首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
—?As part of a collaborative research program for the purpose of monitoring the Comprehensive Nuclear-Test-Ban Treaty (CTBT), we are in the process of examining and analyzing hydroacoustic data from underwater explosions conducted in the former Soviet Union. We are using these data as constraints on modeling the hydroacoustic source as a function of depth below the water surface. This is of interest to the CTBT because although even small explosions at depth generate signals easily observable at large distances, the hydroacoustic source amplitude decreases as the source approaches the surface. Consequently, explosions in the ocean will be more difficult to identify if they are on or near the ocean surface. We are particularly interested in records featuring various combinations of depths of explosion, and distances and depths of recording.¶Unique historical Russian data sets have now become available from test explosions of 100-kg TNT cast spherical charges in a shallow reservoir (87?m length, 25?m to 55?m width, and 3?m depth) with a low-velocity air-saturated layer of sand on the bottom. A number of tests were conducted with varying water level and charge depths. Pressure measurements were taken at varying depths and horizontal distances in the water. The available data include measurements of peak pressures from all explosions and digitized pressure-time histories from some of them. A reduction of peak pressure by about 60–70% is observed in these measurements for half-immersed charges as compared with deeper explosions. In addition, several peak-pressure measurements are also available from a 1957 underwater nuclear explosion (yield <10?kt and depth 30?m) in the Bay of Chernaya (Novaya Zemlya).¶The 100-kg TNT data were compared with model predictions. Shockwave modeling is based on spherical wave propagation and finite element calculations, constrained by empirical data from US underwater chemical and nuclear tests. Modeling was performed for digitized pressure-time histories from two fully-immersed explosions and one explosion of a half-immersed charge, as well as for the peak-pressure measurements from all explosions carried out in the reservoir with water level at its maximum (3?m). We found that the model predictions match the Russian data well.¶Peak-pressure measurements and pressure-time histories were simulated at 10?km distance from hypothetical 1-kt and 10-kt nuclear explosions conducted at various depths in the ocean. The ocean water was characterized by a realistic sound velocity profile featuring a velocity minimum at 700?m depth. Simulated measurements at that same depth predict at least a tenfold increase in peak pressures from explosions in the SOFAR channel as compared with very shallow explosions (e.g., ~3?m depth).¶ The observations and the modeling results were also compared with predictions calculated at the Lawrence Livermore National Laboratory using a different modeling approach. All results suggest that although the coupling is reduced for very shallow explosions, a shallow 1-kt explosion should be detectable by the IMS hydroacoustic network.  相似文献   

2.
Formenti  Y.  Druitt  T. H.  Kelfoun  K. 《Bulletin of Volcanology》2003,65(8):587-605
The activity of Convention at Montserrat Soufrière Hills Volcano, Montserrat, during the period 1995–1999 included numerous violent explosions. Two major cycles of Vulcanian explosions occurred in 1997: a first of 13 explosions between 4 and 12 August and a second of 75 between 22 September and 21 October. The explosions were short-lived events lasting a few tens of seconds during which partial fountain collapse generated pyroclastic surges and pyroclastic flows, and buoyant plumes ascended 3–15 km into the atmosphere. Each explosion discharged on average 3×105 m3 (dense-rock equivalent, DRE) of magma, draining the conduit to depths of 1–2 km. The paper focuses on the first few seconds of three explosions of the 75 that occurred in September/October 1997: 6 October 1997 at 17:50, 7 October 1997 at 16:02 and 9 October 1997 at 12:32. Physical parameters such as exit velocities, magmatic water contents and magma pressures at fragmentation are estimated by following and modelling the ascent of individual momentum-dominated finger jets visible on videos during the initial stages of each explosion. The model treats each finger jet as an incompressible flow sustained by a steady flux of gas and particles during the few seconds of ascent, and produces results that compare favourably with those using a multiphase compressible code run using similar eruptive parameters. Each explosion reveals a progressive increase in eruptive intensity with time, jet exit velocities increasing from 40 m s–1 at the beginning of the explosion up to 140 m s–1 after a few seconds. Modelling suggests that the first magma to exit was largely degassed, whereas that discharged after a few seconds contained up to 2 wt% water. Magma overpressures up to ~10 MPa are estimated to have existed in the conduit immediately prior to each explosion. Progressive increases in jet exit velocity with time over the first few seconds of each explosion provide direct evidence for strong pre-eruptive gradients in water content and magma pressure in the upper reaches (probably 100–500 m) of the conduit. Fountain collapse occurred during the first 10–20 s of each explosion because the discharging jets had bulk densities up to 100 times that of the atmosphere and were unable to entrain enough air to become buoyant. Such high eruptive densities were due to the presence of partially degassed magma in the conduit.Editorial responsibility: A. Woods  相似文献   

