首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
— The mean zonal velocity in the atmosphere is taken as being created continually by the global scale Hadley circulation produced by the differential solar heating through the balance between the Coriolis effect and vertical diffusion, and not by conservation of absolute momentum. Hence a proper determination of the diffusion coefficient becomes the key to the solution of the zonal flow problem. In this study we take the flow field as composed of a primary global scale Hadley circulation, and a secondary flow created by the convergences of the eddy transports of heat and momentum and surface friction, which give rise to the classical three cell structure of the meridional circulation but which only modifies the zonal velocity distribution slightly.¶Finally, we use the equilibrium solution of the perturbation potential vorticity equation to obtain the eddy transports of momentum and heat, with the zonal velocity given by the primary Hadley flow as the basic flow, and we found that they are close to the statistically observed values, demonstrating that the system can maintain itself.  相似文献   

2.
Observations from the Nimbus 6 pressure modulator radiometer (PMR) have been used to estimate monthly mean planetary wave fluxes of heat and momentum in the stratosphere and mesosphere. While the eddy heat fluxes play an important role in the mean meridional circulation of the winter stratosphere they are shown to be less important in the upper mesosphere. Incorporation of the observed momentum fluxes into the Oxford two-dimensional circulation model has shown that they are incapable of providing the momentum transport necessary to balance the zonal flow accelerations induced by the mean meridional motion. Other unspecified transfer processes represented by Rayleigh frictional damping of the zonal fow are shown to dominate. In contrast the observed fluxes in the stratosphere achieve the necessary redistribution of momentum. Moreover their interannual variability profoundly influences the stratospheric circulation, as demonstrated in the model by the use of two different annual sets of observed momentum fluxes. The desirability of calculating the planetary wave behaviour within the model is indicated.  相似文献   

3.
This study investigates transient eddy activity anomalies in the mid-latitude upper troposphere associated with intensity variability of the wintertime North Pacific subtropical front. Our results show that the meridional gradient of air temperature and baroclinic instability in the mid-latitude atmosphere become stronger as the subtropical front intensifies, and the mid-latitude westerly jet accelerates with barotropic structure. We further divide the mid-latitude atmospheric eddy activities into high-(2–7 days) and low-frequency(10–90 days) eddy activities according to their life periods. We find that, when the oceanic subtropical front intensifies, the high-frequency atmospheric eddy activity in the mid-latitudes strengthens while the low-frequency eddy activity weakens. The stronger high-frequency eddy activity tends to moderate the air temperature gradient and baroclinicity in the mid-latitudes. High-frequency eddy anomalies accelerate the westerly jet on the northern side and downstream of the westerly jet, and enhance the jet with equivalent barotropic structure. In contrast, the weaker low-frequency eddy activity has a negative contribution to zonal wind speed tendency and attenuates the zonal homogenization of the jet. The anomalous thermodynamic forcing of the low-frequency eddy activity helps maintain the meridional gradient of air temperature in the mid-troposphere.  相似文献   

4.
Summary The zonally asymmetric stationary component of the general circulation is studied for small Rossby number without the beta-plane approximation. The equations for this component are linearized about a mean flow. An analytic solution for the meridional wind is found when the zonal wind and static stability of the mean flow are independent of the vertical coordinate. The solution is used to compute the transports of angular momentum and heat. The angular momentum transports give rise to a net convergence of the order of Rossby number and are balanced by the zonal mean Coriolis torque. However, the heat transports vanish at this order of magnitude.  相似文献   

