首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 976 毫秒
1.
Potassium (K) is one of the major nutritions for plants. The evaluation of K quantity and intensity relationships (K Q/I curve) in different farmland soils is important for the appropriate application of K fertilizer. With this information the pollution of K fertilizer in the environment can be prevented. Potassium ions in solution and in exchange complex are available to plants. However, the K availability is affected by the antagonism of Ca and Mg ions. The K quantity–intensity relationships (K Q/I curve) has been suggested to describe the K availability in soil, taking into account the competition between K ions and Ca and Mg ions for exchange sites on the soil exchange complex. In this experiment, we studied the Q/I plot of the soils and found that the parameters can be used to evaluate the supply state of K. The results show that the K Q/I relationships of the five soils differed as the Ca concentration of the initial solution is varied. This phenomenon reflected different degrees of exchange of K by Ca on the exchangeable sites of the clay minerals. The intensity of the potassium supply of Nieuniaokang and Erling soils possessed higher AR0 values, indicating that exchangeable K in these soils are primarily on the plannar surface of the clay particles; while those of the Liuying, Shanghua, and Taikang series are primarily on the crystal edge surfaces and are less available to the plant. The K supply intensity of Chiangjung soil is lower when the Ca concentration is low, but it increased when the Ca concentration is high, and the K supply intensity of Pinchen soil is the opposite. The K supply intensity of Nieuniaokang soil is high, but its potential buffering capacity (PBC) is low. Therefore, it is suggested that the K application should be split into small doses to maintain a high K supply intensity. The K supply intensity of Liuying soil is low, but its PBC is large, so it is expected that a large amount of K fertilizers would be needed to increase the K supply intensity to a more available level. The supply intensity and the buffering capacity of the Chiangjung and Pinchen soils are low, and the K management in these soils will be more difficult.  相似文献   

2.
We collected soil‐hydraulic property data from the literature for wildfire‐affected soils, ash, and unburned soils. These data were used to calculate metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and wetting front potential (Ψf) were significantly different (lower) in burned soils compared with unburned soils, whereas field‐saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity during infiltration was greatly reduced in burned soils, causing faster ponding times in response to rainfall. Ash had large values of S and Kfs but moderate values of Ψf, compared with unburned and burned soils, indicating ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant (~100 mm) for unburned soils but more variable in burned soils, suggesting that unburned soils have a balance between gravity and capillarity contributions to infiltration that may depend on soil organic matter, whereas in burned soils the gravity contribution to infiltration is greater. Changes in S and Kfs in burned soils act synergistically to reduce infiltration and accelerate and amplify surface runoff generation. Synthesis of these findings identifies three key areas for future research. First, short timescales of capillary influences on infiltration indicate the need for better measurements of infiltration at times less than 1 min to accurately characterize S in burned soils. Second, using parameter values, such as Ψf, from unburned areas could produce substantial errors in hydrologic modeling when used without adjustment for wildfire effects, causing parameter compensation and resulting underestimation of Kfs. Third, more thorough measurement campaigns that capture soil‐structural changes, organic matter impacts, quantitative water repellency trends, and soil‐water content along with soil‐hydraulic properties could drive the development of better techniques for numerically simulating infiltration in burned areas.  相似文献   

