首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Irrigation activities alter water distribution and storage in arid and semi-arid regions worldwide. The removal of water from streams can drastically impact instream flows. However, irrigation water conveyance and application onto fields can create surface and subsurface hydrologic connections, or lateral inflows, that return some of this diverted water back to streams. Prior research has shown the impact of surface water diversions from streams on downstream warming that increases stress on aquatic species. However, the combined effects of flow depletion and irrigation-enhanced lateral inflows on stream temperature and river ecosystems remains poorly studied. To further understand these relationships, we combined intensive field monitoring over three irrigation seasons and thermal aerial imagery to identify irrigation-enhanced subsurface lateral inflow locations and evaluate their effects on stream flow and temperature patterns over a 2.5-km highly depleted study reach. Considering variable hydrology, weather, flow diversions, channel geometry and lateral inflows, we found irrigation-enhanced lateral inflows were the likely explanation for buffered longitudinal and diel warming patterns that prevented stressful or lethal thermal conditions for brown trout. These localized temperature effects were more pronounced in drier years, under high diversion rates and during high solar radiation intensity. We also found that lateral inflows corresponded with greater spatial variability of stream temperatures and potential thermal refugia. Study results illustrate the potential ecological consequences of reducing irrigation-enhanced lateral inflows and highlight the importance of hydrologic monitoring in irrigated arid river valleys. The role and preservation of these lateral inflows should be considered in water resources management related to irrigation efficiency and environmental flows.  相似文献   

2.
Joshua C. Koch 《水文研究》2016,30(21):3918-3931
Arctic thaw lakes are an important source of water for aquatic ecosystems, wildlife, and humans. Many recent studies have observed changes in Arctic surface waters related to climate warming and permafrost thaw; however, explaining the trends and predicting future responses to warming is difficult without a stronger fundamental understanding of Arctic lake water budgets. By measuring and simulating surface and subsurface hydrologic fluxes, this work quantified the water budgets of three lakes with varying levels of seasonal drainage, and tested the hypothesis that lateral and subsurface flows are a major component of the post‐snowmelt water budgets. A water budget focused only on post‐snowmelt surface water fluxes (stream discharge, precipitation, and evaporation) could not close the budget for two of three lakes, even when uncertainty in input parameters was rigorously considered using a Monte Carlo approach. The water budgets indicated large, positive residuals, consistent with up to 70% of mid‐summer inflows entering lakes from lateral fluxes. Lateral inflows and outflows were simulated based on three processes; supra‐permafrost subsurface inflows from basin‐edge polygonal ground, and exchange between seasonally drained lakes and their drained margins through runoff and evapotranspiration. Measurements and simulations indicate that rapid subsurface flow through highly conductive flowpaths in the polygonal ground can explain the majority of the inflow. Drained lakes were hydrologically connected to marshy areas on the lake margins, receiving water from runoff following precipitation and losing up to 38% of lake efflux to drained margin evapotranspiration. Lateral fluxes can be a major part of Arctic thaw lake water budgets and a major control on summertime lake water levels. Incorporating these dynamics into models will improve our ability to predict lake volume changes, solute fluxes, and habitat availability in the changing Arctic. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