3.
White Island is an active andesitic-dacitic composite volcano surrounded by sea, yet isolated from sea water by chemically sealed zones that confine a long-lived acidic hydrothermal system, within a thick sequence of fine-grained volcaniclastic sediment and ash. The rise of at least 106 m3 of basic andesite magma to shallow levels and its interaction with the hydrothermal system resulted in the longest historical eruption sequence at White Island in 1976–1982. About 107 m3 of mixed lithic and juvenile ejecta was erupted, accompanied by collapse to form two coalescing maar-like craters. Vent position within the craters changed 5 times during the eruption, but the vents were repeatedly re-established along a line linking pre-1976 vents. The eruption sequence consisted of seven alternating phases of phreatomagmatic and Strombolian volcanism. Strombolian eruptions were preceded and followed by mildly explosive degassing and production of incandescent, blocky juvenile ash from the margins of the magma body. Phreatomagmatic phases contained two styles of activity: (a) near-continuous emission of gas and ash and (b) discrete explosions followed by prolonged quiescence. The near-continuous activity reculted from streaming of magmatic volatiles and phreatic steam through open conduits, frittering juvennile shards from the margins of the magma and eroding loose lithic particles from the unconsolidated wall rock. The larger discrete explosions produced ballistic block aprons, downwind lobes of fall tephra, and cohesive wet surge deposits confined to the main crater. The key features of the larger explosions were their shallow focus, random occurrence and lack of precursors, and the thermal heterogeneity of the ejecta. This White Island eruption was unusual because of the low discharge rate of magma over an extended time period and because of the influence of a unique physical and hydrological setting. The low rate of magma rise led to very effective separation of magmatic volatiles and high fluxes of magmatic gas even during phreatic phases of the eruption. While true Strombolian phases did occur, more frequently the decoupled magmatic gas rose to interact with the conduit walls and hydrothermal system, producing phreatomagmatic eruptions. The form of these wet explosions was governed by a delicate balance between erosion and collapse of the weak conduit walls. If the walls were relatively stable, fine ash was slowly eroded and erupted in weak, near-continous phreatomagmatic events. When the walls were unstable, wall collapse triggered larger discrete phreatomagmatic explosions.  相似文献   

4.
A global monitoring system for atmospheric radioactivity is being established as part of the International Monitoring System that will verify compliance with the comprehensive nuclear-test-ban treaty (CTBT) once the treaty has entered into force. This paper studies isotopic activity ratios to support the interpretation of observed atmospheric concentrations of 135I, 133I and 131I. The goal is to distinguish nuclear explosion sources from civilian releases. Simulated nuclear explosion releases along with observational data of radioiodine releases from historic nuclear explosions at the Nevada Test Site are compared to simulated light water reactor releases in order to provide a proof of concept for source discrimination based on radioiodine isotopic activity ratios.  相似文献   

