首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Strong magnetic fields were generated using a fast pulsed power generator, to investigate the interaction of plasma flows with magnetic fields and magnetized background plasmas. The inductive loads used in these experiments were designed using a filament and a finite element modeling approaches. Magnetic fields up to 2 MG (200 T) were measured by using the Faraday rotation technique.  相似文献   

2.
Laboratory experiments on the interaction of a plasma flow, produced by laser ablation of a solid target with the inhomogeneous magnetic field from the Zebra pulsed power generator demonstrated the presence of strong wave activity in the region of the flow deceleration. The deceleration of the plasma flow can be interpreted as the appearance of a gravity-like force. The drift due to this force can lead to the excitation of flute modes. In this paper a linear dispersion equation for the excitation of electromagnetic flute-type modes with plasma and magnetic field parameters, corresponding to the ongoing experiments is examined. Results indicate that the wavelength of the excited flute modes strongly depends on the strength of the external magnetic field. For magnetic field strengths ∼0.1 MG the excited wavelengths are larger than the width of the laser ablated plasma plume and cannot be observed during the experiment. But for magnetic field strengths ∼1 MG the excited wavelengths are much smaller and can then be detected.  相似文献   

3.
Jets and outflows are thought to be an integral part of accretion phenomena and are associated with a large variety of objects. In these systems, the interaction of magnetic fields with an accretion disk and/or a magnetized central object is thought to be responsible for the acceleration and collimation of plasma into jets and wider angle flows. In this paper we present three-dimensional MHD simulations of magnetically driven, radiatively cooled laboratory jets that are produced on the MAGPIE experimental facility. The general outflow structure comprises an expanding magnetic cavity which is collimated by the pressure of an extended plasma background medium, and a magnetically confined jet which develops within the magnetic cavity. Although this structure is intrinsically transient and instabilities in the jet and disruption of the magnetic cavity ultimately lead to its break-up, a well collimated, “knotty” jet still emerges from the system; such clumpy morphology is reminiscent of that observed in many astrophysical jets. The possible introduction in the experiments of angular momentum and axial magnetic field will also be discussed.  相似文献   

4.
This paper is focused on the huge dynamical importance of the mass load in magnetized jet models. I will first review some `naive' questions (Why should jets be magnetized? What is the jet driving source?), then show why the jet mass load is so important and why numerical simulations are unable yet to deal with jet formation. I will afterwards briefly describe some results of the only accretion disc model addressing explicitely this question and present a possible star-disc magnetospheric interaction giving rise to time-dependent outbursts.  相似文献   

5.
We discuss the design of jet-driven, radiative-blast-wave experiments for a 10 kJ class pulsed laser facility. The astrophysical motivation is the fact that jets from Young Stellar Objects are typically radiative and that the resulting radiative bow shocks produce complex structure that is difficult to predict. To drive a radiative bow shock, the jet velocity must exceed the threshold for strong radiative effects. Using a 10 kJ class laser, it is possible to produce such a jet that can drive a radiative bow shock in gas that is dense enough to permit diagnosis by x-ray radiography. We describe the design and simulations of such experiments. The basic approach is to shock the jet material and then accelerate it through a collimating hole and into a Xe ambient medium. We identify issues that must be addressed through experimentation or further simulations in order to field successful experiments.  相似文献   

6.
We present experimental results on the formation of supersonic, radiatively cooled jets driven by pressure due to the toroidal magnetic field generated by the 1.5 MA, 250 ns current from the MAGPIE generator. The morphology of the jet produced in the experiments is relevant to astrophysical jet scenarios in which a jet on the axis of a magnetic cavity is collimated by a toroidal magnetic field as it expands into the ambient medium. The jets in the experiments have similar Mach number, plasma beta and cooling parameter to those in protostellar jets. Additionally the Reynolds, magnetic Reynolds and Peclet numbers are much larger than unity, allowing the experiments to be scaled to astrophysical flows. The experimental configuration allows for the generation of episodic magnetic cavities, suggesting that periodic fluctuations near the source may be responsible for some of the variability observed in astrophysical jets. Preliminary measurements of kinetic, magnetic and Poynting energy of the jets in our experiments are presented and discussed, together with estimates of their temperature and trapped toroidal magnetic field.  相似文献   