3.
Both evergreen and deciduous forests (Efs and Dfs) are widely distributed under similar climatic conditions in tropical monsoon regions. To clarify the hydraulic properties of the soil matrix in different forest types and their effects on soil water storage capacity, the soil pore characteristics (SPC) were investigated in Ef and Df stands in three provinces in Cambodia. Soils in the Ef group were characterized in common by large amounts of coarse pores with moderate pore size distribution and the absence of an extremely low Ks at shallow depths, compared to Df group soils. The mean available water capacity of the soil matrix (AWCsm) for all horizons of the Ef and Df group soils was 0·107 and 0·146 m3 m?3, respectively. The mean coarse pore volume of the soil matrix (CPVsm) in the Ef and Df groups was 0·231 and 0·115 m3 m?3, respectively. A water flow simulation using a lognormal distribution model for rain events in the early dry season indicated that variation in SPC resulted in a larger increase in available soil water in Ef soils than in Df soils. Further study on deeper soil layers in Ef and each soil type in Df is necessary for the deeper understanding of the environmental conditions and the hydrological modelling of each forest ecosystem. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
青藏高原地区分布的湖泊数量众多、面积较大、分布范围广泛.受制于恶劣的自然条件,对该地区湖泊的光学吸收特性以及光合有效辐射衰减系数(Kd(PAR))的研究鲜有成果.本文依据2014和2015年间采集的13个典型高海拔、湖泊面积较大的湖库的现场实测数据和实验室测定数据,分析了采样湖库各个采样点的Kd(PAR)特征以及有色可溶性有机物(CDOM)、藻类颗粒物吸收及非色素颗粒物吸收特性,计算并分析了Kd(PAR)与透明度以及光学活性物质的关系.研究结果表明:青藏高原地区各湖库平均各项颗粒物吸收系数均较低,总颗粒物吸收系数在400~700 nm波段内不超过0.14 m~(-1)、CDOM吸收系数在355 nm波长处最高,为1.23 m~(-1)、最低接近于0、藻类颗粒物吸收特性不明显;实验数据完整的巴木错、格仁错和班公错的主导吸收组分各异,其中巴木错为CDOM吸收主导,格仁错与班公错为非色素颗粒物吸收主导;青藏高原采样湖泊总体Kd(PAR)平均值较小,仅为0.26 m~(-1),样点最大值出现在可鲁克湖(1.17 m~(-1)),最小值出现在普莫雍错(0.10 m~(-1));在采样湖泊中Kd(PAR)与透明度呈显著相关;Kd(PAR)与CDOM的相关性最强,叶绿素a浓度次之,与总悬浮颗粒物浓度的相关性最不显著.  相似文献   

5.
Peat soils are heterogeneous, anisotropic porous media. Compared to mineral soils, there is still limited understanding of physical and solute transport properties of fen peat soils. In this study, we aimed to explore the effect of soil anisotropy on solute transport in degraded fen peat. Undisturbed soil cores, taken in vertical and horizontal direction, were collected from one drained and one restored fen peatland both in a comparable state of soil degradation. Saturated hydraulic conductivity (K s) and chemical properties of peat were determined for all soil cores. Miscible displacement experiments were conducted under saturated steady state conditions using potassium bromide as a conservative tracer. The results showed that (1) the K s in vertical direction (K sv) was significantly higher than that in horizontal direction (Ksh), indicating that K s of degraded fen peat behaves anisotropically; (2) pronounced preferential flow occurred in vertical direction with a higher immobile water fraction and a higher pore water velocity; (3) the 5% arrival time (a proxy for the strength of preferential flow) was affected by soil anisotropy as well as study site. A strong correlation was found between 5% arrival time and dispersivity, K s and mobile water fraction; (4) phosphate release was observed from drained peat only. The impact of soil heterogeneity on phosphate leaching was more pronounced than soil anisotropy. The soil core with the strongest preferential flow released the highest amount of phosphate. We conclude that soil anisotropy is crucial in peatland hydrology but additional research is required to fully understand anisotropy effects on solute transport.  相似文献   

6.
Testing infiltrometer techniques to determine soil hydraulic properties is necessary for specific soils. For a loam soil, the water retention and hydraulic conductivity predicted by the BEST (Beerkan Estimation of Soil Transfer parameters) procedure of soil hydraulic characterization was compared with data collected by more standard laboratory and field techniques. Six infiltrometer techniques were also compared in terms of saturated soil hydraulic conductivity, Ks. BEST yielded water retention values statistically similar to those obtained in the laboratory and Ks values practically coinciding with those determined in the field with the pressure infiltrometer (PI). The unsaturated soil hydraulic conductivity measured with the tension infiltrometer (TI) was reproduced satisfactorily by BEST only close to saturation. BEST, the PI, one‐potential experiments with both the TI and the mini disk infiltrometer (MDI), the simplified falling head (SFH) technique and the bottomless bucket (BB) method yielded statistically similar estimates of Ks, differing at the most by a factor of three. Smaller values were obtained with longer and more soil‐disturbing infiltration runs. Any of the tested infiltration techniques appears usable to obtain the order of magnitude of Ks at the field site, but the BEST, BB and PI data appear more appropriate to characterize the soil at some stage during a rainfall event. Additional investigations on both similar and different soils would allow development of more general procedures to apply infiltrometer techniques for soil hydraulic characterization. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Conflicting sorption coefficients for ortho‐phenylphenol (OPP) have been reported in the literatures, which resulted in the conflicting assessments on OPP mobility in soil. To ascertain the sorption coefficient of OPP, batch experiments were performed based on OECD guideline 106, using three types of soils. Headspace solid‐phase microextraction (HS‐SPME) and GC‐MS were applied to the determination of OPP concentration in the liquid phase. The sorption isotherms obtained for all three soils under equilibrium conditions were described well, assuming linear sorption. The organic carbon normalized distribution coefficients (Koc) ranged from 894 to 1703 L kg?1, which suggested that OPP is moderately mobile in soil. The results also showed that the Koc value of OPP can be predicted precisely from Kow, whereas it was underestimated by one order of magnitude when water solubility is used.  相似文献   