5.
Lateral blasts at andesitic and dacitic volcanoes can produce a variety of direct hazards, including ballistic projectiles which can be thrown to distances of at least 10 km and pyroclastic density flows which can travel at high speed to distances of more than 30 km. Indirect effect that may accompany such explosions include wind-borne ash, pyroclastic flows formed by the remobilization of rock debris thrown onto sloping ground, and lahars.Two lateral blasts occurred at a lava dome on the north flank of Mount St. Helens about 1200 years ago; the more energetic of these threw rock debris northeastward across a sector of about 30° to a distance of at least 10 km. The ballistic debris fell onto an area estimated to be 50 km2, and wind-transported ash and lapilli derived from the lateral-blast cloud fell on an additional lobate area of at least 200 km2. In contrast, the vastly larger lateral blast of May 18, 1980, created a devastating pyroclastic density flow that covered a sector of as much as 180°, reached a maximum distance of 28 km, and within a few minutes directly affected an area of about 550 km2. The May 18 lateral blast resulted from the sudden, landslide-induced depressurization of a dacite cryptodome and the hydrothermal system that surrounded it within the volcano.We propose that lateral-blast hazard assessments for lava domes include an adjoining hazard zone with a radius of at least 10 km. Although a lateral blast can occur on any side of a dome, the sector directly affected by any one blast probably will be less than 180°. Nevertheless, a circular hazard zone centered on the dome is suggested because of the difficulty of predicting the direction of a lateral blast.For the purpose of long-term land-use planning, a hazard assessment for lateral blasts caused by explosions of magma bodies or pressurized hydrothermal systems within a symmetrical volcano could designate a circular potential hazard area with a radius of 35 km centered on the volcano. For short-term hazard assessments, if seismicity and deformation indicate that magma is moving toward the flank of a volcano, it should be recognized that a landslide could lead to the sudden unloading of a magmatic or hydrothermal system and thereby cause a catastrophic lateral blast. A hazard assessment should assume that a lateral blast could directly affect an area at least 180° wide to a distance of 35 km from the site of the explosion, irrespective of topography.  相似文献   

6.
Explosions of hot water, steam, and gas are common periodic events of subaerial geothermal systems. These highly destructive events may cause loss of life and substantial damage to infrastructure, especially in densely populated areas and where geothermal systems are actively exploited for energy. We report on the occurrence of a large number of explosion craters associated with the offshore venting of gas and thermal waters at the volcanic island of Panarea, Italy, demonstrating that violent explosions similar to those observed on land also are common in the shallow submarine environment. With diameters ranging from 5 to over 100?m, the observed circular seafloor depressions record a history of major gas explosions caused by frequent perturbation of the submarine geothermal system over the past 10,000?years. Estimates of the total gas flux indicate that the Panarea geothermal system released over 70?Mt of CO2 over this period of time, suggesting that CO2 venting at submerged arc volcanoes contributes significantly to the global atmospheric budget of this greenhouse gas. The findings at Panarea highlight that shallow submarine gas explosions represent a previously unrecognized volcanic hazard around populated volcanic islands that needs to be taken into account in the development of risk management strategies.  相似文献   

7.
The 1968–73 (and continuing) eruption of Arenal Volcano, Costa Rica, a small 1633 m strato-volcano with long periods of repose, defines an eruptive cycle which is typical of Arenal’s pre-historic eruptions. An intense, short explosive phase (July 29–31, 1968) grades into an effusive phase, and is followed by a block lava flow. The eruptive rocks become increasingly less differentiated with time in a given cycle, ranging from andesite to basaltic andesite. Nuées ardentes are a characteristic of the initial explosions, and are caused by fall-back ejecta on slopes around the main crater — an explosion crater in the 1968 eruption — which coalesce into hot avalanches and descend major drainage channels. Total volume of pyroclastic flows was small, about 1.8 ± 0.5 × 10n m3, in the July 29–31 explosions, and are block and ash flows, with much accidental material. Overpressures, ranging up to perhaps 5 kilobars just prior to major explosions, were estimated from velocities of large ejected blocks, which had velocities of up to 600 m/sec. Total kinetic energy and volume of ejecta of all explosions are an estimated 3 × 1022 ergs and 0.03 km3, respectively. The block lava flow, emitted from Sept., 1968 to 1973 (and continuing) has a volume greater than 0.06 km3, and covers 2.7 km2 at thicknesses ranging from 15 to over 100 m. The total volumes of the explosive and effusive phases for the 1968–73 eruption are about 0.05 km3 and 0.06 km3, respectively. The last eruption of Arenal occurred about 1500 AD. based on radiocarbon dating and archaeological means, and was about twice as voluminous as the current one (0.17 km3 versus 0.09 km3). The total thermal energies for this pre-historic eruption and the current one are 8 × 1023 and 18 × 1023, respectively. The total volume of Arenal’s cone is about 6 km3 from 1633 m (summit) to 500 m, and, estimates of age based on the average rate of cone growth from these two eruptions, suggest an age between 20,000 to 200,000 years.  相似文献   

