首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 91 毫秒
1.
Short‐lived fallout isotopes, such as beryllium‐7 (7Be), are increasingly used as erosion and sediment tracers in watersheds. 7Be is produced in the atmosphere and delivered to the Earth's surface primarily in precipitation. However, relatively little has been published about the variation in 7Be wet deposition caused by storm type and vegetation cover. Our analysis of precipitation, throughfall, and sediments in two forested, headwater catchments in the mid‐Atlantic USA indicates significant variation in isotope deposition with storm type and storm height. Individual summer convective thunderstorms were associated with 7Be activity concentrations up to 5.0 Bq l?1 in precipitation and 4.7 Bq l?1 in throughfall, while single‐event wet depositional fluxes reached 168 Bq m?2 in precipitation and 103 Bq m?2 in throughfall. Storms originating from the continental USA were associated with lower 7Be activity concentrations and single‐event wet depositional fluxes for precipitation (0.7–1.2 Bq l?1 and 15.8–65.0 Bq m?2) and throughfall (0.1–0.3 Bq l?1 and 13.5–98.9 Bq m?2). Tropical systems had relatively low activity concentrations, 0.2–0.5 Bq l?1 in precipitation and 0.2–1.0 Bq l?1 in throughfall, but relatively high single‐event depositional fluxes due to large rainfall volumes, 32.8–67.6 Bq m?2 in precipitation and 25.7–134 Bq m?2 in throughfall. The largest sources of 7Be depositional variation were attributed to storm characteristics including precipitation amount and maximum storm height. 7Be activity associated with fluvial suspended sediments also exhibited the highest concentration and variability in summer (175–1450 Bq kg?1). We conclude the dominant source of variation on event‐level 7Be deposition is storm type. Our results illustrate the complex relationships between 7Be deposition in precipitation and throughfall and demonstrate event‐scale relationships between the 7Be in precipitation and on suspended sediment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The concentrations of7Be have been measured in Pacific and Atlantic ocean water for the past several years to determine the deposition velocity of aerosol particles on the ocean surface.7Be is produced at a relatively constant rate in the atmosphere by spallation reactions of cosmic rays with atmospheric nitrogen and oxygen. Immediately after its formation7Be becomes attached to aerosol particles, and therefore can serve as tracers of the subsequent behavior of these particles. Isopleths of7Be surface water concentrations,7Be inventory in the ocean, and deposition velocity have been prepared for the Pacific Ocean from 30°S to 60°N and for the Atlantic Ocean from 10°N to 55°N. The concentrations, inventories and deposition velocities tended to be higher in regions where precipitation was high, and generally increased with latitude. The average flux of7Be across the ocean surface was calculated to be 0.027 atoms cm?2 s?1 which is probably not significantly greater than the worldwide average7Be flux across land and ocean surfaces of 0.022 atoms cm?2 s?1 calculated by Lal and Peters. The average deposition velocity was calculated to be 0.80 cm s?1. This value may be 10–50% too low, since it was calculated using atmospheric7Be concentrations which were measured at continental stations. Measurements of atmospheric7Be concentrations at ocean stations suggest that the concentrations at the continental stations averaged 10–50% higher than the concentrations over the ocean.  相似文献   

