首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gold deposits in the Syama and Tabakoroni goldfields in southern Mali occur along a north-northeast trending mineralised litho-structural corridor that trends for approximately 40 km. The deposits are interpreted to have formed during a craton-wide metallogenic event during the Eburnean orogeny. In the Syama goldfield, gold mineralisation in 9 deposits is hosted in the hanging-wall of the Syama-Bananso Shear Zone in basalt, greywacke, argillite, lamprophyre, and black shale. Gold is currently mined primarily from the oxidised-weathered zone of the ore bodies. In the Syama deposit, mineralisation hosted in altered basalt is associated with an intense ankerite–quartz–pyrite stockwork vein systems, whereas disseminated style mineralisation is also present in greywackes. In contrast, the Tellem deposit is hosted in quartz–porphyry rocks.In the Tabakoroni goldfield, gold mineralisation is hosted in quartz veins in tertiary splay shears of the Syama-Bananso Shear Zone. The Tabakoroni orebody is associated with quartz, carbonate and graphite (stylolite) veins, with pyrite and lesser amounts of arsenopyrite. There are four main styles of gold mineralisation including silica-sulphide lodes in carbonaceous fault zones, stylolitic quartz reefs in fault zones, quartz–Fe–carbonate–sulphide lodes in mafic volcanics, and quartz–sulphide stockwork veins in silicified sediments and porphyry dykes. The several deposit styles in the goldfield thus present a number of potential exploration targets spatially associated with the regional Syama-Bananso Shear Zone and generally classified as orogenic shear-hosted gold deposits.  相似文献   

2.
The eastern Lachlan Orogen in southeastern Australia is noted for its major porphyry–epithermal–skarn copper–gold deposits of late Ordovician age. Whilst many small quartz vein-hosted or orogenic lode-type gold deposits are known in the region, the discovery of the Wyoming gold deposits has demonstrated the potential for significant lode-type mineralisation hosted within the same Ordovician volcanic stratigraphy. Outcrop in the Wyoming area is limited, with the Ordovician sequence largely obscured by clay-rich cover of probable Quaternary to Cretaceous age with depths up to 50 m. Regional aeromagnetic data define a north–south trending linear belt interpreted to represent the Ordovician andesitic volcanic rock sequence within probable Ordo-Silurian pelitic metasedimentary rocks. Drilling through the cover sequence in 2001 to follow up the trend of historically reported mineralisation discovered extensive alteration and gold mineralisation within an andesitic feldspar porphyry intrusion and adjacent volcaniclastic sandstones and siltstones. Subsequent detailed resource definition drilling has identified a substantial mineralised body associated with sericite–carbonate–albite–quartz–(±chlorite ± pyrite ± arsenopyrite) alteration. The Wyoming deposits appear to have formed as the result of a rheological contrast between the porphyry host and the surrounding volcaniclastic rocks, with the porphyry showing brittle fracture and the metasedimentary rocks ductile deformation. The mineralisation at Wyoming bears many petrological and structural similarities to orogenic lode-style gold deposits. Although the timing of alteration and mineralisation in the Wyoming deposits remain problematic, a relationship with possible early to middle Devonian deformation is considered likely.  相似文献   

3.
The Granny Smith gold deposits formed late in the structural history of the Yilgarn Block at a high crustal level in a largely brittle structural régime. Gold mineralisation is located along a N-S striking fault which wraps around the contact of a small granitoid intrusion. In different sections of the fault, mineralisation may be developed in the granitoid, in the adjacent sedimentary sequence and/or along the contact between them. In the granitoid, gold mineralisation is in conjugate networks of thin carbonate-quartz veins and their alteration halos. Small displacements along veins are common. In contrast, veins and faults in the sedimentary rocks are subparallel to bedding. Spatial variations in the conjugate vein orientations indicate that the local stress field was heterogeneous and controlled by the shape of the granitoid contact. The greatest variations in vein and implied stress orientations occur in zones where the contact is most irregular. These are also the areas of richest mineralisation. Fluid flow was thus focused in a regional-scale low mean-stress region created by the geometry of the granitoid intrusion. Its irregular contact caused deposit scale variations in fluid flow and resulted in heterogeneous gold grades along the contact zone.  相似文献   