8.
The sequence of large Vulcanian explosions occurring at the andesitic Popocatépetl volcano, Mexico during November 1998 to April 1999 was studied. The size of 26 largest explosions was estimated from broadband seismic records at the distance of 4 km from the crater. The sequence began with the largest explosion (E = 2.6 × 1012 J) occurring on 25 November at 08:05, and following largest daily explosions were characterized by gradual decrease in the energy. The energy of 20 large (E ≥ 1011 J) explosions was distributed as Student's t-distribution with a geometrical mean Log E = 11.81 (J).  相似文献   

9.
Chronology and products of the 2000 eruption of Miyakejima Volcano, Japan   总被引:1,自引:1,他引:0  
Lateral migration of magma away from Miyakejima volcanic island, Japan, generated summit subsidence, associated with summit explosions in the summer of 2000. An earthquake swarm beneath Miyakejima began on the evening of 26 June 2000, followed by a submarine eruption the next morning. Strong seismic activity continued under the sea from beneath the coast of Miyakejima to a few tens of kilometers northwest of the island. Summit eruptive event began with subsidence of the summit on 8 July and both explosions and subsidence continued intermittently through July and August. The most intense eruptive event occurred on 18 August and was vulcanian to subplinian in type. Ash lofted into the stratosphere fell over the entire island, and abundant volcanic bombs were erupted at this time. Another large explosion took place on 29 August. This generated a low-temperature pyroclastic surge, which covered a residential area on the northern coast of the island. The total volume of tephra erupted was 9.3×106 m3 (DRE), much smaller than the volume of the resulting caldera (6×108 m3). Migration of magma away from Miyakejima was associated with crustal extension northwest of Miyakejima and coincident shrinkage of Miyakejima Island itself during July–August 2000. This magma migration probably caused stoping of roof rock into the magma reservoir, generating subsurface cavities filled with hydrothermal fluid and/or magmatic foam and formation of a caldera (Oyama Caldera) at the summit. Interaction of hydrothermal fluid with ascending magma drove a series of phreatic to phreatomagmatic eruptions. It is likely that new magma was supplied to the reservoir from the bottom during waning stage of magmas migration, resulting in explosive discharge on 18 August. The 18 August event and phreatic explosions on 29 August produced a conduit system that allowed abundant SO2 emission (as high as 460 kg s–1) after the major eruptive events were over. At the time of writing, inhabitants of the island (about 3,000) have been evacuated from Miyakejima for more than 3 years.  相似文献   

10.
Constraining physical parameters of tephra dispersion and deposition from explosive volcanic eruptions is a significant challenge, because of both the complexity of the relationship between tephra distribution and distance from the vent and the difficulties associated with direct and comprehensive real-time observations. Three andesitic subplinian explosions in January 2011 at Shinmoedake volcano, Japan, are used as a case study to validate selected empirical and theoretical models using observations and field data. Tephra volumes are estimated using relationships between dispersal area and tephra thickness or mass/area. A new cubic B-spline interpolation method is also examined. Magma discharge rate is estimated using theoretical plume models incorporating the effect of wind. Results are consistent with observed plume heights (6.4–7.3 km above the vent) and eruption durations. Estimated tephra volumes were 15–34?×?106 m3 for explosions on the afternoon of 26 January and morning of 27 January, and 5.0–7.6?×?106 m3 for the afternoon of 27 January; magma discharge rates were in the range 1–2?×?106 kg/s for all three explosions. Clast dispersal models estimated plume height at 7.1?±?1 km above the vent for each explosion. The three subplinian explosions occurred with approximately 12-h reposes and had similar mass discharge rates and plume heights but decreasing erupted magma volumes and durations.  相似文献   