5.
 The circulation of the Southern Ocean is studied in the eddy-resolving model POP (Parallel Ocean Program) by an analysis of zonally integrated balances. The TEM formalism (Transformed Eulerian Mean) is extended to include topography and continental boundaries, thus deviations from a zonally integrated state involve transient and standing eddies. The meridional circulation is presented in terms of the Eulerian, eddy-induced, and residual streamfunctions. It is shown that the splitting of the meridional circulation into Ekman and geostrophic transports and the component induced by subgrid and Reynolds stresses is identical to a particular form of the zonally integrated balance of zonal momentum. In this balance, the eddy-induced streamfunctions represent the interfacial form stresses by transient and standing eddies and the residual streamfunction represents the acceleration of the zonal current by density fluxes in a zonally integrated frame. The latter acceleration term is directly related to the surface flux of density and interior fluxes due to the resolved and unresolved eddies. The eddy-induced circulation is extremely vigorous in POP. In the upper ocean a shallow circulation, reversed in comparison to the Deacon cell and mainly due to standing eddies, appears to the north of Drake Passage latitudes, and in the Drake Passage belt of latitudes a deep-reaching cell is induced by transient eddies. In the resulting residual circulation the Deacon cell is largely cancelled and the residual advection of the zonal mean potential density is balanced by diapycnal eddy and subgrid fluxes which are strong in the upper few hundred meters but small in the ocean interior. The balance of zonal momentum is consistent with other eddy-resolving models; a new aspect is the clear identification of density effects in the zonally integrated balance. We show that the wind stress and the stress induced by the residual circulation drive the eastward current, whereas both eddy species result in a braking. Finally, we extend the Johnson–Bryden model of zonal transport to incorporate all relevant terms from the zonal momentum balance. It is shown that wind stress and induction by the residual circulation carry an eastward transport while bottom form stress and the stress induced by standing eddies yield westward components of transport. Received: 26 June 2001 / Accepted: 2 November 2001  相似文献   

6.
Latitudinal variations in the nighttime plasma temperatures of the equatorial topside ionosphere during northern winter at solar maximum have been examined by using values modelled by SUPIM (Sheffield University Plasmasphere Ionosphere Model) and observations made by the DMSP F10 satellite at 21.00 LT near 800 km altitude. The modelled values confirm that the crests observed near 15° latitude in the winter hemisphere are due to adiabatic heating and the troughs observed near the magnetic equator are due to adiabatic cooling as plasma is transported along the magnetic field lines from the summer hemisphere to the winter hemisphere. The modelled values also confirm that the interhemispheric plasma transport needed to produce the required adiabatic heating/cooling can be induced by F-region neutral winds. It is shown that the longitudinal variations in the observed troughs and crests arise mainly from the longitudinal variations in the magnetic meridional wind. At longitudes where the magnetic declination angle is positive the eastward geographic zonal wind combines with the northward (summer hemisphere to winter hemisphere) geographic meridional wind to enhance the northward magnetic meridional wind. This leads to deeper troughs and enhanced crests. At longitudes where the magnetic declination angle is negative the eastward geographic zonal wind opposes the northward geographic meridional wind and the trough depth and crest values are reduced. The characteristic features of the troughs and crests depend, in a complicated manner, on the field-aligned flow of plasma, thermal conduction, and inter-gas heat transfer. At the latitudes of the troughs/crests, the low/high plasma temperatures lead to increased/decreased plasma concentrations.  相似文献   

7.
Summary Equations governing the axially-symmetric time-average state of the atmosphere and the transient departures from this mean state are set down. As a first step toward a solution of this system for seasonal average conditions, a model is formulated based on the thermodynamical energy equation for the vertical average of the mean state, and on the perturbation solutions of the linearized equations governing the baroclinic growth of transient eddies. All forms of non-adiabatic heating within the atmosphere and at the earth's surface are parameterized. The resulting differential equation governing the axially-symmetric mean potential temperature distribution takes the form of a steadystate diffusion equation in surface spherical coordinates, with a variable Austausch coefficient which is to be determined iteratively as a dependent variable.Global solutions, for winter and summer equilibrium conditions, are obtained for the thermal structure, the heat balance components, the transient eddy variances of temperature and meridional wind speed, and the covariance representing the meridional eddy heat transport. These solutions are for different types of surface conditions (ocean, land), and for a successively more complete variety of modes of heat transfer ranging from pure radiation to a combination of radiation, latent heat processes, and conduction and convection within the atmosphere and the subsurface layers. The results for this latter complete case seem to be a reasonable first order approximation to the observed distributions. Suggestions are made for improving and generalizing the study.  相似文献   