4.
South Greenland has been the site of historic mining of cryolite, copper, graphite and gold, hosts mineral deposits with gold, uranium, zinc, niobium, tantalum, zirconium, hafnium, REE, iron, titanium, vanadium, fluorite and graphite, and has additional potential for lithium, beryllium, phosphorus, gallium and thorium. Data from stream sediment geochemical surveys document that South Greenland is enriched in a range of these elements relative to the rest of Greenland and to estimates of the upper crust composition. Distribution patterns for individual elements within south Greenland exhibit enriched regions that are spatially related to lithological units, crustal structure and known mineralisation.The Northern Domain of South Greenland includes the southernmost part of the orthogneiss-dominated North Atlantic craton. Orogenic gold mineralisation is hosted by quartz veins and hydrothermally altered rocks associated with shear zones intersecting the Mesoarchaean Tartoq Group of mafic metavolcanic rocks. Geochemical exploration indicates that additional potential for gold mineralisation exists within Palaeoproterozoic supracrustal rocks overlying the Archaean basement.Rocks formed during the Palaeoproterozoic Ketilidian orogeny occupy a major part of South Greenland and has been divided into two domains. The Central Domain is underlain by the Julianehåb igneous complex forming a 100 km wide ENE–WSW zone centrally across South Greenland. Intrusive and extrusive, mostly felsic magmatic rocks were emplaced in two main stages (1850–1830 and 1800–1780 Ma) in a continental arc setting. Positive anomalies in aeromagnetic data indicate that mafic plutons are common in the late igneous complex. Intra-arc mafic metavolcanic rocks contain syngenetic stratabound copper sulphide and epigenetic shear zone-hosted copper–silver–gold mineralisation at Kobberminebugt and Kangerluluk, whereas metasedimentary and metapyroclastic rocks contain stratabound uraninite mineralisation. Orthomagmatic iron–titanium–vanadium mineralisation is hosted by a gabbro. A potential for porphyry-type mineralisation related to the late intrusive stages of the Julianehåb igneous complex is suggested by showings with copper, molybdenum and gold together with stream sediment anomalies for these elements. Vein-type uranium mineralisation occurs in fault zones in the Julianehåb igneous complex related to Mesoproterozoic rifting.The Southern Domain contains an assemblage of Palaeoproterozoic metasedimentary and metavolcanic rocks that underwent moderate to strong deformation, peak HT–LP metamorphism and partial melting with subsequent retrograde exhumation at 1790–1765 Ma. The supracrustal rocks contain syngenetic Au, As, Sb, U, and Zn mineralisation in volcanic or graphite- and sulphide-rich sedimentary environments; graphite was mined historically at two sites. Many stream sediment gold anomalies are located in a NE-trending belt along the boundary between the early Julianehåb complex and the supracrustal rocks to the south. They reflect a number of auriferous quartz vein occurrences, including the Nalunaq gold deposit, hosted in a system of shear zones and probably generated as orogenic gold during Ketilidian accretion. The 1755–1730 Ma, A-type Ilua plutonic suite is the latest magmatic event in the Ketilidian orogen.The 1300–1140 Ma Gardar period involved continental rifting, sedimentation and alkaline magmatism. Numerous dykes and 10 ring-shaped intrusion complexes were formed across South Greenland. An orthomagmatic iron–titanium–vanadium deposit is hosted by troctolitic gabbro. Residual magmas and fluids resulting from extreme magmatic differentiation, possibly combined with assimilation of older crust, created mineral deposits including cryolite that was mined at Ivigtut, large low-grade deposits of uranium–rare earth elements–zinc at Kvanefjeld and tantalum–niobium–rare earth element–zirconium at Kringlerne, in the Ilímaussaq complex, as well as tantalum–niobium–rare earth elements at Motzfeldt Sø in the Igaliko complex.The South Greenland crustal evolution records effects of mantle processes, such as lithospheric extension, subduction and underplating, which resulted in recurrent magma emplacement in tectonically active environments. As such, the geology of South Greenland reflects events and circumstances that are favourable to the generation and preservation of hydrothermal ore-forming fluid systems during the Ketilidian orogeny as well as to the development of extreme rock compositions within the Gardar alkaline igneous province.  相似文献   

5.
The Dorn gold deposit in northern Victoria Land, Antarctica is a fault related gold-only deposit and it represents the first described occurrence of gold mineralization in Paleozoic terranes of the Antarctic continent. The deposit is hosted in lower greenschist facies Middle Cambrian metavolcanic and metasedimentary rocks of the Bowers terrane. Gold-bearing veins are located in a brittle–ductile reverse high-strain zone, which was produced by transpressional deformation that overprints the structures of the Cambrian–Ordovician Ross Orogeny. The vein system is surrounded by a hydrothermal alteration zone that is as much as 300-m-wide, where the host rocks are partially to completely transformed into Fe–Mg carbonate-rich rocks with different degrees of replacement of the original mineralogy and texture.The type of host rock, the temperature estimates for mineralization from 290–320 °C, the quartz dominant vein system with sulfides and Fe-rich carbonates, and the controlling structures linked to a convergent margin tectonic setting together suggest that this mineralized vein system can be classified as an orogenic gold deposit. Close analogies are found with deposits of the Stawell zone in western Victoria, which is consistent with the correlation between units and hydrothermal events in northern Victoria Land and southeastern Australia.  相似文献   