3.
Cosmogenic7Be(t1/2 = 53.3days) has been used to estimate particle-mixing rates in the upper layers of lacustrine and near-shore marine sediments. Excess210Pb and/or239,240Pu have provided limits on rates of sediment accumulation in these environments and indices of the efficiency of the sediments as collectors of reactive nuclides over longer time scale.In sediment cores from Long Island Sound (marine) and Lake Whitney (fresh-water)7Be was measurable in the top 2–3 cm. Diffusion-analog particle-mixing coefficients calculated from these data are in the range of 10?7 cm2/s. For Long Island Sound the coefficients are lower by factors of 3–6 than those estimated from the depth distributions of excess234Th at the same stations [14]. For Lake Whitney the calculated mixing coefficient is an upper limit because of the possibility of a sampling artifact.Measurements of total (wet + dry) atmospheric deposition of7Be in New Haven give an average flux of 0.07 dpm/cm2 day during March-November, 1977; this is equivalent to a steady-state inventory of 5.4 dpm/cm2 in a perfect collector. Sediment cores from Long Island Sound contain about half this7Be inventory, consistent with either a mean residence time for7Be in the water column of about one half-life or with post-depositional loss of7Be from Long Island Sound sediments. The Lake Whitney cores contain about 5 dpm/cm2, much nearer the atmospheric delivery. A higher inventory of7Be in fresh-water, as compared to marine, sediments could be due either to a shorter mean residence time for7Be in fresh water or to lateral transport processes in the lake or its catchment. High inventories of excess210Pb and239,240Pu in Lake Whitney sediments demonstrate the importance of lateral transport on longer time scales at least.  相似文献   

4.
The long-time series of 7Be activity in surface air have been studied with the wavelet analysis technique in order to find coherence between 7Be activity, theoretical production in the troposphere and climatic indices. The 7Be activity were obtained from five different locations, Angra in the tropics in Brazil, Skåne in mid-latitudes in Southern Sweden, Kiruna in Polar region in Northern Sweden, Loviisa in Southern Finland and Rovaniemi in polar region in Northern Finland. The 7Be data from the Northern hemisphere sites where tested for coherence with theoretical production of the isotope in troposphere and with the North Atlantic Oscillation index. In the Southern hemisphere separate theoretical production was calculated in order to describe local production and Southern Annular Mode was used as the climatic index. Consistent and significant coherence were found with theoretical production at Skåne, Kiruna and Loviisa at time-scales of four years or longer. At Angra and Rovaniemi sites, no coherence was detected between 7Be theoretical tropospheric production and measured activity at ground level. The coherence between 7Be data from Skåne and Angra and climatic indices is insignificant while data from Northern and Eastern Scandinavia show clear coherence with climatic indices at time-scales of four years or longer. Additionally, significant coherence was found between the cosmic ray induced production and NAO at the time band of 8–12 years whereas the coherence between cosmic ray induced production and SAM was insignificant. This feature implies that the ground level 7Be activity contain mixed information on both production and transport. This conclusion means that further evaluation through models which enable accurate realistic models that will be investigated in future studies.  相似文献   

5.
Cosmogenic 7Be is a natural tracer of short‐term hydrological processes, but its distribution in upland fluvial environments over different temporal and spatial scales has not been well described. We measured 7Be in 450 sediment samples collected from perennial channels draining the middle of the Connecticut River Basin, an environment that is predominantly well‐sorted sand. By sampling tributaries that have natural and managed fluctuations in discharge, we find that the 7Be activity in thalweg sediments is not necessarily limited by the supply of new or fine‐grained sediment, but is controlled seasonally by atmospheric flux variations and the magnitude and frequency of bed mobilizing events. In late winter, 7Be concentrations in transitional bedload are lowest, typically 1 to 3 Bq kg?1 as 7Be is lost from watersheds via radioactive decay in the snowpack. In mid‐summer, however, 7Be concentrations are at least twice as high because of increased convective storm activity which delivers high 7Be fluxes directly to the fluvial system. A mixed layer of sediment at least 8 cm thick is maintained for months in channels during persistent low rainfall and flow conditions, indicating that stationary sediments can be recharged with 7Be. However, bed mobilizing rain on snowmelt events in late Spring can ‘reset’ 7Be amounts and concentrations in the channel as previously buried ‘old’ sediment with low 7Be is mixed into the thalweg. We conclude that given proper temporal and spatial sampling, 7Be is a valuable tracer of seasonal‐timescale mass transport and exchange in coarse‐grained fluvial systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A model of10Be deposition within the subarctic and arctic is developed based on the behavior of90Sr in the troposphere. Measured10Be fluxes, based on analyses of10Be in one year's snow fall (1979–1980) from the Dye-3 site in southwest Greenland and on published data, and predicted10Be fluxes, based on the10Be deposition model, agree. These results indicate that with regard to10Be, the troposphere north of 40°N to 45°N presently behaves as if it is well-mixed and that the average precipitation rate within that reservoir controls in large part the concentration of10Be in Greenland ice. Inversion of the Greenland ice core10Be concentration record with the aid of the model indicates: (1) that the average precipitation rate in the subarctic and arctic was lower than the present rate during the Maunder minimum of solar activity, and higher than the present rate during the Wolf and Sporer solar activity minimums; and (2) that during the Wisconsin-Holocene transition the average precipitation rate in the subarctic and arctic was about one third the present precipitation rate.  相似文献   