8.
Abstract

A high vertical resolution model is used to examine the instability of a baroclinic zonal flow and a finite amplitude topographically forced wave. Two families of unstable modes are found, consisting of zonally propagating most unstable modes, and stationary unstable modes. The former have time scale and spatial structure similar to baroclinic synoptic disturbances, but are localized in space due to interaction with the zonally asymmetric forcing. These modes transport heat efficiently in both the zonal and meridional directions. The second family of stationary unstable modes has characteristics of modes of low frequency variability of the atmosphere. They have time scales of 10 days and longer, and are of planetary scale with an equivalent barotropic vertical structure. The horizontal structure resembles blocking flows. They are maintained by available potential energy of the basic wave, and have large zonal heat fluxes. The results for both families of modes are interpreted in terms of an interaction between forcing and baroclinic instability to create favoured regions for eddy development. Applications to baroclinic planetary waves are also considered.  相似文献   

9.
Mechanisms of the meridional heat transport in the Southern Ocean   总被引:1,自引:0,他引:1  
The Southern Ocean (SO) transports heat towards Antarctica and plays an important role in determining the heat budget of the Antarctic climate system. A global ocean data synthesis product at eddy-permitting resolution from the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) project is used to estimate the meridional heat transport (MHT) in the SO and to analyze its mechanisms. Despite the intense eddy activity, we demonstrate that most of the poleward MHT in the SO is due to the time-mean fields of the meridional velocity, V, and potential temperature, θ. This is because the mean circulation in the SO is not strictly zonal. The Antarctic Circumpolar Current carries warm waters from the region south of the Agulhas Retroflection to the lower latitudes of the Drake Passage and the Malvinas Current carries cold waters northward along the Argentinian shelf. Correlations between the time-varying fields of V and θ (defined as transient processes) significantly contribute to the horizontal-gyre heat transport, but not the overturning heat transport. In the highly energetic regions of the Agulhas Retroflection and the Brazil-Malvinas Confluence the contribution of the horizontal transient processes to the total MHT exceeds the contribution of the mean horizontal flow. We show that the southward total MHT is mainly maintained by the meridional excursion of the mean geostrophic horizontal shear flow (i.e., deviation from the zonal average) associated with the Antarctic Circumpolar Current that balances the equatorward MHT due to the Ekman transport and provides a net poleward MHT in the SO. The Indian sector of the SO serves as the main pathway for the poleward MHT.  相似文献   

10.
Summary From meteorological IGY data for the calendar year 1958, the mean meridional eddy transport of enthalpy was evaluated for the Southern Hemisphere. Levels chosen for the study were 1000, 850, 700, 500, 400, 300, 200, 150 and 100 mb. Data from 84 Southern Hemisphere and 25 equatorial Northern Hemisphere stations were used. Yearly mean quantities related to meridional eddy enthalpy flux were computed and analyzed.It was found that around 40° S there is a double-maximum zone of poleward, meridional, transient eddy enthalpy flux, the stronger transport occurring at 850 mb, and the weaker near 200 mb. The countergradient transient eddy flux regions in the low latitude mid-troposphere and in the middle and upper latitude lower stratosphere, found in previous Northern Hemisphere investigations, were observed to exist in the Southern Hemisphere also. The standing eddy heat transport, as expected, was very weak except at high latitudes where Antarctic continentality effected a large double-maximum poleward flux centered near the surface and in the lower stratosphere. The total vertically integrated enthalpy transport by the eddies was found to be poleward everywhere, reaching a maximum between 35° and 40° S.  相似文献   

11.
The interaction between a planetary wave damped by cooling to space and the zonally averaged circulation in the middle atmosphere is examined for a steady-state situation in middle latitudes. Quasi-geostrophic scaling of Type 2 is assumed (i.e. the space scales are planetary and the superrotation is small).A set of mean equations is derived for this scaling which is complementary to the set of perturbation equations previously studied. The mean equations show that a planetary wave induces a mean meridional circulation which is balanced by an eddy momentum forcing function and a mean diabatic heating which is balanced by an eddy heat flux forcing function. The vertical eddy fluxes enter the forcing at the same order as the horizontal eddy fluxes.An analytical wave solution is found for the case of an atmosphere in constant superrotation. The eddy fluxes and forcing functions are evaluated for this special case. It is found that they are very sensitive to the values of the radiative damping coefficient and the superrotation. Since the damping coefficient depends on the ozone concentration and the intensity of the solar ultraviolet flux, the results suggest that changes in these quantities can strongly modify the wave-mean flow interaction in the middle atmosphere. Possible implications for climate change are discussed.  相似文献   