6.
李华健  王庆飞  杨林  于华之  王璇 《岩石学报》2017,33(7):2189-2201
青藏高原碰撞造山背景下形成了雅鲁藏布江缝合带及哀牢山造山带两条造山型金矿带。雅鲁藏布江缝合带包含马攸木、念扎、邦布及折木朗金矿等;该矿带形成于拉萨地块及特提斯喜马拉雅地层序列地壳初始缩短加厚的背景(59~44Ma),与林子宗火山岩和高压变质岩同期形成。控矿构造主要以EW向展布。金以自然金形式赋存在石英硫化物脉及石英脉两侧以绿片岩相变质为主的千枚岩及板岩中。哀牢山造山带包含镇沅、金厂、大坪及长安金矿等,主要形成于35~26Ma,成矿背景为区域发生大规模走滑剪切,矿区内分布有成矿前期的煌斑岩及富碱斑岩。控矿构造主要以NW-SE向展布,围岩变质级低于雅鲁藏布江缝合带。C-S-H-O-Pb同位素变化较大,整体雅鲁藏布江缝合带及哀牢山造山带造山型金矿成矿流体主要来源于深部地幔流体、围岩地层的变质流体及岩浆流体,成矿围岩的差异性也会导致同位素的变化性。  相似文献   

7.
Porphyry copper-gold, skarn copper-gold, sediment-hosted (Carlin-style) gold, breccia pipe, low-sulphidation epithermal gold, pluton-related (mesothermal or orogenic) gold vein and volcanogenic massive sulphide deposits associated with alkaline rocks are commonly broadly similar to those hosted by their calc-alkaline counterparts. In contrast, porphyry molybdenum-gold deposits are confined to alkaline igneous centres. Alkaline suites are notably deficient in high-sulphidation epithermal gold deposits and even in the advanced argillic lithocaps which host them. This is surprising, given that the required oxidised sulphur species are seemingly more abundant than in calc-alkaline igneous centres. Highly efficient buffering of acidic fluid by metasomatised alkaline rocks may offer a viable explanation. All types of intrusion-related zinc deposits also appear to be poorly developed in alkaline provinces. The characteristics of several gold and copper deposits associated with alkaline rocks, including the giant Porgera, Cripple Creek, Ladolam, Olympic Dam and Phalaborwa examples, are judged to diverge appreciably from their most closely related deposit types, rendering them arguably unique. Most of these aberrant mineralisation styles may be due to variations in magmatic-fluid compositional and liberation characteristics consequent upon the extreme diversity of ore-related alkaline magmas. Most types of gold and copper deposits developed in calc-alkaline provinces also constitute exploration targets in and around alkaline igneous centres, although porphyry copper-gold and low-sulphidation epithermal gold deposits are considered to possess the greatest potential. Perhaps of even greater interest, however, is the possibility of encountering unconventional giant gold and copper deposits which lack closely analogous examples. If already-defined aberrant deposits are truly unique, then exploration designed specifically to detect additional examples is pointless. Furthermore, exploration for new unique deposits is difficult because their defining geological parameters are unknown. Alkaline rocks within or behind calc-alkaline arcs at convergent plate boundaries probably offer the greatest exploration potential, although anorogenic intracontinental extensional settings should not be ignored.  相似文献   

8.
Vein distributions in line samples from four epithermal Au–Ag deposits of the Hauraki Goldfield were logged and quantified by vein spacing, vein density, vein thickness and percentage of vein extension. One deposit is hosted in andesite lavas (Martha Hill), one in andesite lavas and dacite porphyry, dacitic tuffs and pyroclastic breccias (Golden Cross), and two in rhyolite lavas and rhyolitic tuffs with minor andesite lavas or andesite dikes (Ohui and Wharekirauponga). The vein systems in these deposits form fault-controlled arrays of extensional veins. Vein spacing distributions are non-fractal over two to three orders of magnitude (1 mm to 5 m), and therefore fractal dimension statistics are not applicable. The coefficient of variation (Cv) of vein spacing was used as a measure of the degree of vein clustering. Rock type has a marked influence on vein spacing distributions, with veining in rhyolite lava having lower average thickness and percentage extension, but a generally higher degree of vein clustering compared with veining in andesite lava in the same deposit. Vein spacing distributions in well-jointed lithologies, mainly andesite lava, have Cv values (0.8–1.2) that are indicative of anticlustered to weakly clustered patterns, particularly in the vein stockwork of the upper part of the Golden Cross deposit. These Cv values are consistent with field observations that joints are a major control on vein spacing. In the poorly jointed dacitic and rhyolitic rocks, the veins are weakly to strongly clustered as shown by higher Cv values (1.2–2.4), and are commonly associated with normal faults. Overall, andesite lava and dacite porphyry and pyroclastics host thicker and more persistent veins than rhyolite lava and tuff. These larger veins contain significant volumes of high-grade gold mineralisation. The higher chemical reactivity to hydrothermal fluids of andesite and dacite compared with rhyolite may have aided propagation and thickening of the veins in andesite-hosted deposits. Within an individual epithermal deposit, location close to thick veins, representing major fluid conduits, commonly overrides the effect of different lithologies. Sites that are deeper and located within or adjacent to major vein structures have higher average vein thickness, percentage extension and degree of vein clustering. Systematic collection and analysis of vein spacing, thickness and density data can be used to define trends that are useful in the exploration of gold-bearing epithermal vein deposits. Received: 25 August 1998 / Accepted: 23 December 1999  相似文献   