8.
Testing the relative performances of the single ring pressure infiltrometer (PI) and simplified falling head (SFH) techniques to determine the field saturated soil hydraulic conductivity, Kfs, at the near point scale may help to better establish the usability of these techniques for interpreting and simulating hydrological processes. A sampling of 10 Sicilian sites showed that the measured Kfs was generally higher with the SFH technique than the PI one, with statistically significant differences by a factor varying from 3 to 192, depending on the site. A short experiment with the SFH technique yielded higher Kfs values because a longer experiment with the PI probably promoted short‐term swelling phenomena reducing macroporosity. Moreover, the PI device likely altered the infiltration surface at the beginning of the run, particularly in the less stable soils, where soil particle arrangement may be expected to vary upon wetting. This interpretation was supported by a soil structure stability index, SSI, and also by the hydraulic conductivity data obtained with the tension infiltrometer, i.e. with a practically negligible disturbance of the sampled soil surface. In particular, a statistically significant, increasing relationship with SSI and an unsaturated conductivity greater than the saturated one were only detected for the Kfs data obtained with the PI. The SFH and PI techniques should be expected to yield more similar results in relatively rigid porous media (low percentages of fine particles and structurally stable soils) than in soils that modify appreciably their particle arrangement upon wetting. The simultaneous use of the two techniques may allow to improve Kfs determination in soils that change their hydrodynamic behaviour during a runoff producing rainfall event. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Gravelly soil is generally recognized to have no liquefaction potential. However, liquefaction cases were reported in central Taiwan in the 1999 Chi-Chi Taiwan earthquake and in the 1988 Armenia earthquake. Thus, further studies on the liquefaction potential of gravelly soil are warranted. Because large particles can impede the penetration of both standard penetration test and cone penetration test, shear wave velocity-based correlations and large hammer penetration tests (LPT) are employed to evaluate the liquefaction resistance of gravelly soils. A liquefied gravelly deposit site during the Chi-Chi earthquake was selected for this research. In situ physical properties of soil deposits were collected from exploratory trenches. Instrumented LPT and shear wave velocity (Vs) measurements were performed to evaluate the liquefaction resistance. In addition, large-scale cyclic triaxial tests on remolded gravelly soil samples (15 cm in diameter, 30 cm in height) were conducted to verify and improve LPT-based and Vs-based correlations. The results show that the LPT and shear wave velocity methods are reasonably suitable for liquefaction assessment of gravelly soils.  相似文献   

10.
The amplitude of vertical ground surface vibrations generated by impact tests on the ground surface was measured at various radial distances from the point of impact at locations of Greece. The results of measurements were analyzed in the frequency domain (in the range from 0–100 Hz) and the attenuation characteristics of soil materials were studied in terms of a frequency-independent attenuation coefficient, a0, of the empirical Bornitz equation. The aim of the study was to investigate the effect of soil stiffness (expressed by the value of low-amplitude shear wave velocity of soil, VSO) on the value of attenuation coefficient, a0. Values of VSO for the tested soils were estimated by applying the methodology of Spectral Analysis of Surface Waves (SASW) technique and utilizing the surface vibration data. An empirical relationship between a0 and VSO1 (VSO1 is the representative value of VSO for the soil profile up to a depth of one wavelength) was established for values of VSO1 ranging from 140 to 1000 m/s. A similar relationship in terms of the low-amplitude shear modulus of soil, GO1, was also established by converting the VSO1 values to GO1 values. The experimental results were compared to values reported in the literature for comparable soil types and frequencies of vibration and a reasonable agreement was found to exist. The proposed empirical relationship can be utilized in many practical applications of soil dynamics requiring the knowledge of the attenuation rate of Rayleigh waves with distance in various types of soils.  相似文献   