7.
We investigate a transformation of a magnetic field and plasma in nonhomogeneous magnetospheres of collapsing stars with a dipole initial magnetic field and certain initial energy distributions of particles in the magnetosphere as the power low, relativistic Maxwell and Boltzmann. The betatron mechanism of the charged particles acceleration in a collapsing star’s magnetosphere is considered. When a magnetized star is compressed in the stage of the gravitational collapse, the magnetic field increases strongly. This variable magnetic field generates a vortical electric field. Our calculations show that this electric field will accelerate charged particles up to relativistic velocities. Thus, collapsing stars may be sources of high energy cosmic rays in our galaxy as in others. The acceleration of particles during the collapse happens mostly in polar regions of the magnetosphere that leads to polar relativistic streams (jets) formation. When moving in a magnetic field, these particles will generate nonthermal electromagnetic radiation in a broad electromagnetic wavelength band from radioto gamma rays. Thus, in the stage of the gravitational collapse, relativistic jets are formed in stellar magnetospheres. These jets are powerful sources of the nonthermal electromagnetic radiation.  相似文献   

8.
We present new data from High-Energy Density (HED) laboratory experiments designed to explore the interaction of a heavy hypersonic radiative jet with a cross wind. The jets are generated with the MAGPIE pulsed power machine where converging conical plasma flows are produced from a cylindrically symmetric array of inclined wires. Radiative hypersonic jets emerge from the convergence point. The cross wind is generated by ablation of a plastic foil via soft-X-rays from the plasma convergence region. Our experiments show that the jets are deflected by the action of the cross wind with the angle of deflection dependent on the proximity of the foil. Shocks within the jet beam are apparent in the data. Analysis of the data shows that the interaction of the jet and cross wind is collisional and therefore in the hydrodynamic regime. We consider the astrophysical relevance of these experiments applying published models of jet deflection developed for AGN and YSOs. We also present results of 3-D numerical simulations of jet deflection using a new astrophysical Adaptive Mesh Refinement code. These simulations show highly structured shocks occurring within the beam similar to what was observed in the experiments.  相似文献   

9.
The jets observed to emanate from many compact accreting objects may arise from the twisting of a magnetic field threading a differentially rotating accretion disk which acts to magnetically extract angular momentum and energy from the disk. Two main regimes have been discussed, hydromagnetic jets, which have a significant mass flux and have energy and angular momentum carried by both matter and electromagnetic field and, Poynting jets, where the mass flux is small and energy and angular momentum are carried predominantly by the electromagnetic field. Here, we describe recent theoretical work on the formation of relativistic Poynting jets from magnetized accretion disks. Further, we describe new relativistic, fully electromagnetic, particle-in-cell (PIC) simulations of the formation of jets from accretion disks. Analog Z-pinch experiments may help to understand the origin of astrophysical jets.  相似文献   

10.
We report on experiments in which magnetically driven radiatively cooled plasma jets were produced by a 1 MA, 250 ns current pulse on the MAGPIE pulsed power facility. The jets were driven by the pressure of a toroidal magnetic field in a “magnetic tower” jet configuration. This scenario is characterized by the formation of a magnetically collimated plasma jet on the axis of a magnetic “bubble”, confined by the ambient medium. The use of a radial metallic foil instead of the radial wire arrays employed in our previous work allows for the generation of episodic magnetic tower outflows which emerge periodically on timescales of ~30 ns. The subsequent magnetic bubbles propagate with velocities reaching ~300 km/s and interact with previous eruptions leading to the formation of shocks.  相似文献   

11.
In spite of the large number of global three-dimensional (3-D) magnetohydrodynamic (MHD) simulations of accretion disks and astrophysical jets, which have been developed since 2000, the launching mechanisms of jets is somewhat controversial. Previous studies of jets have concentrated on the effect of the large-scale magnetic fields permeating accretion disks. However, the existence of such global magnetic fields is not evident in various astrophysical objects, and their origin is not well understood. Thus, we study the effect of small-scale magnetic fields confined within the accretion disk. We review our recent findings on the formation of jets in dynamo-active accretion disks by using 3-D MHD simulations. In our simulations, we found the emergence of accumulated azimuthal magnetic fields from the inner region of the disk (the so-called magnetic tower) and also the formation of a jet accelerated by the magnetic pressure of the tower. Our results indicate that the magnetic tower jet is one of the most promising mechanisms for launching jets from the magnetized accretion disk in various astrophysical objects. We will discuss the formation of cosmic jets in the context of the magnetic tower model.  相似文献   