3.
Water is a limiting factor for life in the McMurdo Dry Valleys (MDV), Antarctica. The active layer (seasonally thawed soil overlying permafrost) accommodates dynamic hydrological and biological processes for 10–16 weeks per year. Wetted margins (visually wetted areas with high moisture content) adjacent to lakes and streams are potential locations of great importance in the MDV because of the regular presence of liquid water, compared with the rest of the landscape where liquid water is rare. At 11 plots (four adjacent to lakes, seven adjacent to streams), soil particle size distribution, soil electrical conductivity, soil water content and isotopic signature, width of the wetted margin, and active layer thaw depth were characterised to determine how these gradients influence physicochemical properties that determine microbial habitat and biogeochemical cycling. Sediments were generally coarse‐grained in wetted margins adjacent to both lakes and streams. Wetted margins ranged from 1·04 to 11·01 m in average length and were found to be longer at lakeside sites than streamside. Average thaw depths ranged from 0·12 to 0·85 m, and were found to be deepest under lake margins. Lake margins also had much higher soil electrical conductivity, steeper topographic gradients, but more gradual soil moisture gradients than stream margins. Patterns of soil water δ18O and δD distribution indicate capillary action and evaporation from wetted margins; margin pore waters generally demonstrated isotopic enrichment with distance from the shore, indicating evaporation of soil water. Lake margin pore waters were significantly more negative in DXS (DXS = δD‐8δ18O) than streamside pore waters, indicating a longer history of evaporation there. Differences between lake and stream margins can be explained by the more consistent availability of water to lake margins than stream margins. Differences in margin characteristics between lakes and streams have important consequences for the microbial habitat of these margins and their functional role in biogeochemical cycling at these terrestrial–aquatic interfaces. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Water and gas samples were collected from (1) nine shallow groundwater aquifers overlying Marcellus Shale in north‐central West Virginia before active shale gas drilling, (2) wells producing gas from Upper Devonian sands and Middle Devonian Marcellus Shale in southwestern Pennsylvania, (3) coal‐mine water discharges in southwestern Pennsylvania, and (4) streams in southwestern Pennsylvania and north‐central West Virginia. Our preliminary results demonstrate that the oxygen and hydrogen isotope composition of water, carbon isotope composition of dissolved inorganic carbon, and carbon and hydrogen isotope compositions of methane in Upper Devonian sands and Marcellus Shale are very different compared with shallow groundwater aquifers, coal‐mine waters, and stream waters of the region. Therefore, spatiotemporal stable isotope monitoring of the different sources of water before, during, and after hydraulic fracturing can be used to identify migrations of fluids and gas from deep formations that are coincident with shale gas drilling.  相似文献   

5.
Ecological base line states for fish communities are necessary for the evaluation of ecological integrity. In Austria the fish communities of all the larger lakes are strongly influenced by human activities, like commercial fisheries, fish stocking, eutrophication or shore line degradation, and therefore these baseline states can not be developed by comparison with a natural, undisturbed lake. We developed ecological baseline states for the fish communities of the lakes Hallstättersee, Traunsee, Mondsee, Irrsee and Wallersee by reconstructing the native fish communities of these lakes from historical documents (from between 1500 to 1940). Then we classified the potential fish species of these lakes according to their ecological requirements. Finally we developed the base line states with 16 different ecological factors similar to the factors used for the ecological integrity assessment procedure for streams.

The process of reconstructing the fish communities and some advantages and disadvantages of the base line states for fish communities are discussed.  相似文献   


6.
ABSTRACT

Because of the late withdrawal of the Levantine lake waters and because of low relief the Eastern Romanian Plain was fragmented only by big alochthonous rivers (Ialomi?a, C?lm??ui and Buz?u).

The tabular-like, 40–50-km-wide interfluve areas covered by loessoid deposits and eolian sands on the periphery are deprived of surface drainage which accounts for their present evolution.

The major relief forms in these interfluves are depressions called in Romanian ‘crov’ (sink-holes) in the central areas and short valleys formed initially by erosion processes and now modelled by mechanical and chemical weathering at their periphery: in these depressions (sink-holes) and in the secondary valleys, peripheral to the interfluve areas, lakes had started to be formed.

Because of the semiarid climate sink-hole lakes have an intermittent hydrological regime, whereas those located in the small fluviatile liman-type valleys, enjoy a permanent regime. By the absence of surface drainage, by the loss of significant amounts of water through evaporation and the degree of mineralization, these lakes fall within the group of salt lakes.

In the past few years (since 1966 and especially since 1969) the level of these lakes has continually risen and the depressions formerly lacking water started being flooded by the rising of the piezometric level.

An analysis was made of the water balance of the Amara-Ialomi?a lake to investigate this phenomenon.

Level and evaporation recordings were made in the period 1956–1970. The findings revealed that the supply of underground water to the lake amounts to 47·3 per cent exceeding the water supply produced by the rains that fell on the surface of the lake (46·7 per cent). A close relationship was established (with a lapse of 8–12 months) between the surface supply of the basin (through rainfalls) and the flow of underground water to the lake.