7.
Data on temporal variability in Mg isotope ratios of atmospheric deposition and runoff are critical for decreasing the uncertainty associated with construction of isotope mass balances in headwater catchments, and statistical evaluation of isotope differences among Mg pools and fluxes. Such evaluations, in turn, are needed to distinguish between biotic and abiotic contributions to Mg2+ in catchment runoff. We report the first annual time-series of δ26Mg values simultaneously determined for rainfall, canopy throughfall, soil water and runoff. The studied 55-ha catchment, situated in western Czech Republic, is underlain by Mg-rich amphibolite and covered by mature spruce stands. Between 1970 and 1996, the site received extremely high amounts of acid deposition and fly ash form nearby coal-burning power plants. The δ26Mg values of open-area precipitation (median of −0.79‰) at our study site were statistically indistinguishable from the δ26Mg values of throughfall (−0.73‰), but significantly different from the δ26Mg values of soil water (−0.55‰) and runoff (−0.55‰). The range of δ26Mg values during the observation period decreased in the order: open-area precipitation (0.57‰) > throughfall (0.27‰) > runoff (0.21‰) > soil water (0.16‰). The decreasing variability in δ26Mg values of Mg2+ from precipitation to soil water and runoff reflected an increasing homogenization of atmospheric Mg in the catchment and its mixing with geogenic Mg. In addition to atmospheric Mg, runoff also contained Mg mobilized from the three major solid Mg pools, bedrock (δ26Mg of −0.32‰), soil (−0.28‰), and vegetation (−0.31‰). The drought of summer 2019 did not affect the nearly constant δ26Mg value of runoff. Collectively, our data show that within-catchment processes buffer the Mg isotope variability of the atmospheric input.  相似文献   

8.
The increase of the nitrate concentration in surface waters used as water supply resources has been investigated with a view to the effects of agricultural activities and atmospheric precipitation. The nitrate concentration increased beyond the acceptable limit for infants after 1975, when due to the permanent augmentation of the synthetic fertilizer rates the organic humus quantities decreased to a minimum. The variability of nitrate concentrations in atmospheric precipitation is dependent on the magnitude of precipitation and the intensity of industry in the given region. At an average value of atmospheric precipitation the nitrogen value in agricultural regions varies within 6 to 12 kg · ha?1 · a?1, in regions with extended industries up to 24 kg · ha?1 · a?1.  相似文献   