12.
Summary According to the symmetric formulation of the zonal kinetic energy equation, positive generations arise through countergradient transports of angular momentum. Five years of northern hemispheric upper air data are used to investigate two of the terms in the equation, which represent the effects of the transport, by the mean general circulation cells, of the angular momentum associated with the earth's rotation. These two -generation terms do not usually appear in the more traditional form of the conservation equation, and results of their evaluation have not appeared previously. It is found that positive generation largely dominates in the -term involving horizontal (meridional) transports of angular momentum, and negative generation in the -term involving vertical transport. In fall and particularly winter, both terms are responsible for very large amounts of generation of opposing sign for the whole atmosphere.The five years of data are also used to evaluate the balance of zonal kinetic energy implied by the symmetric equation in northern hemispheric polar caps of various pressure thicknesses. The vertical processes involved are not directly measured but rather are obtained from observed horizontal motions through use of continuity of mass and angular momentum requirements. Possible reasons for the lack of a perfect balance are offered, but in any case the residuals are generally not large enough to be of too much concern. Vertical eddies are found to play an important role in the balance of zonal kinetic energy. A study of the balance in the upper half of the atmosphere reveals that in spring the vertical eddies (summed for all scales) must tranport angular momentum and zonal kinetic energy upward toward the jet in order to counter the net effect of the mean cells in reducing the zonal kinetic energy in this volume. In the fall however, there is a dramatic change in the direction in which these vertical eddies act, as they now remove zonal kineticenergy from the upper half of the atmosphere in this season.The research reported in this paper was sponsored by the U.S. National Science Foundation under Grant No. GA-1310X.  相似文献   

13.
The paper presents and analyzes, from the point of view of smooth dynamic systems theory, a two-layer baroclinic model of the troposphere in geostrophic approximation. The model describes airflow in β-channel within the tropospheric part of the main Hadley circulation cell. It enables to obtain, after application of the Galerkin method, a fairly simple low-parametric dynamic system describing the phenomena of non-linear interactions, bifurcations and blocking in the atmosphere. This enables to take into consideration such basic factors influencing the atmospheric dynamics like the heat exchange within the surface, orography, vertical variability of zonal wind and hydrostatic stability. Impact of zonal thermal variability of the surface and vertical shear of zonal wind in the troposphere on the orographic bifurcation was investigated and the oscillation character in the dynamic system after Hopf bifurcation of the second kind was analyzed. Additionally, the model dynamics was investigated in conditions including momentum forcing in the upper and lower parts of the troposphere and excluding orographic interaction, as well as in the conditions of thermal interaction between the troposphere and the surface for the vertical shear of zonal wind in both tropospheric layers. Impact of the mean zonal wind in the troposphere on the properties of model dynamics was assessed. It was proved that zonally varied surface temperature and layered mean zonal wind in the atmosphere are the parameters that have basic influence on the model dynamics. They cause numerous bifurcations and strongly influence the periods of oscillations of the model variables. They are often Hopf bifurcations of the second kind during which tropospheric states fairly distant from the ones before the bifurcations are generated. This significantly influences the model predictability.  相似文献   

14.
Summary This paper discusses the need for a global network of meteor wind stations for determining the general circulation of the upper mesosphere and lower thermosphere. Continuous observations of horizontal motions from such a network would permit resolution of planetary scale eddy winds, tides, and gravity waves, and hypotheses that such motions propagate vertically from the lower atmosphere or are generated in situ by solar activity could be examined critically with observational data. The observed mean winds from the lower stratosphere to the meteor wind level are summarized to support the hypothesis that a standing wave pattern in the winds extends into the lower thermosphere. Data on tidal meridional momentum transports from meteor wind stations suggest that tides in the lower thermosphere are important for the maintenance of mean winds. Some of the geomagnetic and photochemical processes in the lower thermosphere that could be investigated with meteor wind data are briefly reviewed.This paper is adapted from our presentation at the 1966 Fall URSI meeting at Palo Alto, California  相似文献   