Extending the precipitation-induced level changes over a longer period (1896–1915 and 1921–1970) it was found that level increases are cyclic, as a direct consequence of the corresponding precipitation regime.  相似文献   

7.
Summary

The High-Tatra mountains are situated in the northern part of the Carpathian bend covering an area of about 335 km2 some peaks being high more than 2600 m above sea level. In the said mountain region there are 100 small lakes in heights from 1100 m up to 2200 m above sea level. A detailed mapping of lakes has been carried out using the ground mapping technique “photogrametry” and measurements of depths have been done by ultra-sound. On the base of two examples it may be observed from the obtained results that the stability of lakes, blocked by moraines, may be easily damaged the final consequence being then the extinction of toe lake. Another example describing an interesting water bilan of a lake without inflow and outflow, of a height of 1346 m, is also given. The average precipitation falling down on the lake surface is 933 mm. From this quantity 374 mm evaporate back into the atmosphere. The water level of the lake increases annually by 210 mm in average. The remaining quantity of water seeps into the ground.  相似文献   

8.
Groundwater pumping from aquifers in hydraulic connection with nearby streams has the potential to cause adverse impacts by decreasing flows to levels below those necessary to maintain aquatic ecosystems. The recent passage of the Great Lakes‐St. Lawrence River Basin Water Resources Compact has brought attention to this issue in the Great Lakes region. In particular, the legislation requires the Great Lakes states to enact measures for limiting water withdrawals that can cause adverse ecosystem impacts. This study explores how both hydrogeologic and environmental flow limitations may constrain groundwater availability in the Great Lakes Basin. A methodology for calculating maximum allowable pumping rates is presented. Groundwater availability across the basin may be constrained by a combination of hydrogeologic yield and environmental flow limitations varying over both local and regional scales. The results are sensitive to factors such as pumping time, regional and local hydrogeology, streambed conductance, and streamflow depletion limits. Understanding how these restrictions constrain groundwater usage and which hydrogeologic characteristics and spatial variables have the most influence on potential streamflow depletions has important water resources policy and management implications.  相似文献   

9.
Our understanding of Lake Vostok, the huge subglacial lake beneath the East Antarctic Ice Sheet, has improved recently through the identification of key physical and chemical interactions between the ice sheet and the lake. The north of the lake, where the overlying ice sheet is thickest, is characterized by subglacial melting, whereas freezing of lake water occurs in the south, resulting in ~210 m of ice accretion to the underside of the ice sheet. The accreted ice contains lower concentrations of the impurities normally found in glacier ice, suggesting a net transfer of material from meltwater into the lake. The small numbers of microbes found so far within the accreted ice have DNA profiles similar to those of contemporary surface microbes. Microbiologists expect, however, that Lake Vostok, and other subglacial lakes, will harbour unique species, particularly within the deeper waters and associated sediments. The extreme environments of subglacial lakes are characterized by high pressures, low temperatures, permanent darkness, limited nutrient availability, and oxygen concentrations that are derived from the ice that provides the meltwater. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
The Yinchuan Plain has more than 2000 years of history of irrigation by diverting water from the Yellow River. Currently, the amount of water diverted from the Yellow River is about 21.7 times the water formed on the plain as a result of precipitation and inflow of groundwater. Under the intensive influence of irrigation, the plain changed from a desert into a rich and populous area, earning its name as ‘South China Beyond the Great Wall’, with lakes scattered across the Yinchuan Plain just as stars in the sky. In this research, 17 representative lakes were sampled to analyze and study 2H and 18O content; the results showed that lakes on the plain have undergone obvious non‐equilibrium evaporation. Recharges of the lakes can be divided into three types: recharge from the Yellow River, from groundwater and from both of these. The Craig–Gordon non‐equilibrium evaporation model for isotope fractionation was used to estimate the evaporation proportion of each lake. The results showed that evaporation from lakes on Yinchuan Plain is generally extensive under the dry climatic conditions. Most lakes have an evaporation proportion of over 25%, with the largest originating from Shahu lake and Gaomiaohu lake in the northern part of the plain, at 42.5% and 42.8%, respectively. The evaporation proportions calculated on the basis of 18O and 2H are very close to each other. This shows that the method used in this paper is feasible for estimating the evaporation proportions of lakes in areas with a heavy anthropogenic influence. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
White WB 《Ground water》2012,50(2):180-186
The very diverse types of ground‐water behavior in carbonate terrains can be classified by relating the flow type to a particular hydrogeologic environment each exhibiting a characteristic cave morphology. The ground water may move by diffuse flow, by retarded flow, or by free flow. Diffuse flow occurs in less soluble rocks such as extremely shaley limestones or crystalline dolomites. Integrated conduits are rare. Caves tend to be small, irregular, and often little more than solutionally widened joints. Retarded flows occur in artesian environments and in situations where unfavorable stratigraphy forces ground water to be confined to relatively thin beds. Network cave patterns are characteristic since hydrodynamic forces are damped by the external controls. Solution occurs along many available joints. Free flowing aquifers are those in which solution has developed a subsurface drainage system logically regarded as an underground extension of surface streams. These streams may have fully developed surface tributaries as well as recharge from sinkholes and general infiltration. Characteristic cave patterns are those of integrated conduit systems which are often truncated into linear, angulate, and branchwork caves. Free Flow aquifers may be further subdivided into Open aquifers lying beneath karst plains and Capped aquifers in which significant parts of the drainage net lie beneath an insoluble cap rock. Other geologic factors such as structure, detailed lithology, relief, and locations of major streams, control the details of cave morphology and orientation of the drainage network.  相似文献   