9.
Detailed soil erosion studies bene?t from the ability to quantify the magnitude of erosion over time scales appropriate to the process. An inventory balance for 7Be was used to calculate sediment erosion in a 30·73 m2 plot during a series of runoff‐producing thunderstorms occurring over three days at the Deep Loess Research Station in Treynor, Iowa, USA. The inventory balance included determination of the pre‐ and post‐storm 7Be inventories in the soil, the atmospheric in?ux of 7Be during the event, and pro?les of the 7Be activity in the soil following the atmospheric deposition. The erosion calculated in the plot using the 7Be inventory balance was 0·058 g cm?2, which is 23 per cent of the annual average erosion determined using 137Cs inventories. The calculated erosion from the mass balance is similar to the 0·059 g cm?2 of erosion estimated from the amount of sediment collected at the outlet of the 6 ha ?eld during the study period and the delivery ratio (0·64). The inventory balance of 7Be provides a new means for evaluating soil erosion over the time period most relevant to quantifying the prediction of erosion from runoff. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Quantifying the relative proportions of soil losses due to interrill and rill erosion processes during erosion events is an important factor in predicting total soil losses and sediment transport and deposition. Beryllium‐7 (7Be) can provide a convenient way to trace sediment movement over short timescales providing information that can potentially be applied to longer‐term, larger‐scale erosion processes. We used simulated rainstorms to generate soil erosion from two experimental plots (5 m × 4 m; 25° slope) containing a bare, hand‐cultivated loessal soil, and measured 7Be activities to identify the erosion processes contributing to eroded material movement and/or deposition in a flat area at the foot of the slope. Based on the mass balance of 7Be detected in the eroded soil source and in the sediments, the proportions of material from interrill and rill erosion processes were estimated in the total soil losses, the deposited sediments in the flat area, and in the suspended sediments discharged from the plots. The proportion of interrill eroded material in the discharged sediment decreased over time as that of rill eroded material increased. The amount of deposited material was greatly affected by overland flow rates. The estimated amounts of rill eroded material calculated using 7Be activities were in good agreement with those based on physical measurements of total plot rill volumes. Although time lags of 45 and 11 minutes existed between detection of sediment being removed by rill erosion, based on 7Be activities, and observed rill initiation times, our results suggest that the use of 7Be tracer has the potential to accurately quantify the processes of erosion from bare, loessal cultivated slopes and of deposition in flatter, downslope areas that occur in single rainfall events. Such measurements could be applied to estimate longer‐term erosion occurring over larger areas possessing similar landforms. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
This study examined the weekly water vapour isotopic composition (δ18Ov) in Thailand. The water vapour was cryogenically collected from eight sites across the country. Two observational samples were collected over one 24-h period each week (a daytime and a night-time sample), from September 2013 to September 2014. The primary aim was to investigate the environmental factors influencing water vapour isotopes. The results revealed differences in water vapour isotopic values between day and night samples. Three periods of depleted δ18Ov were associated with large-scale convective systems in September, December, and May. The statistical relationship between the climate variables and water vapour isotopes indicated that the amount of precipitation and relative humidity were the primary controls on both diurnal and seasonal isotopic variability. The temperature did not affect the δ18Ov, mainly because the atmospheric processes are a function of vertical convection rather than temperature in tropical regions. The water vapour deuterium excess (d-excess) showed greater variability in 2013 than in 2014. The d-excess variation reflected the differences in convection occurring in the day and night. In addition, the vapour phase data were combined with the local meteoric water line to identify the local water vapour line and the interaction between the isotopic composition of water vapour and liquid water. The water vapour isotopic patterns paralleled the precipitation isotopes on rainy days because of equilibrium isotopic exchange. Water vapour and precipitation were isotopically similar under low humidity but showed greater differences from each other under wetter conditions. The study results provide insight into water vapour isotopic characteristics in tropical regions and constrain the role of large-scale atmospheric processes relative to isotopic variability of water vapour in Thailand and nearby countries.  相似文献   

12.
The10Be method of dating of marine sediment cores is applied to five North Pacific cores. Assuming a constant10Be precipitation rate and varying sedimentation rates with time during the past 2.5 m.y. dating confirms to that obtained from paleomagnetic stratigraphy. The10Be concentration variations with depth in the cores are primarily due to changes in sediment dilution and do not reflect cosmic ray intensity or global climate variations. The limits of10Be deposition rate variation in the investigated cores are less than ± 10% for periods of (2–7) × 105 years and less than ±30% for periods of 1 × 105 years. The data set gives a half-life of10Be is 1.50 × 106 years. The latitudinal effect of10Be concentrations and10Be/9Be ratios relates to a frequency of particulate matter occurrence (detrital and biological particles) in the oceans and to oceanic circulation.  相似文献   