11.
Abstract

Time-domain reflectometry (TDR) is an electromagnetic technique for measurements of water and solute transport in soils. The relationship between the TDR-measured dielectric constant (Ka ) and bulk soil electrical conductivity ([sgrave]a) to water content (θW) and solute concentration is difficult to describe physically due to the complex dielectric response of wet soil. This has led to the development of mostly empirical calibration models. In the present study, artificial neural networks (ANNs) are utilized for calculations of θw and soil solution electrical conductivity ([sgrave]w) from TDR-measured Ka and [sgrave]a in sand. The ANN model performance is compared to other existing models. The results show that the ANN performs consistently better than all other models, suggesting the suitability of ANNs for accurate TDR calibrations.  相似文献   

12.
Field‐saturated soil hydraulic conductivity, Kfs, is highly variable. Therefore, interpreting and simulating hydrological processes, such as rainfall excess generation, need a large number of Kfs data even at the plot scale. Simple and reasonably rapid experiments should be carried out in the field. In this investigation, a simple infiltration experiment with a ring inserted shortly into the soil and the estimation of the so‐called α* parameter allowed to obtain an approximate measurement of Kfs. The theoretical approach was tested with reference to 149 sampling points established on Burundian soils. The estimated Kfs with the value of first approximation of α* for most agricultural field soils (α* = 0.012 mm?1) differed by a practically negligible maximum factor of two from the saturated conductivity obtained by the complete Beerkan Estimation of Soil Transfer parameters (BEST) procedure for soil hydraulic characterization. The measured infiltration curve contained the necessary information to obtain a site‐specific prediction of α*. The empirically derived α* relationship gave similar results for Kfs (mean = 0.085 mm s?1; coefficient of variation (CV) = 71%) to those obtained with BEST (mean = 0.086 mm s?1; CV = 67%), and it was also successfully tested with reference to a few Sicilian sampling points, since it yielded a mean and a CV of Kfs (0.0094 mm s?1 and 102%, respectively) close to the values obtained with BEST (mean = 0.0092 mm s?1; CV = 113%). The developed method appears attractive due to the extreme simplicity of the experiment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Daily evapotranspiration from a winter wheat field on the North China Plain measured by large‐scale weighing lysimeter was linearly related to that measured by the Bowen ratio energy balance (BREB) technique. Soil evaporation averaged about 23·6% of evapotranspiration from the post‐winter dormancy revival stage to the grain ripening stage in 1999. On clear days during winter dormancy, about half of the net radiation flux Rn was used to warm soil. During the revival stage, conductive heat flux G also used most of the incoming Rn, but the ratio of latent heat flux λE to Rn increased. During the stem‐extension stage, λE was about 50% of Rn; thereafter, λE/Rn increased continually, but G remained less than 10% of Rn. During the ripening stage, λE was almost 90% of Rn. Evaporative fraction (EF) can be expressed as a function of plant status and atmospheric boundary layer conditions. The relationship between EF and available energy under moderate air temperature and vapour pressure deficit conditions was examined for five combinations of aerodynamic and canopy conductance. Although the theoretical relationship indicates that EF should be highly correlated to soil water content, the correlation has been difficult to identify under field conditions. However, we observed that there exists a threshold value of Rn ? G, above which EF is less than 1·0, and that the threshold value is lower under soil‐water deficit conditions than under abundant soil‐water conditions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
Understanding the variation and magnitude of crop coefficient (Kc) is important for accurate determination of crop evapotranspiration and water use. In this study, we calculated Kc in an irrigated maize field with ground mulching by eddy covariance evapotranspiration measurements during the whole growing periods in 2009 and 2010 in an arid region of northwest China. A semi‐empirical practical approach for estimating Kc was proposed by introducing the dynamic fraction of canopy cover and incorporating the effect of leaf senescence as a function of days after sowing. The contribution of arid advection of sensible heat resulting from irrigation to Kc and the response of Kc to canopy conductance (Gc) were investigated. The averaged values of daily Kc were lower than typical values obtained previously without mulching due to decreasing effect of mulching on Kc, with 0.82 and 0.80 for the 2 years, respectively. The maximum average Kc occurred at the heading stage, with 1.21 and 1.04 for the 2 years, respectively. The difference of Kc was attributed to the difference of leaf area index. The semi‐empirical practical approach could well estimate the variations of Kc, thus could be a robust and useful tool for the practical users and water managers. The contributions to daily Kc from the arid advection were 4.4–28.0% of the measured Kc. The Gc had stronger control on daily Kc at the early and later stages than at the middle stage. When Gc, leaf area index and relative soil extractable water were lower than the respective threshold values of 20 mm s?1, 3.0 m2 m?2 and 0.5, the daily Kc increased significantly with the increase of the three factors, and almost remained constant when the three factors were beyond the threshold values. These results are helpful for quantifying contributions of individual factors to Kc, and subsequently improving water management practices according to Kc. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Soil detachment in concentrated flow is due to the dislodging of soil particles from the soil matrix by surface runoff. Both aggregate stability and shear strength of the topsoil reflect the erosion resistance of soil to concentrated runoff, and are important input parameters in predicting soil detachment models. This study was conducted to develop a formula to predict soil detachment rate in concentrated flow by using the aggregate stability index (As), root density (Rd) and saturated soil strength (σs) in the subtropical Ultisols region of China. The detachment rates of undisturbed topsoil samples collected from eight cultivated soil plots were measured in a 3.8 m long, 0.2 m wide hydraulic flume under five different flow shear stresses (τ = 4.54, 9.38, 15.01, 17.49 and 22.54 Pa). The results indicated that the stability index (As) was well related with soil detachment rate, particularly for results obtained with high flow shear stress (22.54 Pa), and the stability index (As) has a good linear relationship with concentrated flow erodibility factors (Kc). There was a positive linear relationship between saturated soil strength (σs) and critical flow shear stress (τc) for different soils. A significant negative exponential relationship between erodibility factors (Kc) and root density (Rd) was detected. This study yielded two prediction equations that allowed comparison of their efficiency in assessing soil detachment rate in concentrated flow. The equation including the root density (Rd) may have a better correlation coefficient (R2 = 0.95). It was concluded that the formula based on the stability index (As), saturated soil strength (σs) and root density (Rd) has the potential to improve methodology for assessing soil detachment rate in concentrated flow for the subtropical Chinese Ultisols. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Biomass char (BC) deriving from fast pyrolysis of biomass was a potential adsorption material due to its relative high fixed‐carbon content and the inherent porous structures. Adsorption of phosphate from aqueous solution by BC was investigated in this paper. The results showed that the adsorption capacity of BC was dependent on pyrolysis conditions, such as temperature and holding time. The maximum adsorption capacity for phosphate was approximately 15.11 mg g?1 at 298 K. The pseudo‐second order model of the adsorption kinetics indicated that the adsorption process was complex and several mechanisms were involved. Equilibrium isotherm was satisfactorily followed the Freundlich isotherm model. The KF value in Freundlich equation gradually increased with elevating temperature. Moreover, the thermodynamic constants: ΔG0, ΔH0, and ΔS0 were evaluated as ?6.49 kJ mol?1 (at 298 K), 13.41 kJ mol?1, and 66.70 J mol?1 K?1, respectively. Phosphate adsorption onto BC was spontaneous and endothermic. As a waste, BC was a potentially attractive adsorbent for phosphate removal from aqueous solution with low cost and high capability.  相似文献   