11.
Variations in D and 18O values with H2O contents and outlet temperatures indicate that the fumaroles of La Fossa crater have discharged mixtures of magmatic water and marine hydrothermal water, since 1979. The contribution of meteoric water was low in the period 1979–1982 and very low afterwards. The 18O values of the marine-hydrothermal component of +5 to +7.2 are due to isotopic exchange with the 18O-rich silicates of the rocks under high-temperature and low-permeability conditions. The 18O value of the magmatic end-member is generally +3.5 to +4.3, although values as high as +5.5 to +6.5 were reached in the summer of 1988, when magma degassing appears to have extended into the core of the magma body. The D values of the end-member were close to -20, typical of andesitic waters. Both the isotopic values and chemical data strongly support a dry model, consisting of a central magmatic gas column and a surrounding hydrothermal envelope, in which marine hydrothermal brines move along limited fracture zones to undergo total evaporation on approaching the conduits of magmatic fluids. The vents at the eastern and western boundaries of the fumarolic field are fed by fluids whose pressure is governed by the coexistence of vapor, liquid and halite, giving rise to a high risk of phreato magmatic explosions, should magma penetrate into these wet environments. Most La Fossa eruptions were triggered by an initial hydrothermal blast and continued with a series of phreatomagmatic explosions. The fluids discharged by the Forgia Vecchia fumaroles are mixed with meteoric water, which is largely evaporated, although subordinate loss of condensed steam may be responsible for scrubbing most of the acidic gas species. The temperatures and pressures, and the risk of a sudden pressure increase, are low. A boiling hydrothermal aquifer at 230° C is present underneath the Baia di Levante beach. This area has a minor risk of hydrothermal explosions.  相似文献   

12.
The H2O, CO2 and H2S outputs at the Solfatara of Pozzuoli have been measured and a map of the exhaling areas has also been made. The energy released at the surface by the fluids has been estimated to be 1019 ergs/day.The presence of aquifers at Phlegraean Fields increases the phreatic and phreatomagmatic explosion risk.Our results suggest that even if an uprising magma may interact with water at depth, an explosion could occur only at the shallow levels of a few hundred meters. Since the transfer of energy toward the surface is favoured by the presence of fractures, a detailed analysis of the deep fracture network would help to evaluate the risk levels of the various areas of Phlegraean Fields.  相似文献   