13.
Terrestrial cosmogenic nuclides (TCN) have widely been used as proxies in determining denudation rates in catchments. Most studies were limited to samples from modern active streams, thus little is known about the magnitude and causes of TCN variability on millennial time scales. In this work we present a 6 kyrs long, high resolution record of 10Be concentrations (n = 18), which were measured in sediment cores from an alluvial fan delta at the outlet of the Fedoz Valley in the Swiss Alps. This record is paired with a 3‐year time series (n = 4) of 10Be measured in sediment from the active stream currently feeding this fan delta. The temporal trend in the 10Be concentrations after correction for postdepositional production of 10Be was found to be overall constant and in good agreement with the modern river 10Be concentration. The calculated mean catchment‐wide denudation rate amounts to 0.73 ± 0.18 mm yr?1. This fairly constant level of 10Be concentrations can be caused by a constant denudation rate over time within the catchment or alternatively by a buffered signal. In this contribution we suggest that the large alluvial floodplain in the Fedoz Valley may act as an efficient buffer on Holocene time scales in which sediments with different 10Be signatures are mixed. Therefore, presumable variations in the 10Be signals derived from changes in denudation under a fluctuating Holocene climate are only poorly transferred to the catchment outlet and not recorded in the 10Be record. However, despite the absence of high frequency signals, we propose that the buffered and averaged 10Be signal could be meaningfully and faithfully interpreted in terms of long‐term catchment‐averaged denudation rate. Our study suggests that alluvial buffers play an important role in regulating the 10Be signal exported by some alpine settings that needs to be taken into account and further investigated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
A simple model for reconstructing the paleomagnetic field intensity with 10Be production rate was used for the first time in Loess 10Be studies of Luochuan profile. Using the LGM (Last Glacial Maxmium) method, the climatic effects and geomagnetic modulation effects on loess 10Be was separated and in turn the 80 ka geomagnetic excursion sequence reconstructed, of which the globally remarkable geomagnetic excursion events such as the Laschamp (42 ka), Mono Lake (32 ka) during the Last Glacial period were revealed and the paleo-geomagnetic intensity curve from Loess 10Be over the past 80 ka was quantitatively reconstructed. The reconstructed paleo-intensity fits well with the paleo-intensity curves (SINT200 and NAPIS75), which indicates the significance of global criterion of the 10Be paleo-intensity curve and the future direction of loess 10Be tracing studies. Results show the irregular variability of the East Asian monsoon precipitation in Loess Plateau is the main cause that has resulted in the ambiguity of the geomagnetic modulation of the 10Be record in the loess, and the intrinsic source component of the loess 10Be and inherited fraction of magnetic susceptibility (SUS) are characterized by the “quasi-homogeneous distribution” manner. Supported by the Key Innovation Project of the Chinese Academy of Sciences (Grant No. KZCX2-YW-118), the National Natural Science Foundation of China (Grant Nos: 40531003, 40121303, 40523002) and State Key Laboratory of Loess and Quaternary Geology in the Institute of Earth Environment of Chinese Academy of Sciences (Grant No. SKLLQG0712)  相似文献   

15.
The vertical distributions of10Be and9Be at three locations in the Pacific (25°N, 170°E; 17°N, 118°W; 3°S, 117°W) are presented. The results show that both isotopes exhibit nutrient-like profiles. From the surface to the bottom, the increase for10Be is two- to threefold and that for9Be is about fivefold. While the inter-station variations in surface water concentrations may reach a factor of two, deep-water values tend to be much more uniform averaging about 2000 atoms/g for10Be and 30 pM for9Be. A similar situation applies to the10Be/9Be ratio; it varies approximately from 1 to 3 × 10−7 (atom/atom) at shallow depths but tends toward a value close to 1.1 × 10−7 in the deep ocean. The variation of10Be/9Be can be viewed as resulting from the fact that10Be in a given parcel of water consists of two components: recycled and primary. The recycled component is that part of10Be which has reached tracer equilibrium with9Be, as opposed to the primary component which, upon entering the sea from the atmosphere, has yet to equilibrate with9Be through particle cycling and mixing processes. It is estimated that 70% to nearly 100% of10Be at the three stations are being recycled, and the recycled beryllium bears an atomic ratio of10Be/9Be close to 1 × 10−7. The oceanic residence time of Be is of the order of 1000–4000 years, comparable to or slightly longer than the ocean mixing time.  相似文献   