15.
The annual cycle of the zonally averaged circulation in the middle atmosphere (16–96 km) is simulated using a numerical model based on the primitive equations in log pressure coordinates. The circulation is driven radiatively by heating due to solar ultraviolet absorption by ozone and infrared cooling due to carbon dioxide and ozone (parameterized as a Newtonian cooling). Since eddy fluxes due to planetary waves are neglected in the model, the computed mean meridional circulation must be interpreted as thediabatic circulation, not as the total eulerian mean. Rayleigh friction with a short (2–4 day) time constant above 70 km is included to simulate the strong mechanical dissipation which is hypothesized to exist in the vicinity of the mesopause due to turbulence associated with gravity waves and tides near the mesopause.Computed mean winds and temperatures are in general agreement with observations for both equinox and solstice conditions. In particular, the strong mechanical damping specified near the mesopause makes it possible to simulate the cold summer and warm winter mesopause temperatures without generating excessive mean zonal winds. In addition, the model exhibits a strong semiannual cycle in the mean zonal wind at the equator, with both amplitude and vertical structure in agreement with the easterly phase of the observed equatorial semiannual oscillation.Contribution No. 497, Department of Atmospheric Sciences, University of Washington, Seattle.  相似文献   

16.
The theoretical aspects of the transfer of angular momentum between atmosphere and Earth are treated with particular emphasis on analytical solutions. This is made possible by the consequent usage of spherical harmonics of low degree and by the development of large-scale atmospheric dynamics in terms of orthogonal wave modes as solutions of Laplace's tidal equations.An outline of the theory of atmospheric ultralong planetary waves is given leading to analytical expressions for the meridional and height structure of such waves. The properties of the atmospheric boundary layer, where the exchange of atmospheric angular momentum with the solid Earth takes place, are briefly reviewed. The characteristic coupling time is the Ekman spin-down time of about one week.The axial component of the atmospheric angular momentum (AAM), consisting of a pressure loading component and a zonal wind component, can be described by only two spherical functions of latitude : the zonal harmonicP 2 0 (), responsible for pressure loading, and the spherical functionP 1 1 () simulating supperrotation of the zonal wind. All other wind and pressure components merely redistributeAAM internally such that their contributions toAAM disappear if averaged over the globe. It is shown that both spherical harmonics belong to the meridional structure functions of the gravest symmetric Rossby-Haurwitz wave (0, –1)*. This wave describes retrograde rotation of the atmosphere within the tropics (the tropical easterlies), while the gravest symmetric external wave mode (0, –2) is responsible for the westerlies at midlatitudes. Applying appropriate lower boundary conditions and assuming that secular angular momentum exchange between solid Earth and atmosphere disappears, the sum of both waves leads to an analytical solution of the zonal mean flow which roughly simulates the observed zonal wind structure as a function of latitude and height. This formalism is used as a basis for a quantitative discussion of the seasonal variations of theAAM within the troposphere and middle atmosphere.Atmospheric excitation of polar motion is due to pressure loading configurations, which contain the antisymmetric functionP 2 1 () exp(i) of zonal wavenumberm=1, while the winds must have a superrotation component in a coordinate system with the polar axis within the equator. The Rossby-Haurwitz wave (1, –3)* can simulate well the atmospheric excitation of the observed polar motion of all periods from the Chandler wobble down to normal modes with periods of about 10 days. Its superrotation component disappears so that only pressure loading contributes to polar motion.The solar gravitational semidiurnal tidal force acting on the thermally driven atmospheric solar semidiurnal tidal wave can accelerate the rotation rat of the Earth by about 0.2 ms per century. It is speculated that the viscous-like friction of the geomagnetic field at the boundary between magnetosphere and solar wind may be responsible for the westward drift of the dipole component of the internal geomagnetic field. Electromagnetic or mechanical coupling between outer core and mantle may then contribute to a decrease of the Earth's rotation rate.  相似文献   