13.
Comparison of the chemical characteristics of spring and river water draining the flanks of Poa´s Volcano, Costa Rica indicates that acid chloride sulfate springs of the northwestern flank of the volcano are derived by leakage and mixing of acid brines formed in the summit hydrothermal system with dilute flank groundwater. Acid chloride sulfate waters of the Rio Agrio drainage basin on the northwestern flank are the only waters on Poa´s that are affected by leakage of acid brines from the summit hydrothermal system. Acid sulfate waters found on the northwestern flank are produced by the interaction of surface and shallow groundwater with dry and wet acid deposition of SO2 and H2SO4 aerosols, respectively. The acid deposition is caused by a plume of acid gases that is released by a shallow magma body located beneath the active crater of Poa´s.No evidence for a deep reservoir of neutral pH sodium chloride brine is found at Poa´s. The lack of discharge of sodium chloride waters at Poa´s is attributed to two factors: (1) the presence of a relatively volatile-rich magma body degassing at shallow depths (< 1 km) into a high level summit groundwater system; and (2) the hydrologic structure of the volcano in which high rates of recharge combine with rapid lateral flow of shallow groundwater to prevent deep-seated sodium chloride fluids from ascending to the surface. The shallow depth of the volatile-rich magma results in the degassing of large quantities of SO2 and HCl. These gases are readily hydrolyzed and quickly mix with meteoric water to form a reservoir of acid chloride-sulfate brine in the summit hydrothermal system. High recharge rates and steep hydraulic gradients associated with elevated topographic features of the summit region promote lateral flow of acid brines generated in the summit hydrothermal system. However, the same high recharge rates and steep hydraulic gradients prevent lateral flow of deep-seated fluids, thereby masking the presence of any sodium chloride brines that may exist in deeper parts of the volcanic edifice.Structural, stratigraphic, and topographic features of Poa´s Volcano are critical in restricting flow of acid brines to the northwestern flank of the volcano. A permeable lava-lahar sequence that outcrops in the Rio Agrio drainage basin forms a hydraulic conduit between the crater lake and acid chloride sulfate springs. Spring water residence times are estimated from tritium data and indicate that flow of acid brines from the active crater to the Rio Agrio source springs is relatively rapid (3 to 17 years). Hydraulic conductivity values of the lava-lahar sequence calculated from residence time estimates range from 10−5 to 10−7 m/s. These values are consistent with hydraulic conductivity values determined by aquifer tests of fractured and porous lava/pyroclastic sequences at the base of the northwestern flank of the volcano.Fluxes of dissolved rock-forming elements in Rio Agrio indicate that approximately 4300 and 1650 m3 of rock are removed annually from the northwest flank aquifer and the active crater hydrothermal system, respectively. Over the lifetime of the hydrothermal system (100's to 1000's of years), significant increases in aquifer porosity and permeability should occur, in marked contrast to the reduction in permeability that often accompanies hydrothermal alteration in less acidic systems. Average fluxes of fluoride, chloride and sulfur calculated from discharge and compositional data collected in the Rio Agrio drainage basin over the period 1988–1990 are approximately 2, 38 and 30 metric tons/day. These fluxes should be representative of minimum volatile release rates at Poa´s in the last 10 to 20 years.  相似文献   

14.
87Sr/86Sr ratios of three hydrothermal waters collected on the East Pacific Rise at 21°N define a mixing line between seawater and a hydrothermal end-member at 0.7030 which is derived by seawater-basalt interaction at ca. 350°C and water/rock ratio of about 1.5. Sr concentrations are not affected in the process while Mg uptake from seawater is almost complete. Up to2/3 of this hydrothermal component is involved in anhydrite precipitation while the Sr isotopic ratio in sulfides (chalcopyrite + sphalerite) cannot be distinguished from that of sulfate. It is estimated that ca. 1 × 1010 moles of strontium are yearly cycled in the hydrothermal systems of mid-oceanic ridges, thereby affecting the87Sr/86Sr budget of seawater. Mass balance between river runoff, limestone precipitation and ridge basalt alteration suggests that the87Sr/86Sr ratios of the river runoff are in the range 0.7097–0.7113, and are largely dominated by limestone alteration.  相似文献   

15.
The Aegean volcanic arc is the result of a lithosphere subduction process during the Quaternary time. Starting from the Soussaki area, from west to east, the arc proceeds through the islands of Egina, Methana, Milos, Santorini, the Columbus Bank, Kos and Nisyros. Volcano-tectonic activities are still pronounced at Santorini and Nisyros in form of seismic activity, craters of hydrothermal explosions, hot fumaroles and thermal springs. A significant number of cold water springs emerge in the vicinity of hot waters on these islands.Chemical and isotopic analyses were applied on water and fumaroles samples collected in different areas of the volcanic arc in order to attempt the assessment of these fluids. Stable isotopes of water and carbon have been used to evaluate the origin of cold and thermal water and CO2.Chemical solute concentrations and isotopic contents of waters show that the fluids emerging in Egina, Soussaki, Methana and Kos areas represent geothermal systems in their waning stage, while the fluids from Milos, Santorini and Nisyros proceed from active geothermal systems.The δ2H–δ18O–Cl? relationships suggest that the parent hydrothermal liquids of Nisyros and Milos are produced through mixing of seawater and Arc-Type Magmatic Water (ATMW), with negligible to nil contribution of local ground waters and with very high participation of the magmatic component, which is close to 70% in both sites. A very high magmatic contribution to the deep geothermal system could occur at Santorini as well, perhaps with a percentage similar to Nisyros and Milos, but it cannot be calculated because of steam condensation heavily affecting the fumarolic fluids of Nea Kameni before the surface discharge.The parent hydrothermal liquid at Methana originates through mixing of local groundwaters, seawater and ATMW, with a magmatic participation close to 19%. All in all, the contribution of ATMW is higher in the central–eastern part of the Aegean volcanic arc than in the western sector. This difference, which is spotted in the variable isotopic composition of the sampled fluids from west to east along the arc, is probably due to several causes, including the tectonic regime, the depth of the deep reservoir below sea level, the age of volcanic activity and in general the geomorphologic state of each island.  相似文献   