9.
The Walhalla-Woods Point Goldfield in southeast Australia is characterised by large gold deposits associated with a Late Devonian dyke swarm. The setting of this goldfield is unique because unlike the major gold deposits in Victoria, it occurs close to the eastern margin of the Western Lachlan Orogen, and highlights the disparities between the evolving phases of orogenic gold mineralisation in the Western Lachlan Orogen, and the contrasts between sediment hosted, dyke-associated and dyke-hosted gold mineralisation. This study integrates existing and new data from renewed mapping of the geology and geochemistry of three gold deposits near the township of Walhalla, in the historically important yet under-explored and under-researched Walhalla-Woods Point Goldfield. The ten highest yielding deposits within the goldfield are either hosted within, or adjacent to, intrusions of the Woods Point Dyke Swarm. This is due to the greater chemical reactivity of the calc-alkaline dykes, and the greater rheological contrast between the dykes and surrounding low-grade metasedimentary units, which allowed for the formation of dyke-hosted quartz breccia veins that are consistently favourable sites for gold mineralisation in the Walhalla Goldfield. This is in contrast to historical production, which concentrated on visible gold within the shear zone-hosted laminated quartz veins. Gold and As assay results have highlighted the increased levels of invisible gold disseminated along dyke margins in proximity to shear zones and quartz reefs. The high-yielding gold deposits hosted wholly by the dyke intrusions of the Woods Point Dyke Swarm are orogenic gold deposits, as they are not associated with elevated levels of Bi, W, As, Mb, Te and Sb, typical of intrusion-related gold deposits.  相似文献   

10.
The Liziyuan gold deposit, situated on the south side of the Shangdan suture zone, West Qinling Orogen, occurs in metamorphic volcanic rocks(greenschist facies) of the early Paleozoic Liziyuan Group and in Indosinian Tianzishan monzogranite. Orebodies in the Liziyuan gold field are controlled by the ductile-brittle shear zone, and by thrusting nappe faults related to the Indosinian orogeny. In detail, this paper analyzed the geological characteristics of the Liziyuan gold field, and the Pb isotopes of the Lziyuan host rocks, granitoids(Tianzishan monzogranite and Jiancaowan syenite porphyry), sulfides, and auriferous quartz veins by multiple-collector inductively coupled plasma mass spectrometry(MC-ICPMS). In addition, previous data on the sulfur, hydrogen, and oxygen isotopes were employed to discuss the possible sources of the ore-forming fluids and materials, and to further understand the tectonic setting of the Liziyuan gold deposit. The sulfides and their host rocks(Lziyuan Group), Tianzishan monzogranite and Jiancaowan syenite porphyry, and auriferous quartz veins have similar Pb isotopic compositions.Zartman's plumbotectonic model diagram shows that most of the data for the deposit fall near the orogenic Pb evolutionary curve or within the area between the orogenic and mantle Pb evolutionary curves. In the△β-△γ diagram, which genetically classifies the lead isotopes, most of the data fall within the range of the subduction-zone lead mixed with upper crust and mantle. This indicates that a complex source of the ore lead formed in the orogenic environment. The δ~(34)S values of the sulfides range from 3.90 to 8.50‰(average6.80‰), with a pronounced mode at 5.00‰-8.00‰. These values are consistent with that of orogenic gold deposits worldwide, indicating that the sulfur sourced mainly from reduced metamorphic fluids. The isotopic hydrogen and oxygen compositions support a predominantly metamorphic origin of the oreforming fluids, with possible mixing of minor magmatic fluids, but the late stage was dominated by meteoric water. The characteristics of the Liziyuan gold deposit formed in the Indosinian orogenic environment of the Qinling Orogen are consistent with those of orogenic gold deposits found worldwide.  相似文献   