17.
Determination of saturated hydraulic conductivity, Ks, and the shape parameters α and n of the water retention curve, θ(h), is of paramount importance to characterize the water flow in the vadose zone. This work presents a modified upward infiltration method to estimate Ks, α and n from numerical inverse analysis of the measured cumulative upward infiltration (CUI) at multiple constant tension lower boundary conditions. Using the HYDRUS‐2D software, a theoretical analysis on a synthetic loam soil under different soil tensions (0, 0–10, 0–50 and 0–100 cm), with and without an overpressure step of 10 cm high from the top boundary condition at the end of the upward infiltration process, was performed to check the uniqueness and the accuracy of the solutions. Using a tension sorptivimeter device, the method was validated in a laboratory experiment on five different soils: a coarse and a fine sand, and a 1‐mm sieved loam, clay loam and silt‐gypseous soils. The estimated α and n parameters were compared to the corresponding values measured with the TDR‐pressure cell method. The theoretical analysis demonstrates that Ks and θ(h) can be simultaneously estimated from measured upward cumulative infiltration when high (>50 cm) soil tensions are initially applied at the lower boundary. Alternatively, satisfactory results can be also obtained when medium tensions (<50 cm) and the Ks calculated from the overpressure step at the end of the experiment are considered. A consistent relationship was found between the α (R2 = 0.86, p < 0.02) and n (R2 = 0.97, p < 0.001) values measured with the TDR‐pressure cell and the corresponding values estimated with the tension sorptivimeter. The error between the α (in logarithm scale) and n values estimated with the inverse analysis and the corresponding values measured with pressure chamber were 3.1 and 6.1%, respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Hydrologic recovery after wildfire is critical for restoring the ecosystem services of protecting of human lives and infrastructure from hazards and delivering water supply of sufficient quality and quantity. Recovery of soil‐hydraulic properties, such as field‐saturated hydraulic conductivity (Kfs), is a key factor for assessing the duration of watershed‐scale flash flood and debris flow risks after wildfire. Despite the crucial role of Kfs in parameterizing numerical hydrologic models to predict the magnitude of postwildfire run‐off and erosion, existing quantitative relations to predict Kfs recovery with time since wildfire are lacking. Here, we conduct meta‐analyses of 5 datasets from the literature that measure or estimate Kfs with time since wildfire for longer than 3‐year duration. The meta‐analyses focus on fitting 2 quantitative relations (linear and non‐linear logistic) to explain trends in Kfs temporal recovery. The 2 relations adequately described temporal recovery except for 1 site where macropore flow dominated infiltration and Kfs recovery. This work also suggests that Kfs can have low hydrologic resistance (large postfire changes), and moderate to high hydrologic stability (recovery time relative to disturbance recurrence interval) and resilience (recovery of hydrologic function and provision of ecosystem services). Future Kfs relations could more explicitly incorporate processes such as soil‐water repellency, ground cover and soil structure regeneration, macropore recovery, and vegetation regrowth.  相似文献   