16.
The Huancané II moraines deposited by the Quelccaya Ice Cap in southern Peru were selected by the CRONUS-Earth Project as a primary site for evaluating cosmogenic-nuclide scaling methods and for calibrating production rates. The CRONUS-Earth Project is an effort to improve the state of the art for applications of cosmogenic nuclides to earth-surface chronology and processes. The Huancané II moraines are situated in the southern Peruvian Andes at about 4850 m and ∼13.9°S, 70.9°W. They are favorable for cosmogenic-nuclide calibration because of their low-latitude and high-elevation setting, because their age is very well constrained to 12.3 ± 0.1 ka by 34 radiocarbon ages on peat bracketing the moraines, and because boulder coverage by snow or soil is thought to be very unlikely. However, boulder-surface erosion by granular disintegration is observed and a ∼4% correction was applied to measured concentrations to compensate. Samples from 10 boulders were analyzed for 10Be, 26Al, and 36Cl. Interlaboratory bias at the ∼5% level was the largest contributor to variability of the 10Be samples, which were prepared by three laboratories (the other two nuclides were only prepared by one laboratory). Other than this issue, variability for all three nuclides was very low, with standard deviations of the analyses only slightly larger than the analytical uncertainties. The site production rates (corrected for topographic shielding, erosion, and radionuclide decay) at the mean site elevation of 4857 m were 45.5 ± 1.6 atoms 10Be (g quartz)−1 yr−1, 303 ± 15 atoms 26Al (g quartz)−1 yr−1, and 1690 ± 100 atoms 36Cl (g K)−1 yr−1. The nuclide data from this site, along with data from other primary sites, were used to calibrate the production rates of these three nuclides using seven global scaling methods. The traditional Lal formulation and the new Lifton-Sato-Dunai calibrations yield average ages for the Huancané samples that are in excellent-to-good agreement with the radiocarbon age control (within 0.7% for 10Be and 36Cl and 6% for 26Al). However, all of the neutron-monitor-based methods yielded ages that were too young by about 20%. The nuclide production ratios at this site are 6.74 ± 0.34 for 26Al/10Be in quartz and 37.8 ± 2.3 (atoms 36Cl (g K)−1) (atom 10Be (g SiO2)−1)−1 for 36Cl/10Be, in sanidine and quartz, respectively.  相似文献   

17.
The radionuclides137Cs,210Pb and7Be have been examined in the alpine Rhoˆne watershed (Switzerland) during a period of two years in order to evaluate their usefulness as tracers of the removal and transport rate of top-soil particles and particle-reactive contaminants of atmospheric origin. The specific activities of the radionuclides in fluvial suspension show a distinct seasonal pattern which depends on the hydrologic regime of the stream and the sources of the suspended matter. Input-output budgets based on the atmospheric deposition and fluvial removal of three radionuclides in the alpine Rhoˆne watershed are used to estimate their erosional residence times. The simplest one box model yields mean residence times of about 800 and 1400 years for137Cs and210Pb, respectively. The removal rate of short-lived7Be suggests that a part of the watershed (0.6–2.3% of the total surface) is exposed to a rapid erosion, in which the mean residence time of the radionuclides is in the range of 1–220 days. This has little influence on the calculated residence time of137Cs but increases the estimated residence time of210Pb in soil to over 1800 years. The use of210Pb-7Be pair in fluvial output may be very helpful in the assessment of the impact of atmospheric pollutants on the water quality in rivers and lakes.  相似文献   