11.
Two major epigenetic gold-forming events are recorded in the world-class gold province of southwest Ghana. A pre-Tarkwaian event was the source of the world-class Tarkwa palaeoplacers whereas post-Birimian and Tarkwaian deformation, which was related to the Eburnean orogeny, gave rise to the world-class (e.g. Prestea) to giant (e.g. Obuasi) orogenic gold deposits which have made the region famous for more than 2,500 years. A maximum age of 2133±4 Ma for Tarkwaian sedimentation is provided by 71 of 111 concordant SHRIMP II U–Pb dates from detrital zircons in Tarkwaian clastic rocks from Damang and Bippo Bin, northeast of Tarkwa. The overall data distribution broadly overlaps the relatively poorly constrained ages of Birimian volcanism and associated Dixcove-type granitoid emplacement, indicating syntectonic development of the Tarkwaian sedimentary basin. These zircon ages argue against derivation of the palaeoplacer gold from an orogenic gold source related to the compressional phase of an orogeny significantly older than the Eburnean orogeny. Instead, they suggest that the gold source was either orogenic gold lodes related to an earlier compressional phase of a diachronous Eburnean orogeny or ca. 2200–2100 Ma intrusion-related gold lode. The CO2-rich fluid inclusions in associated vein-quartz pebbles are permissive of either source. At the Damang deposit, an epigenetic, orogenic lode-gold system clearly overprinted, and sulphidised low-grade palaeoplacer hematite–magnetite gold occurrences in the Banket Series conglomerate within the Tarkwaian sedimentary sequence. Gold mineralisation is demonstrably post-peak metamorphism, as gold-related alteration assemblages overprint metamorphic assemblages in host rocks. In alteration zones surrounding the dominant, subhorizontal auriferous quartz veins, there are rare occurrences of hydrothermal xenotime which give a SHRIMP U–Pb age of 2063±9 Ma for gold mineralisation. The similar structural timing of epigenetic gold mineralisation in Tarkwaian host rocks at Damang to that in mainly Birimian host rocks elsewhere in southwest Ghana, particularly at Obuasi, suggests that 2063±9 Ma is the best available age estimate for widespread orogenic gold mineralisation in the region. Argon–argon ages of 2029±4 and 2034±4 Ma for hydrothermal biotite from auriferous quartz veins appear to represent uplift and cooling of the region below about 300 °C, as estimates of the temperature of gold mineralisation are higher, at around 400 °C. If peak metamorphism, with temperatures of about 550 °C, is assumed to have occurred at about 2100 Ma, the biotite ages, in combination with the xenotime age, suggest a broadly constant uplift rate for the region of about 1 km per 10 million years from about 2100 to 2025 Ma.  相似文献   

12.
The Hillgrove gold–antimony deposit is hosted in late Palaeozoic, biotite-grade metasedimentary rocks and Permo-Carboniferous granitoid intrusions of the New England Orogen. Mineralisation occurred at a range of structural levels during rapid uplift in the orogen at 255–245 Ma. Hydrothermal fluids were controlled by extensional faults in a regional-scale sinistral strike-slip fault system. Principal faults in this system were developed in, and possibly evolved from, mylonite zones which were active during Late Permian tectonics. Earliest mineralisation formed scheelite-bearing quartz veins, and these were followed by auriferous arsenopyrite–pyrite–quartz–carbonate veins with minor base metal sulphides. This latter type was accompanied by sericitisation and carbonation of the host rock, with addition of sulphur, arsenic and gold, in zones up to 20 m from veins. Quartz–stibnite veins with electrum, gold, aurostibite, and arsenopyrite form a prominent and economically important hydrothermal type, with little wall-rock alteration but extensive hydrothermal breccia formation and local open-space filling textures. Below a mining depth of 300–500 m, this type passes over a short distance downwards into stibnite-poor gold-bearing veins. Late-stage carbonate–stibnite veins with gold and silver sulphosalts cut all earlier veins, and have open-space filling textures. Aspects of the Hillgrove deposit have similarities to many other orogenic gold deposits in the SW Pacific which have been formed at different structural levels. Hillgrove is distinctive in having evidence for mineralisation at this wide range of structural levels in the one deposit, formed progressively during syn-orogenic uplift. Editorial handling: N. White  相似文献   

13.
The Klondike Schist that forms the basement rocks for the famous Klondike placer goldfield was emplaced as km-scale thrust slices in Early Jurassic time, along with some thin (10 to 30 m-scale) slices of greenstone and ultramafic rocks. Permian metamorphic fabrics in the schists were deformed during thrust emplacement by structures formed as the rocks passed through the brittle–ductile transition. Early-formed thrust-related structures were almost-pervasive recumbent folds that affected both the schist and greenstone/ultramafic slices and imposed a spaced cleavage with minor recrystallisation of micas. These structures gave way to shallow-dipping phacoidal cleavage near (within <100 m of) thrust structures. Thrust-related structures have been overprinted locally by well-defined steeply dipping reverse fault-fold zones, and associated upright folding on regional (km) to mesoscopic (m) scales. The fold-fault zones occur as two orthogonal sets of structures oriented NW to N and NE to E. Some of these steeply dipping fault zones have been reactivated by Late Cretaceous normal faulting. Orogenic (mesothermal) gold-bearing veins were emplaced in local sites of extension during or after formation of the compressional fault-fold zones and before normal fault reactivation. Over 400 veins (m to cm-scale) observed in this study imply a general NW strike for mineralised structures (W to N), but with a broad scatter of orientations. Vein emplacement was controlled principally by fold axial surfaces of kink folds of the fault-fold generation. However, some other local extension sites have opened along preexisting structures to host veins locally, including metamorphic foliation and spaced cleavage planes. In addition, irregular extensional fractures with no obvious structural control host some veins. The Klondike mineralised veins formed as swarms with broad regional structural control, but represent relatively diffuse mineralised zones, with numerous scattered small veins, compared to most orogenic vein systems. These diffuse vein swarms appear to be sufficient sources for the rich and geographically localised placer gold deposits that formed in overlying gravels during erosion of the Klondike Schist basement.  相似文献   