17.
To estimate atmospheric predictability for multivariable system, based on information theory in nonlinear error growth dynamics, a quantitative method is introduced in this paper using multivariable joint predictability limit (MJPL) and corresponding single variable predictability limit (SVPL). The predictability limit, obtained from the evolutions of nonlinear error entropy and climatological state entropy, is not only used to measure the predictability of dynamical system with the constant climatological state entropy, but also appropriate to the case of climatological state entropy changed with time. With the help of daily NCEP-NCAR reanalysis data, by using a method of local dynamical analog, the nonlinear error entropy, climatological state entropy, and predictability limit are obtained, and the SVPLs and MJPL of the winter 500-hPa temperature field, zonal wind field and meridional wind field are also investigated. The results show that atmospheric predictability is well associated with the analytical variable. For single variable predictability, there exists a big difference for the three variables, with the higher predictability found for the temperature field and zonal wind field and the lower predictability for the meridional wind field. As seen from their spatial distributions, the SVPLs of the three variables appear to have a property of zonal distribution, especially for the meridional wind field, which has three zonal belts with low predictability and four zonal belts with high predictability. For multivariable joint predictability, the MJPL of multivariable system with the three variables is not a simple mean or linear combination of its SVPLs. It presents an obvious regional difference characteristic. Different regions have different results. In some regions, the MJPL is among its SVPLs. However, in other regions, the MJPL is less than its all SVPLs.  相似文献   

18.
Meterological rocket soundings, launched between 1969–74 at six locations representative of low, middle, and high altitudes, are employed with the use of the statistical theory of diffusion, to determine the zonal and meridional component of eddy diffusivity between 30 and 55 km as a function of season, latitude, and altitude. A comparison is also made between annually-averaged eddy diffusivities above and below 30 km.It is shown that the zonal component of eddy diffusivity is approximately three to five times as large as the meridional component, in most cases. Both components of eddy diffusivity vary greatly with season, latitude, and altitude. Highest eddy diffusivities, found in the vicinity of the winter westerly jet, are approximately one order of magnitude higher than those present during the summer. Tropical eddy diffusivities, however, remain relatively small throughout the year. Annually, a minimum is indicated near 25 km between maximums located at the stratopause and tropopause.  相似文献   

19.
Studies on the influence of solar activity in 11-year cycle on middle atmospheric thermodynamic parameters, such as temperature, pressure and density, and zonal and meridional wind components over three meteorological rocket launching stations, located in the tropics (Thumba), mid-latitude (Volgograd) and high-latitude (Heiss Island) regions of the northern hemisphere have been carried out. The temperature in all the three regions showed a negative response in the stratosphere and positive association in the mesosphere with the changes in solar activity. The temperature decreases by 2-3% from its mean value in the stratosphere and increases by 4-6% in the mesosphere for an increase in 100 units of solar radio flux. Atmospheric pressure is found to be more sensitive to solar changes. An average solar maximum condition enhances the pressure in the stratosphere by 5% and in the upper mesosphere by 16-18% compared to the respective mean values. Density also showed strong association with the changes in solar activity. Increase in the solar radio flux tends to strengthen winter westerlies in the upper stratosphere over the mid-latitude and summer easterlies in the middle stratosphere over tropics. Larger variability in the zonal wind is noted near stratopause height. Results obtained from the study indicate that there is an external force exerted on the Earth’s atmosphere during the period of high solar activity. These results can be incorporated for further studies on the dynamics of the middle atmosphere in association with the changes in solar activity.  相似文献   

20.
Abstract

The south-easterly surface flow down the slopes of Antarctica induces a transfer of westerly angular momentum to the atmosphere, which must be removed from the Antarctic domain by atmospheric transports. It is suggested that synoptic eddies protruding from the northern baroclinic zone into the polar regions are modified by the topography such that they are able to perform these meridional transports. A simple linear two-layer model of the axisymmetric circulation of Antarctica is presented where the eddy effects are incorporated via a K-ansatz. It is shown that qualitatively realistic mean flow patterns can be obtained with this model. The limitations of this approach are exposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号