12.
Phosphorus (P) loading, exports and concentrations of the four lakes of the Yahara chain (Wisconsin, USA) were compared under four load-reduction plans using a model calibrated with 29–33 years of annual data. P mitigation goals must balance reductions in P concentrations in the four lakes and the export from the lake chain to downstream waters. Lake Mendota, the uppermost lake, is most responsive to P load reductions, and benefits diminish downstream. Nonetheless, the greatest reductions in export from the lake chain to downstream waters derive from P load reductions to lakes lower in the chain. The effective grazer Daphnia pulicaria causes large improvements in water quality. Management to maintain populations of D. pulicaria has substantial benefits that augment those from reductions in P loading. Model projections show high variability in water quality and exports under all load-reduction plans. This variability is driven by inter-annual variation in runoff. Thus lake managers and the public should expect ongoing year-to-year variability in water quality, even though P load mitigation will improve water quality on average. Because of high variability from year to year, ongoing monitoring is essential to assess the effects of management of this chain of lakes.  相似文献   

13.
Effects of ground water exchange on the hydrology and ecology of surface water   总被引:11,自引:0,他引:11  
Ground water exchange affects the ecology of surface water by sustaining stream base flow and moderating water-level fluctuations of ground water-fed lakes. It also provides stable-temperature habitats and supplies nutrients and inorganic ions. Ground water input of nutrients can even determine the trophic status of lakes and the distribution of macrophytes. In streams the mixing of ground water and surface water in shallow channel and bankside sediments creates a unique environment called the hyporheic zone, an important component of the lotic ecosystem. Localized areas of high ground water discharge in streams provide thermal refugia for fish. Ground water also provides moisture to riparian vegetation, which in turn supplies organic matter to streams and enhances bank resistance to erosion. As hydrologists and ecologists interact to understand the impact of ground water on aquatic ecology, a new research field called "ecohydrology" is emerging.  相似文献   

14.
Tritium concentrations are used to trace water circulation in the Urumqi and Turfan basins in the Xinjiang, western China. Tritium analyses were made for 77 water samples of river waters, groundwaters, spring waters, lake waters and glacier ice collected in summers in 1992 and 1994. The tritium concentrations in the waters are in a wide range from 0 to 125 TU, most of which are considerably high compared with those of most waters in Japan, because tritium levels in precipitation in the area are over ten times as high as those in Japan. River waters originating in glacier regions contain melt glacier, the proportion of which is over 0.5 to river water. The mean resi-dence time of circulating meteoric water in the mountain regions is estimated to be about 15 years. Most groundwaters and spring waters in the flat regions are mainly derived from river waters originating in glacier regions. The groundwater of greatest tritium concentrations in wells in Urumqi City is derived from Urumqi River about 25 years ago. It takes several ten years for river water to pass the underground to many springs. Some groundwaters and spring waters have taken a long time more than 40 years to travel under the ground. Enrichment of tritium in lake water by evaporation is considered to estimate the contribution of groundwater flow to the recharge of lake. Various contributions of groundwater to lakes are inferred for the various type of salinity in closed or semi-closed lakes. The inflow rates of groundwater to salt lakes are small as against fresh water lakes.  相似文献   