14.
Abstract: A spectrum of intrusion-related vein gold deposits is recognized. Representative examples are described of the following geochemical associations: Au-Fe oxide–Cu, Au–Cu–Mo–Zn, Au–As–Pb–Zn–Cu, Au–Te–Pb–Zn–Cu and Au–As–Bi–Sb. The associated intrusions range from small outcropping stocks to complex batholiths. The different vein associations are believed to reflect the compositions of related intrusions, which themselves characterize distinct tectonic settings. The Au-Fe oxide–Cu and Au–Cu–Mo–Zn associations belong to two broad groups of deposits, Fe oxide–Cu–Au and porphyry Cu–Au, both of which are related to highly oxidized calc-alkaline intrusions emplaced in sub–duction–related arcs. The Au–As–Pb–Zn–Cu association seems to be linked to somewhat less oxidized intrusions emplaced in a similar setting. The Au–Te–Pb–Zn–Cu association, which possesses well-known epithermal counterparts, is also found with highly oxidized intrusions, but of alkaline composition and back-arc location. In contrast, the Au–As–Bi–Sb association, part of a newly recognized class of intrusion-hosted Au–Bi–W–As deposits, is related to relatively reduced intrusions, spanning the boundary between the magnetite– and ilmenite–series. Such intrusions, which may host major bulk-mineable gold deposits, were emplaced along the landward sides of arcs, possibly during lulls in subduction, as well as in continental collision settings. Therefore, a variety of geological environments is prospective for vein and, by extrapolation, other styles of gold mineralization, not all of them fully appreciated in the past. Several features of vein gold deposits, including imprecise relationships to individual intrusive phases, poorly developed mineral and metal zoning, apparent time gaps between intrusion and mineralization and presence of low–salinity, CO2–rich fluid inclusions, are commonly taken to indicate a non-igneous origin and to be more typical of orogenic (mesothermal) gold deposits generated during accretionary tectonic events. However, several or all of these features apply equally to some intrusion– related vein gold deposits and, therefore, do not constitute distinguishing criteria. The currently popular assignment of most gold-rich veins to the orogenic category requires caution, because of the geological convergence that they show with some intrusion-related deposits. A proper distinction between intrusion-related and orogenic gold deposits is crucial for exploration planning.  相似文献   

15.
The Gosowong epithermal gold deposit, on the island of Halmahera in eastern Indonesia, is located in an area of primary tropical rain forest with no previous history of gold mining or record of gold mineralisation. The deposit occurs in a newly recognised mineral district which contains a number of epithermal vein systems and at least two centres of low-grade porphyry style Cu–Au mineralisation. Several zones of argillic and advanced argillic alteration have been noted which may be related to additional centres of mineralisation. Gosowong is classified as a low-sulphidation epithermal quartz vein. Bonanza-grade gold–silver mineralisation is developed in shoots over a 400-m strike section of the vein system. Three types of veining are recognized; quartz–adularia veins and breccias; quartz–chlorite–illite veins and breccias; and crystalline or chalcedonic quartz vein stockworks. The area was targetted using a simple geological concept and the deposit was discovered and tested using basic exploration techniques commonly applied in the rugged tropical terrains of Indonesia. Sequential exploration methods comprised reconnaissance drainage sampling of stream sediment, BLEG and float media, ridge and spur soil sampling, prospect scale grid soil sampling, hand trenching and diamond drilling. Lapse time from identification of the initial reconnaissance anomaly to an inferred resource estimate of almost 1 million ounces of gold was less than 3.5 years. This case history illustrates that very detailed exploration is necessary to locate high-grade vein-type gold deposits in a tropical environment, but demonstrates that such resources still remain to be discovered in the relatively under-explored Neogene magmatic arcs of Indonesia.  相似文献   