19.
The distribution of soil hydraulic and physical properties strongly influences runoff processes in landscapes. Although much work has been done to quantify and predict the properties of hillslope soils, far less is known about the distribution of soil properties in valley floors. A technique that links the estimation and distribution of soil hydraulic properties in valleys, with easily identified geomorphic features, was developed along a 2 km length of a valley at Brooks Creek in New South Wales, Australia. Soil physical and hydraulic property data were collected across a set of floodplain and fan features within the valley and analysed statistically to determine if soil properties varied significantly between geomorphic features and stratigraphic layers. The results show that the depth‐averaged saturated hydraulic conductivity, Ks, of the soil varies significantly with landform: fan units have Kg values that are twice that of floodplains and colluvial toeslope deposits have Ks values four times higher than floodplains. Given the notorious variability of Ks values in space, the strong statistical separation of soil properties by landform, backed up by strong separation of soil particle size by landform, suggests a way forward in understanding the distribution of soil properties in valleys and their influence on catchment hydrology. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
Our understanding of hydraulic properties of peat soils is limited compared with that of mineral substrates. In this study, we aimed to deduce possible alterations of hydraulic properties of peat soils following degradation resulting from peat drainage and aeration. A data set of peat hydraulic properties (188 soil water retention curves [SWRCs], 71 unsaturated hydraulic conductivity curves [UHCs], and 256 saturated hydraulic conductivity [Ks] values) was assembled from the literature; the obtained data originated from peat samples with an organic matter (OM) content ranging from 23 to 97 wt% (weight percent; and according variation in bulk density) representing various degrees of peat degradation. The Mualem‐van Genuchten model was employed to describe the SWRCs and UHCs. The results show that the hydraulic parameters of peat soils vary over a wide range confirming the pronounced diversity of peat. Peat decomposition significantly modifies all hydraulic parameters. A bulk density of approximately 0.2 g cm?3 was identified as a critical threshold point; above and below this value, macroporosity and hydraulic parameters follow different functions with bulk density. Pedotransfer functions based on physical peat properties (e.g., bulk density and soil depth) separately computed for bog and fen peat have significantly lower mean square errors than functions obtained from the complete data set, which indicates that not only the status of peat decomposition but also the peat‐forming plants have a large effect on hydraulic properties. The SWRCs of samples with a bulk density of less than 0.2 g cm?3 could be grouped into two to five classes for each peat type (botanical composition). The remaining SWRCs originating from samples with a bulk density of larger than 0.2 g cm?3 could be classified into one group. The Mualem‐van Genuchten parameter values of α can be used to estimate Ks if no Ks data are available. In conclusion, the derived pedotransfer functions provide a solid instrument to derive hydraulic parameter values from easily measurable quantities; however, additional research is required to reduce uncertainty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号