18.
We have examined the relationship between beryllium isotopes and the hydrological record of Laguna Potrok Aike, a maar lake in southern Argentina for the past 16,000 cal BP. Our study shows that sedimentary 10Be and 9Be records of Laguna Potrok Aike are associated with the hydrological balance, when compared to other proxies such as Ca, Ti and total inorganic carbon (TIC). During drier periods, the level of 9Be is decreased. 10Be follows this trend from 16,000 to 8000 cal BP, for younger samples, the concentration of 10Be increases at about 5000 cal BP and in recent times, but is otherwise relatively constant. At 13,000 cal BP total beryllium (9Be) was relatively low, but the 10Be/9Be ratio was the highest for the entire record studied. Our study shows that beryllium isotopes can be used for tracing climatic signals associated with lake level changes, i.e., dry or wet conditions at Laguna Potrok Aike.  相似文献   

19.
Zeyong Gao  Fujun Niu  Zhanju Lin 《水文研究》2020,34(26):5659-5673
Thermokarst lakes play a key role in the hydrological and biogeochemical cycles of permafrost regions. Current knowledge regarding the changes caused by permafrost degradation to the hydrochemistry of lakes in the Qinghai-Tibet Plateau (QTP) is limited. To address this gap, a systematic investigation of thermokarst lake water, suprapermafrost water, ground ice, and precipitation was conducted in the hinterland of the QTP. The thermokarst lake water in the QTP was identified to be of the Na-HCO3-Cl type. The mean concentrations of HCO3 and Na+ were 281.8 mg L−1 (146.0–546.2 mg L−1) and 73.3 mg L−1 (9.2–345.8 mg L−1), respectively. The concentrations of Li+, NH4+, K+, F, NO2, and NO3 were relatively low. Freeze-out fractionation concentrated the dissolved solids within the lake water during winter, which was deeply deepened on lake depth and lake ice thickness. Owing to solute enrichment, the ground ice was characterized by high salinity. Conversely, repeated replenishment via precipitation led to lower solute concentrations in the ground ice near the permafrost table compared to that within the permafrost. Although lower solute concentration existed in precipitation, the soil leaching and saline ground ice melting processes enhanced the solute load in suprapermafrost water, which is considered an important water and solute resource in thermokarst lakes. The influencing mechanism of permafrost degradation on thermokarst lake hydrochemistry is presumably linked to: (1) the liberation of soluble materials sequestered in ground ice; (2) the increase of solutes in suprapermafrost water and soil pore water; and (3) the changes in lake morphometry. These results have major implications on the understanding of the effects of ground ice melting on ecosystem functions, biogeochemical processes, and energy balance in a rapidly changing climate.  相似文献   

20.
《Continental Shelf Research》2007,27(10-11):1600-1615
Multiple box cores were collected on the continental shelf in the Mississippi Deltaic Region adjacent to Southwest Pass and analyzed for particle reactive radionuclides 234Th and 7Be to examine seasonal sediment dynamics associated with variations of river discharge and hydrodynamics. Three stations located along a line west of Southwest Pass were cored and reoccupied in October, November, and December of 2003 and March, April, and May of 2004. High-frequency sampling (∼monthly) comparable to the short half-life of the radiotracers (234Th t1/2=24.1 d; 7Be t1/2=53.3) enabled us to isolate the relative influence that various forcing agents (river discharge, waves, currents) had on sediment inventories of 7Be and 234Th. In addition, the primary source of 7Be (fluvial) differs from 234Th (marine), providing further insight into processes affecting sediment transport and supply. Monthly 7Be inventories showed a significant positive relationship to river discharge (P=0.03) proximal to Southwest Pass. Sites further from Southwest Pass exhibited little to no relationship between 7Be inventories and river flow. At these sites, monthly 7Be inventories demonstrated a significant positive relationship with average wave orbital velocity (P<0.01). During our sampling period, the transport of 7Be-rich sediments to sites located on the middle to outer shelf were dependent on sea conditions not river discharge. Relatively high wave orbital velocities potentially allow particles to remain in suspension longer and travel further distances before initial deposition. In addition, 234Th inventories showed evidence of sediment focusing during periods of high wave orbital velocities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号