16.
Antimony-rich vein mineralisation is widespread in the German part of the Variscan orogenic belt. Mineralogical investigation of a representative suite of these deposits, coupled with fluid inclusion characterisation and microthermometry, permits a reconstruction of their genetic evolution. Two structural settings host antimony mineralisation: the cores or flanks of anticlinal zones and major lithological contrasts. Channelled migration of geothermal fluids through permeable rock sequences and later stagnation of fluids in cap-rock situations inside the anticlinal zones led to mineral deposition. The mineralising event is interpreted as relating to input of deep-sourced fluids during late-orogenic exhumation at the transitional stage between collision tectonics and the late-Variscan extensional regime. Fluid inclusion data, chlorite geothermometry and the presence of meneghinite as a characteristic Pb-Sb-sulfosalt mineral in a number of vein systems allows constraints on model P-T conditions at the onset of mineralisation to be made. These are as high as 390 to 440?°C at 0.6–1.0?kbar for the Saarsegen, Apollo and Schöne Freundschaft deposits, with lower temperatures of 320–340?°C being obtained for the Spes deposit. The fluid inclusion data indicate drastic fluid cooling during the mineralising event; minimum temperatures of approximately 150–220?°C are obtained for all deposits at the end of vein quartz formation, which coincided with deposition of stibnite and most of the Pb-Sb sulfosalts. Besides the formation of extensional quartz-stibnite-Pb-sulfosalt veins, the mineralising, low-salinity NaCl-KCl-rich high-temperature tectonic brines have overprinted sulfide assemblages within earlier siderite-(Cu)-Pb-Zn veins. This has led to replacement reaction textures and remobilisation of sulfide components within the vein systems. In contrast with the earlier siderite-(Cu)-Pb-Zn veins, neither the quartz-stibnite-sulfosalt nor the (Cu)-Pb-Sb sulfosalt assemblages were affected by Variscan deformation. Rather, they display characteristic extensional features crosscutting all earlier structures and can thus be assigned to a later phase of mineralisation. Fluid composition characteristics and structural criteria indicate formation in the latest part of the Variscan mineralisation cycle; a post-Variscan genesis being rejected on grounds of conspicuously diverging fluid characteristics. A comparison of antimony deposits in the Rheinisches Schiefergebirge with other late-orogenic deposits elsewhere in the European Variscan belt indicates a significant number of shared features, enabling them to be placed into a common model related to the onset of late-Variscan brittle extensional tectonics.  相似文献   

17.
The Macraes deposit (> 10 Moz resource) is a Cretaceous orogenic system hosted in the Hyde-Macraes Shear Zone (HMSZ) which was mineralised under lower greenschist facies during later stages of lower greenschist facies metamorphism of host metasedimentary schists. Gold is encapsulated primarily in sulphides that have replaced silicates in ductile shears that are focussed in micaceous rocks. The shears anastomose around structurally competent lenses, and were enhanced by hydrothermal graphite deposition and alteration of albite to muscovite. In contrast, scheelite with minor auriferous sulphides occurs in multigenerational quartz veins that filled fractures in competent lithologies. Hence, scheelite was deposited coevally with gold, from the same hydrothermal fluid, but in different structural settings from most gold at all scales from millimetres to hundreds of metres. Consequentially, there is weak correlation between Au and W at all scales in the deposit. Multigenerational gold and scheelite mineralisation occurred during progressive deformation in the shear zone in two contrasting structural and mineralogical styles in syn-deformationally weakening gold-bearing micaceous shears, and in syn-deformationally hardened competent rocks that became silicified and veined with quartz and scheelite. Hydrothermal fluid flow in the gold-bearing shears occurred at the grain boundary, microshear, and microfracture scales, and was slow (< 1 m/year), continuous, and pervasive. In contrast, vein formation in more competent lithologies was episodic, locally rapid (> hundreds of m/year), and was controlled by fracture permeability. The Au and W enrichment in the Macraes deposit resulted from regional scale metal mobility, driven by coeval recrystallisation in higher-grade (upper greenschist to amphibolite facies) metamorphism that persisted structurally below the Macraes deposit for at least 10 Ma after mineralisation ceased.  相似文献   