15.
The character of organic carbon (OC) in lake waters is strongly dependent on the time water has spent in the landscape as well as in the lake itself due to continuous biogeochemical OC transformation processes. A common view is that upstream lakes might prolong the water retention in the landscape, resulting in an altered OC character downstream. We calculated the number of lakes upstream for 24,742 Swedish lakes in seven river basins spanning from 56º to 68º N. For each of these lakes, we used a lake volume to discharge comparison on a landscape scale to account for upstream water retention by lakes (Tn tot). We found a surprisingly weak relationship between the number of lakes upstream and Tn tot. Accordingly, we found that the coloured fraction of organic carbon was not related to lake landscape position but significantly related to Tn tot when we analysed lake water chemical data from 1,559 lakes in the studied river basins. Thus, we conclude that water renewal along the aquatic continuum by lateral water inputs offsets cumulative retention by lakes. Based on our findings, we suggest integrating Tn tot in studies that address lake landscape position in the boreal zone to better understand variations in the character of organic carbon across lake districts.  相似文献   

16.
新疆平原沙漠区湖泊干缩现象的初步评价   总被引:2,自引:2,他引:0  
王晓峰  章海生 《湖泊科学》1994,6(4):333-339
对新疆平原沙漠区湖泊干缩现象作了初步评价,指出这一现象是干旱、半干旱地区农业灌溉和国民经济发展到一定规模时所必然产生的现象,因而可以视为正常。同时指出,平原区湖泊之存亡既取决于自然条件,更取决于社会经济发展的需要。现存湖泊资源的开发与保护,既要立足于生态环境价值论,也要立足于经济价值论。  相似文献   

17.
Classification of Thermal Patterns at Karst Springs and Cave Streams   总被引:1,自引:0,他引:1  
Thermal patterns of karst springs and cave streams provide potentially useful information concerning aquifer geometry and recharge. Temperature monitoring at 25 springs and cave streams in southeastern Minnesota has shown four distinct thermal patterns. These patterns can be divided into two types: those produced by flow paths with ineffective heat exchange, such as conduits, and those produced by flow paths with effective heat exchange, such as small fractures and pore space. Thermally ineffective patterns result when water flows through the aquifer before it can equilibrate to the rock temperature. Thermally ineffective patterns can be either event‐scale, as produced by rainfall or snowmelt events, or seasonal scale, as produced by input from a perennial surface stream. Thermally effective patterns result when water equilibrates to rock temperature, and the patterns displayed depend on whether the aquifer temperature is changing over time. Shallow aquifers with seasonally varying temperatures display a phase‐shifted seasonal signal, whereas deeper aquifers with constant temperatures display a stable temperature pattern. An individual aquifer may display more than one of these patterns. Since karst aquifers typically contain both thermally effective and ineffective routes, we argue that the thermal response is strongly influenced by recharge mode.  相似文献   

18.
The Deccan Trap terrain covers an area of about 200,000 sq. miles in Peninsular India. The geomorphological features of the terrain provide fewer number of sites for the surface storage of water, like dams, tanks etc. Hence most of the farm-lands of this terrain have to depend upon rains and ground water in trap rocks for their irrigation needs. The Trap rocks are not only poor producers of water but also have lesser water holding capacities when compared to the sand and gravel beds. The latter problem is further accentuated by their near horizontal dips and steeply eroded hill stopes. Wherever lateral truncation of the Trap flows due to crosion occur, ground water from these flows seeps out through the sides of their slopes into the gullies, streams and rivers, due to reduction in the length of path of movement of ground waters. The flows get drained so fast, that by summer, water tables recede faster and go deeper, thereby wells become useless for irrigation purposes. Thus, vast areas of the Trap terrain remain barren during summer months and are exposed to wind erosion. The rate at which the water levels of wells starts falling down along with the variations in quantity and distribution of rain fall make irrigation a problem even during winter months, especially for the high yielding varieties of crops. In order to solve this problem, water levels of wells have been measured prior to the construction of contour bunds in Nariaoli Mechanised farm near Nariaoli village, Sagar district, as an experimental measure, for which detailed soil and ground surveys were made. On the basis of soil characteristics of the land, the contour bunds are located in such a manner that the pools formed behind them acted as recharge areas. In addition, check dams across the nallahs are constructed such that some of the reservoirs, situated in the influent parts of the stream courses acted as recharge basins, while those situated in the effluent parts of the streams served to check the free flow of ground water into the streams. On this principle pratically all the villages around Sagar have been bunded, though not all the streams check-dammed. Sets of water table maps were prepared, once before the onset of rains and the second time immediately after the rains. As a result of these recharge methods, each dug well is now capable of irrigating eight to sixteen times more acreage during winter and two to four times more acreage during summer than what each well was capable of before. Streams, that were ephemeral, have become seasonal, and seasonal streams have become nearly perennial. The authors, therefore, conclude that vast areas of low ground farm-lands of the Trap terrains can be provided with adequate irrigation facilities even during summer months with the help of soil and water conservation practices. This may go a long way to meet the demands for food by the ever growing population of India, as the major part of Deccan Trap terrain involved is endowed with rich soils.  相似文献   