12.
An oblique, rotating magnetized sphere emits electromagnetic waves which, for large magnetization, can quickly accelerate charged particles to very high energies. A central, attractive Coulomb force can trap particles in the region beyond the light cylinder by balancing the accelerating influence of the radiation on the particles. We sample some of the particle orbits possible under these dynamical conditions. A general feature of these orbits is that non-interacting particles started with random initial conditions in the domain of attraction of these orbits will arrange themselves on a curve corotating with the axis of magnetization. Such particle configurations can be a source of pulsed radiation. In the idealized case of no interparticle interactions the spectral index for the radiation emitted by one frequently occurring configuration is found to be –2/3, for emission from radio to -ray frequencies. The dynamical conditions in this simple model closely match those prevalent in outer pulsar magnetospheres, making it possible that part of the radiation from pulsars is emitted by trapped plasma in the region beyond the light cylinder.  相似文献   

13.
The propagation of light highly relativistic jets carrying a toroidal magnetic field is studied numerically. The results show that jets with high Poynting flux develop the conspicuous nose cones discovered earlier in simulations of classical magnetized jets. The size of the nose cone is significantly reduced in kinetic energy-dominated jets, which develop extensive cocoons. The magnetic field nevertheless plays a significant role in the jet–cocoon dynamics by allowing self-confined flows. The results are explained in terms of the properties of perpendicular magnetohydrodynamic shocks.  相似文献   

14.
A double-pulse laser drive is used to create episodic supersonic plasma jets that propagate into a low density ambient medium. These are among the first laser experiments to generate pulsed outflow. The temporal laser-intensity profile consists of two 1-ns square pulses separated by 9.6 ns. The laser is focused on a truncated conical plug made of medium Z material inserted into a high-Z washer. Unloading material from the plug is collimated within the cylindrical washer hole, then propagates into the low-Z foam medium. The resulting jet is denser than the ambient medium. Double-pulse jet evolution is compared to that driven by a single laser pulse. The total drive energy is the same for both jets, as if a source with fixed energy generated a jet from either one or two bursts. Radiographs taken at 100 ns show that a single-pulse jet was broader than the double-pulse jet, as predicted by hydrodynamic simulations. Since the initial shock creating the jet is stronger when all the energy arrives in a single pulse, the jet material impacts the ambient medium with higher initial velocity. Detailed comparisons between single- and double-pulsed jet rheology and shock structure are presented. 2-D hydrodynamic simulations are compared to the experimental radiographs. PACS: 52.30.−q 41.75.Jv 42.62.−b 42.68.Sq 47.40.−x 47.56.+r  相似文献   

15.
We review status of theoretical development for jets and molecular outflows from young stellar objects. A particular framework for explaining these phenomena is one based on the X-wind theory in an environment of magnetized collapsing molecular cloud cores. The magnetized gravitational collapse follows the standard picture of isolated low-mass star formation, from quasi-static evolution of the parent molecular cloud cores. The outflow phenomena operate throughout the early evolution of young stars as a result of star-disk interaction. We discuss emission mechanisms of jets and formation of molecular outflows in this general framework. The general theoretical framework provides room for self-consistent interpretations for recent observations. Jets and outflows are integral part of earliest evolution of young stellar objects.  相似文献   