18.
We present a review of major gold mineralization events in China and a summary of metallogenic provinces, deposit types, metallogenic epochs and tectonic settings. Over 200 investigated gold deposits are grouped into 16 Au-metallogenic provinces within five tectonic units such as the Central Asian orogenic belt comprising provinces of Northeast China and Tianshan-Altay; North China Craton comprising the northern margin, Jiaodong, and Xiaoqinling; the Qinling-Qilian-Kunlun orogenic belt consisting of the West Qingling, North Qilian, and East Kunlun; the Tibet and Sanjiang orogenic belts consisting of Lhasa, Garzê-Litang, Ailaoshan, and Daduhe-Jinpingshan; and the South China block comprising Youjiang basin, Jiangnan orogenic belt, Middle and Lower Yangtze River, and SE coast. The gold deposits are classified as orogenic, Jiaodong-, porphyry–skarn, Carlin-like, and epithermal-types, among which the first three types are dominant.The orogenic gold deposits formed in various tectonic settings related to oceanic subduction and subsequent crustal extension in the Qinling-Qilian-Kunlun, Tianshan-Altay, northern margin of North China Craton, and Xiaoqinling, and related to the Eocene–Miocene continental collision in the Tibet and Sanjiang orogenic belts. The tectonic periods such as from slab subduction to block amalgamation, from continental soft to hard collision, from intracontinental compression to shearing or extension, are important for the formation of the orogenic gold deposits. The orogenic gold deposits are the products of metamorphic fluids released during regional metamorphism associated with oceanic subduction or continental collision, or related to magma emplacement and associated hydrothermal activity during lithospheric extension after ocean closure. The Jiaodong-type, clustered around Jiaodong, Xiaoqinling, and the northern margin of the North China Craton, is characterized by the involvement of mantle-derived fluids and a temporal link to the remote subduction of the Pacific oceanic plate concomitant with the episodic destruction of North China Craton. The Carlin-like gold metallogenesis is related to the activity of connate fluid, metamorphic fluid, and meteoric water in different degrees in the Youjiang basin and West Qinling; the former Au province is temporally related to the remote subduction of the Tethyan oceanic plate and the later formed in a syn-collision setting. Porphyry–skarn Au deposits are distributed in the Tianshan-Altay, the Middle and Lower Yangtze River region, and Tibet and Sanjiang orogenic belts in both subduction and continental collision settings. The magma for the porphyry–skarn Au deposits commonly formed by melting of a thickened juvenile crust. The epithermal Au deposits, dominated by the low-sulfidation type, plus a few high-sulfidation ones, were produced during the Carboniferous oceaic plate subduction in Tianshan-Altay, during Early Cretaceous and Quaternary oceanic plate subduction in SEt coast of South China Block, and during the Pliocene continental collision in Tibet. The available data of different isotopic systems, especially fluid D–O isotopes and carbonate C–O systems, reveal that the isotopic compositions are largely overlapping for different genetic types and different for the same genetic type in different Au belts. The isotopic compositions are thus not good indicators of various genetic types of gold deposit, perhaps due to overprinting of post-ore alteration or the complex evolution of the fluids.Although gold metallogeny in China was initiated in Cambrian and lasted until Cenozoic, it is mainly concentrated in four main periods. The first is Carboniferous when the Central Asian orogenic belt formed by welding of micro-continental blocks and arcs in Tianshan-Altay, generating a series of porphyry–epithermal–orogenic deposits. The second period is from Triassic to Early Jurassic when the current tectonic mainframe of China started to take shape. In central and southern China, the North China Craton, South China Block and Simao block were amalgamated after the closure of Paleo-Tethys Ocean in Triassic, forming orogenic and Carlin-like gold deposits. The third period is Early Cretaceous when the subduction of the Pacific oceanic plate to the east and that of Neo-Tethyan oceanic plate to the west were taking place. The subduction in eastern China produced the Jiaodong-type deposits in the North China Craton, the skarn-type deposits in the northern margin (Middle to lower reaches of Yangtze River) and the epithermal-type deposits in the southeastern margin in the South China Block. The subduction in western China produced the Carlin-like gold deposits in the Youjiang basin and orogenic ones in the Garzê-Litang orogenic belt. The Cenozoic is the last major phase, during which southwestern China experienced continental collision, generating orogenic and porphyry–skarn gold deposits in the Tibetan and Sanjiang orogenic belts. Due to the spatial overlap of the second and third periods in a single gold province, the Xiaoqinling, West Qinling, and northern margin of the North China Craton have two or more episodes of gold metallogeny.  相似文献   

19.
The Hodgkinson and Broken River provinces of the Mossman Orogen in north Queensland host numerous orogenic gold deposits and still remain under-explored. This paper discusses regional metallogenic controls and results of a probabilistic quantitative assessment of undiscovered gold potential in the region. Significant orogenic gold deposits in the region occur only within relatively small well-endowed metallogenic zones, likely to be controlled by the eastern margin of the Paleoproterozoic continental crust underlying the western Mossman Orogen. Three distinct styles of primary orogenic gold deposits are present in the area: gold–quartz veins, refractory gold associated with quartz–pyrite–arsenopyrite veins and stockworks and stibnite–quartz±gold veins. Refractory gold deposits are estimated to have the highest potential for significant undiscovered resources in the region. The Hodgkinson Province is estimated to host between one and ten significant undiscovered refractory gold ore fields, with a 50 % probability of at least 20 t of total contained gold and a 90 % probability of at least 1 t. The Broken River Province is estimated to host up to five significant undiscovered refractory gold ore fields, with a 50 % probability of at least 12 t of contained gold.  相似文献   

20.
Rocks of early Proterozoic age (ca. 2100 Ma) host the major gold deposits in Ghana. The deposits are either located in mesothermal quartz vein systems or hosted in a quartz pebble conglomerate that represents a paleoplacer. Both types of mineralisation are largely confined to the Ashanti Belt, one of four parallel northeast-trending volcanic belts. While the stratigraphy and structure of the belts are similar, the Ashanti belt is characterised by a more tectonised northwest margin where most of the epigenetic gold deposits are located. In these deposits, gold mineralisation is located in faults that parallel the regional trend of the belts and were active late in the deformation history of the terrane. The auriferous quartz pebble conglomerate is part of a clastic sequence that is largely derived from the adjacent volcanic and plutonic rocks with the gold widely regarded as having originated from eroded vein deposits. Structural data, however, show that both the volcanic rocks and clastic sequence were deformed jointly prior to epigenetic gold mineralisation. Thus, the quartz vein deposits could not have been the source of the paleoplacer mineralisation. The paleoplacer gold could have originated from one of several possible sources but none has been unequivocally identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号