd solar cycles. Unlike the previous three cycles, there are some distinctive features in the 23rd solar cycle. The entire cycle shows a considerable increase in the index of the SW turbulence energy spectrum inclination and an substantially harder energy spectrum of Forbush decreases. The anomalously high flux of high-energy CRs and the anomalously low level of the IMF strength were recorded at the end of this cycle. The conclusion has been made that such unusual CR behavior is associated with a decrease in the degree of scattering in the resonance interaction between CR fluxes and SW inhomogeneities with spatial scales of ∼1012 cm.  相似文献   

15.
For a comprehensive study of the Forbush effects and their relation to solar and geomagnetic activity, a database of transient phenomena in cosmic rays and the interplanetary medium has been created, which is continuously updated with data on new events. Based on these data, we study the dependence of the Forbush effects on various internal and external parameters, as well as select different groups of events. In this paper, we consider recurrent (caused by high-speed solar wind streams from coronal holes) and sporadic (associated with coronal mass ejections) events. We investigate groups of events with a sudden and gradual onset. We show that the resulting dependencies of the Forbush effects (on the parameters of interplanetary disturbances, geomagnetic activity indices, etc.) are substantially different for the above-mentioned groups. Most likely, these differences are caused by different sources of solar wind disturbances.  相似文献   

16.
Interplanetary transients with particular signatures different from the normal solar wind have been observed behind interplanetary shocks and also without shocks. In this paper we have selected four well-known transient interplanetary signatures, namely: magnetic clouds, helium enhancements and bidirectional electron and ion fluxes, found in the solar wind behind shocks, and undertaken a correlative study between them and the corresponding solar observations. We found that although commonly different signatures appear in a single interplanetary transient event, they are not necessarily simultaneous, that is, they may belong to different plasma regions within the ejecta, which suggests that they may be generated by complex processes involving the ejection of plasma from different solar regions. We also found that more than 90% of these signatures correspond to cases when an H flare and the eruption of a filament occurred near solar central meridian between 1 and 4 days before the observation of the disturbance at 1 AU, the highest association being with flares taking place between 2 and 3 days before. The majority of the H flares were also accompanied by soft X-ray events. We also studied the longitudinal distribution of the associated solar events and found that between 80% and 90% of the interplanetary ejecta were associated with solar events within a longitudinal band of ±30° from the solar central meridian. An east-west asymmetry in the associated solar events seems to exist for some of the signatures. We also look for coronal holes adjacent to the site of the explosive event and find that they were present almost in every case.  相似文献   

17.
时变行星际太阳风模拟及其结果评估   总被引:1,自引:0,他引:1       下载免费PDF全文
背景太阳风对于地球附近的空间环境有着重要的影响,三维磁流体力学太阳风模型是背景太阳风研究和预报的重要工具.通过太阳光球磁场数据驱动的边界条件,我们发展了一个时变的行星际三维磁流体力学太阳风模型.使用这个模型,我们模拟了2008年全年的行星际背景太阳风,分析了该年太阳风结构全球特征的演化和行星际局地观测与日冕结构间的联系.实现了一套太阳风连续参数和特征结构模拟质量的定量评估方法.对2008年模拟结果的评估表明,模型较好地重现了背景太阳风的大尺度特征.模拟与观测速度间的相关性系数达到了0.6以上,行星际磁场强度与观测吻合得较好,捕获了全部的行星际磁场极性反转和82.76%的流相互作用区,行星际磁场极性反转的误报率仅为6.67%,流相互作用区的误报率仅为11.11%,两种结构的到达时间误差在1天左右.同时,通过综合分析评估结果,我们明确了高速流结构、内边界磁场分布等模型在进一步改进中需要重点注意的问题.  相似文献   

18.
19.
行星际背景太阳风的三维MHD数值模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
杨子才  沈芳  杨易  冯学尚 《地球物理学报》2018,61(11):4337-4347
近地空间的太阳风参数预报具有重要的科学研究意义和实际应用价值,三维磁流体力学(MHD)数值模拟是太阳风参数预报的重要手段.本文建立了一套基于经验模型的三维MHD数值模型.模型的内边界设置在0.1天文单位(AU)处,在六片网格系统下利用TVD Lax-Friedrich格式求解理想MHD方程组,采用扩散法消除磁场的散度.模型以GONG的观测磁图作为输入数据,利用经验模型并结合卫星观测特征确定内边界条件.边界条件中保留了6个可调参数,以便适当调整参数使其方便适合模拟不同太阳活动期的太阳风.利用该模型分别模拟了2007年和2016年的背景太阳风,得到了太阳风速度、密度、温度和磁场强度,这些参数与ACE/WIND卫星观测符合较好.  相似文献   

20.
Characteristics of great geomagnetic storms during solar cycle 23 were statistically investigated. Firstly, we focused on the uniqueness of solar cycle 23 by analyzing both the great storm number and sunspot number from 1957 to 2008. It was found that the relationship between the sunspot number and great storm number weakened as the activity of the storms strengthened. There was no obvious relationship between the annual sunspot number and great storm number with Dstxi≤-300 nT. Secondly, we studied the relationship between the peak Dst and peak Bz in detail. It was found that the condition Bz≤-10 nT is not necessary for storms with Dst≤-100 nT, but seems necessary for storms with Dst≤-150 nT. The duration for Bz≤-10 nT has no direct relationship with the giant storm. The correlation coefficient between the Dst peak and Bz peak for the 89 storms studied is 0.81. After removing the effect of solar wind dynamic pressure on the Dst peak, we obtained a better correlation coefficient of 0.86. We also found the difference between the Dst peak and the corrected Dst peak was proportional to the Dst peak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号