16.
A combination of fortuitous eruptive and wind conditions at Stromboli volcano in September 2002 enabled the collection of samples of multiple lapilli from individual observed explosions. These ejecta present the first opportunity to analyze the vesicularity of material ejected in a single Strombolian explosion. Samples of between 40 and 92 lapilli were collected from each of six sequential explosions on 30 September 2002, and 28 lapilli were obtained from a single explosion  24 h later (1 October). Density measurements and microtextural observations show that considerable heterogeneity existed within each of the seven samples. Centimeter to millimeter size bubble-rich and bubble-poor zones are present and are, in places, mingled together. These data confirm that the shallow conduit at Stromboli is a texturally diverse environment at the instant of a single explosion, and that a similar range of heterogeneity can persist through closely-spaced sequences of explosions on a timescale of hours and, probably, days, despite the dynamic processes of ascent of melt and decoupled gas phases.  相似文献   

17.
The Atexcac maar is located in the central part of the Serdán–Oriental lacustrine/playa basin in the eastern Mexican Volcanic Belt. It is part of a dispersed and isolated monogenetic field consisting of maar volcanoes, basaltic cinder cones and rhyolitic domes. Atexac is a maar volcano excavated into pyroclastic deposits, basaltic lava flows and the flanks of a cinder cone cluster, which itself was built on a topographic high consisting of limestone. It has an ENE-trending elliptical shape with beds, mostly unconsolidated deposits that dip outward at 16–22°. The Atexcac crater was formed from vigorous phreatomagmatic explosions in which fluctuations in the availability of external water, temporal migration of the locus of the explosion, and periodic injection of new magma were important controls on the evolution of the maar crater. Variations in grain sizes and component proportions of correlated deposits from the different sections suggest a migration of the locus of explosions, producing different eruptive conditions with fluctuating water–magma interactions. Deposits rich in large intrusive and limestone blocks are associated with a matrix enriched in small andesitic lapilli. This could suggest differential degrees of fragmentation due to inherited (previously acquired) fragmentation and/or relative distance to the locus of explosions. Initial short-lived phreatic explosions started at the southwest part of the crater and were followed by an ephemeral vertical column and the influx of external water that led to relatively shallow explosive interactions with the ascending basaltic magma. Drier explosions progressed downward and/or laterally northward, sampling subsurface rock types, particularly intrusive, limestone and andesitic zones as well as localized altered zones (N-NE), caused by repetitive injection of basaltic magma. A final explosive phase involved a new injection of magma and a new influx of external water producing wetter conditions at the end of the maar formation. We infer the aquifer was formed by fractured rocks, predominantly andesitic lava flows and limestone rocks. Andesitic accessory clasts dominate in all stratigraphic levels but these rocks are not exposed in the nearby area. These local hydrogeological conditions contrast with those at nearby maar volcanoes, where the water for the magma/water interactions apparently mostly came from a dominantly unconsolidated tuffaceous aquifer, producing tuff rings with a much lower profile than Atexcac.  相似文献   