16.
It is suggested that the outflowing plasma in the jets of active galactic nuclei (AGNs) is inhomogeneous and consists of separate clouds. These clouds are strongly magnetized and move away from the central engine at relativistic speeds. The clouds interact with an ambient medium which is assumed to be at rest. In the process of this interaction, particles of the ambient medium are accelerated to high energies at the cloud front and flow ahead of the front. It is shown that the radiation of the accelerated particles may be responsible for the X-ray and γ-ray emission from AGN jets. TeV γ-ray emission is generated in the inner parts of AGN jets where the Lorentz factor of the cloud fronts is Γ0≥ 30, while GeV γ-ray emission emanates from the outer parts of AGN jets where Γ0 is ∼ 10. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
We analytically determine the structure of highly magnetized astrophysical jets at the origin in a region where the flow has been already collimated by an external medium, in both relativistic and non-relativistic regimes. We show that this can be achieved by solving a system of first-order ordinary differential equations that describe the transversal jet structure for a variety of external confining pressure profiles that collimate the jet to a near-cylindrical configuration. We obtain solutions for a central jet surrounded either by a self-similar wind or by an external pressure profile and derive the dependence of the velocity and the magnetic field strength along and across our jets. In particular, we find that the central core in a jet – the part of a flow with a nearly homogeneous magnetic field – must contain a poloidal field which is not much smaller than the critical value B min. This allows us to determine the magnetic flux in a core which is much smaller than the total magnetic flux. We show that for such a small core flux the solutions with a magnetic field in a core much smaller than B min are non-physical. For astrophysical objects the value of the critical magnetic field is quite large: 1 G for active galactic nuclei, 1010 G for gamma-ray bursts and 10−1 G for young stellar objects. In a relativistic case for the core field greater than or of the order of B min we show analytically that the plasma Lorentz factor must grow linearly with the cylindrical radius. For non-relativistic highly magnetized jets we propose that an oblique shock exists near the base of the jet so that the finite gas pressure plays an important role in force balance.  相似文献   

18.
We present the results of experiments in which jets are created through the collision of two laser-produced plasmas. These experiments use a simple ‘v-foil’ target design: two thin foils are placed at an angle of 140° to each other, and irradiated with a high-energy laser. The plasmas from the rear face of these foils collide and drive plasma jets moving with a velocity of ~300 km?s?1. By choosing the foil thickness and material to suit the laser conditions available, it has proven possible to create plasma jets for which the relevant scaling parameters show significant overlap with those of outflows associated with young stellar objects (YSOs). Preliminary results are also shown from experiments to study the effect of an ambient gas on jet propagation. Nominally identical experiments are conducted either in vacuum or in an ambient medium of 5 mbar of nitrogen gas. The gas is seen to increase the jet collimation, and to introduce shock structures at the head of the outflow.  相似文献   

19.
We investigate equilibrium sequences of magnetized rotating stars with four kinds of realistic equations of state (EOSs) of SLy, FPS, Shen and LS, employing the Tomimura–Eriguchi scheme to construct the equilibrium configurations. We study the basic physical properties of the sequences in the framework of Newtonian gravity. In addition, we take a new step by taking into account a general relativistic effect to the magnetized rotating configurations. With these computations, we find that the properties of the Newtonian magnetized stars, e.g. structure of magnetic field, highly depends on the EOSs. The toroidal magnetic fields concentrate rather near the surface for Shen and LS EOSs than those for SLy and FPS EOSs. The poloidal fields are also affected by the toroidal configurations. Paying attention to the stiffness of the EOSs, we analyse this tendency in detail. In the general relativistic stars, we find that the difference due to the EOSs becomes small because all the employed EOSs become sufficiently stiff for the large maximum density, typically greater than  1015 g cm−3  . The maximum baryon mass of the magnetized stars with axis ratio   q ∼ 0.7  increases about up to 20 per cent for that of spherical stars. We furthermore compute equilibrium sequences at finite temperature, which should serve as an initial condition for the hydrodynamic study of newly born magnetars. Our results suggest that we may obtain information about the EOSs from the observation of the masses of magnetars.  相似文献   

20.
In this contribution, we first review the theory of self-collimated jets launched from magnetized accretion disks (disk-winds originating from the first AUs). We show why it is crucial to solve in a self-consistent way the interplay between the resistive accretion disk and the ideal MHD jets. Indeed, this is the only way to get exact values for the disk ejection efficiency ξ (the jet mass load issue). Then, we show self-similar calculations of such accretion-ejection structures: first cold jets, then warm jets obtained in the presence of a hot disk chromosphere. Finally, we present for the first time an accretion-ejection flow crossing all three critical points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号