19.
Access to fresh water is one of the major issues of northern and sub-Saharan Africa. The majority of the fresh water used for drinking and irrigation is obtained from large ground water basins where there is minor contemporary recharge and the aquifers cross national borders. These aquifers include the Nubian Aquifer System shared by Chad, Egypt, Libya, and Sudan; the Iullemeden Aquifer System, extending over Niger, Nigeria, Mali, Benin, and Algeria; and the Northwest Sahara Aquifer System shared by Algeria, Libya, and Tunisia. These resources are subject to increased exploitation and may be severely stressed if not managed properly as witnessed already by declining water levels. In order to make appropriate decisions for the sustainable management of these shared water resources, planners and managers in different countries need an improved knowledge base of hydrological information. Three technical cooperation projects related to aquifer systems will be implemented by the International Atomic Energy Agency, in collaboration with the United Nations Educational, Scientific and Cultural Organization and United Nations Development Programme/Global Environmental Facility. These projects focus on isotope hydrology studies to better quantify ground water recharge and dynamics. The multiple isotope approach combining commonly used isotopes 18O and 2H together with more recently developed techniques (chlorofluorocarbons, 36Cl, noble gases) will be applied to improve the conceptual model to study stratification and ground water flows. Moreover, the isotopes will be an important indicator of changes in the aquifer due to water abstraction, and therefore they will assist in the effort to establish a sustainable ground water management.  相似文献   

20.
A synthesis of groundwater ages, recharge rates and information on processes affecting groundwater quality in northern China highlights the major challenges faced for sustainable management of the region's groundwater. Direct recharge rates range from hundreds of millimetres per year in the North China Plain, to tens of millimetres per year in the Loess Plateau to less than 4 mm/year in the arid northwest. Recharge rates and mechanisms to deep semiconfined and confined aquifers are poorly constrained; however, on the basis of available data, these are likely to be mostly negligible. Severe groundwater level declines (0.5–3 m/year) have occurred throughout northern China in the last three to four decades, particularly in deep aquifers. Radiocarbon dating, stable isotope and noble gas data show that the most intensively extracted deep groundwater is palaeowater, recharged under different climate and land cover conditions to the present. Reservoir construction has reduced surface runoff in mountain‐front areas that would naturally recharge regional Quaternary aquifers in many basins. In combination with intensive irrigation practices, this has resulted in the main recharge source shifting from surface runoff and mountain‐front recharge to irrigation returns. This has reduced infiltration of fresh recharge at basin margins and rapidly increased nitrate concentrations and overall mineralisation in phreatic groundwater over wide areas (in some cases to >400 mg/l and >10 g/l, respectively). In some basins, there is evidence that poor quality shallow water has leaked into deep layers (>200 m) via preferential flow, mixing with palaeowaters stored in semiconfined aquifers. High concentrations of naturally occurring fluoride and arsenic (locally >8.5 and >4 mg/l, respectively) have recently lead to the abandonment of numerous supply wells in northern China, creating further pressure on stressed water resources. Increasing water demand from direct and indirect consumption poses major challenges for water management in northern China, which must consider the full water cycle. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号