18.
Microthermometric measurements were obtained for 618 fluid inclusions in hydrothermal quartz, fluorite and calcite and magmatic quartz phenocrysts in intracaldera tuffs from the VC-2A core hole in order to study evolutionary processes of the Sulphur Springs hydrothermal system in the Valles caldera. Relatively high Th values in samples from shallow depths indicate erosion of about 200 m of caldera fill since deposition of hydrothermal minerals at shallow depths in the Sulphur Springs hydrothermal system, accompanied by a descent in the water table of the liquid-dominated reservoir. For samples collected below the current water level of the well, the minimum values of homogenization temperature (Th) fit the present thermal profile, whereas minimum Th values of samples from above the water level are several tens of degrees higher than the present thermal profile and fit a paleo-thermal profile following the boiling point curve for pure water, as adjusted to 92 °C at 20 m below the present land surface. This is attributed to development of an evolving vapor zone that formed subsequent to a sudden drop in the water table of the liquid-dominated reservoir. We suggest that these events were caused by the drainage of an intracaldera lake when the southwestern wall of the caldera was breached about 0.5 Ma. This model indicates that vapor zones above major liquid-dominated geothermal reservoirs can be formed due to dramatic changes in geohydrology and not just from simple boiling.  相似文献   

19.
The hydrothermal water balance and the thermal structure of Yakedake volcano and its vicinity are considered quantitatively. The hydrothermal activity is intense in the valleys at the western foot of the volcano and the Nakanoyu area. The total hot water flow from the discharge area amounts to 2.07 × 1041/min, about 60% of which discharges from the Shinhodaka area alone. There are some large basins (Abodaira and others) in which the rocks are mainly tuff breccia and volcanic products showing very high permeability for water. The total area of the water recharge zone amounts to 18.2 × 106m3. A model for the hydrothermal system within Yakedake volcano is proposed and from the results of boreholes, the thermal and geological structures of the Karukaya and Takara geothermal areas are also presented.Attempts were also made to estimate the subsurface temperature distribution from the observed near-surface ground temperatures. Results of three-dimensional conduction model calculations indicate that the subsurface temperatures are high in the central part of the crater and in the areas with self-flowing springs along the rivers. The obtained isotherms encircle the volcanic center of Yakedake.  相似文献   

20.
The Averno 2 eruption (3,700 ± 50 a B.P.) was an explosive low-magnitude event characterized by magmatic and phreatomagmatic explosions, generating mainly fall and surge beds, respectively. It occurred in the Western sector of the Campi Flegrei caldera (Campanian Region, South Italy) at the intersection of two active fault systems, oriented NE and NW. The morphologically complex crater area, largely filled by the Averno lake, resulted from vent activation and migration along the NE-trending fault system. The eruption generated a complex sequence of pyroclastic deposits, including pumice fall deposits in the lower portion, and prevailing surge beds in the intermediate-upper portion. The pyroclastic sequence has been studied through stratigraphical, morphostructural and petrological investigations, and subdivided into three members named A through C. Member A was emplaced during the first phase of the eruption mainly by magmatic explosions which generated columns reaching a maximum height of 10 km. During this phase the eruption reached its climax with a mass discharge rate of 3.2 106 kg/s. Intense fracturing and fault activation favored entry of a significant amount of water into the system, which produced explosions driven by variably efficient water-magma interaction. These explosions generated wet to dry surge deposits that emplaced Member B and C, respectively. Isopachs and isopleths maps, as well as areal distribution of ballistic fragments and facies variation of surge deposits allow definition of four vents that opened along a NE oriented, 2 km long fissure. The total volume of magma extruded during the eruption has been estimated at about 0.07 km3 (DRE). The erupted products range in composition from initial, weakly peralkaline alkali-trachyte, to last-emplaced alkali-trachyte. Isotopic data and modeling suggest that mixing occurred during the Averno 2 eruption between a more evolved, less radiogenic stored magma, and a less evolved, more radiogenic magma that entered the shallow reservoir to trigger the eruption. The early phases of the eruption, during which the vent migrated from SW to the center of the present lake, were fed by the more evolved, uppermost magma, while the following phases extruded the less evolved, lowermost magma. Integration of the geological and petrological results suggests that the Averno 2 complex eruption was fed from a dyke-shaped shallow reservoir intruded into the NE-SW fault system bordering to the west the La Starza resurgent block, within the caldera floor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号